
VMSCAPE: Exposing and Exploiting Incomplete Branch Predictor Isolation
in Cloud Environments

Jean-Claude Graf †
ETH Zurich

Sandro Rüegge †

ETH Zurich
Ali Hajiabadi

ETH Zurich
Kaveh Razavi

ETH Zurich

†Equal contribution joint first authors

Abstract—Virtualization is a cornerstone of modern cloud
infrastructures, providing the required isolation to customers.
This isolation, however, is threatened by speculative execution
attacks which the CPU vendors attempt to mitigate by extend-
ing the isolation to the branch predictor state. Our systematic
analysis shows that this extension unfortunately is incomplete:
while the most obvious case of the guest controlling branch
prediction in the host has been addressed by existing hardware
mitigations, we discover a number of new Spectre Branch Tar-
get Injection (Spectre-BTI) attack primitives on AMD Zen 1-
5 and Intel Coffee Lake CPUs that, among others, enable a
malicious guest to control indirect branch prediction in the host
when it is executing in userspace. Using the aforementioned
primitive, we craft VMSCAPE, the first Spectre-BTI attack that
enables a malicious KVM guest to leak arbitrary memory from
an unmodified QEMU process running on an AMD Zen 4 host
at the speed of 32 B/s, exposing cryptographic keys for disk
encryption and decryption. Our analysis of possible mitigation
strategies shows that it is possible to mitigate VMSCAPE
by selectively flushing the branch predictor with minimal
performance impact in common scenarios.

1. Introduction

Spectre v2 or Branch Target Injection (BTI) [1] attacks
have received tremendous attention recently, typically leak-
ing privileged memory from an unprivileged user [2], [3],
[4], [5], [6], [7], [8]. While these attacks show-case the
violation of security boundaries, they have limited real-
world impact since they assume local code execution on
a user’s system. The more interesting threat model is in
the cloud where a malicious Virtual Machine (VM) can
exploit Spectre-BTI to leak information from the host or
another VM. The only published attacks in these scenarios,
however, need attacker-controlled code in the host [1], [5],
[8] which is an unrealistic assumption. Through a systematic
analysis of branch prediction state isolation across virtual-
ization boundaries, we discover a number of novel attack
primitives based on Spectre-BTI. We then leverage one of
these primitives to build the first Spectre-BTI exploit that
leaks information from a host that is running unmodified
software in default configuration.

Spectre-BTI in the cloud. Virtualization, in the form of
VMs, is the primary mechanism for securely isolating co-
located workloads in the cloud, protecting both customer
data and the underlying infrastructure [9]. Spectre attacks,
and in particular Spectre-BTI, can compromise this isolation
by abusing the shared branch predictor state inside the
CPU [1]. The commonly considered threat models in this
scenario are a malicious VM attacking the hypervisor or
another VM. As such, the hardware and software vendors
give particular attention to mitigating such threats by tag-
ging branch prediction entries learned in the VM and the
hypervisor differently and flushing the branch predictor state
when switching between different VMs. The residual attack
surface through confused-deputy attacks on the hypervisor
is difficult to exploit in practice without assuming code
changes [5]. The question we investigate in this paper is if
there are other unexplored attack primitives that are possible
from a malicious VM.

New Spectre-BTI primitives for the cloud. We make
a key observation that the existing branch predictor iso-
lation mechanisms are too coarse-grained—they consider
the hypervisor and VMs as monolithic entities while in
reality they contain their own privilege levels. To investigate
how existing branch predictor isolation mechanisms handle
these privilege levels in different virtualization domains,
we systematically analyze all possible combinations of at-
tacker and victim protection domains in x86 CPUs, namely
Host Supervisor (HS), Host User (HU), Guest Supervisor
(GS), and Guest User (GU). Our analysis demonstrates
that, despite existing hardware mitigations, all AMD Zen
processors (Zen 1 to Zen 5) and Intel Coffee Lake are
vulnerable to new Virtualization-based Spectre-BTI (vBTI)
attack primitives between guest users and host users which
we refer to as vBTIGU→HU and vBTIHU→GU. vBTIGU→HU
enables new Spectre-BTI attacks on user processes running
on the host from a malicious VM, and vBTIHU→GU enables
new Spectre-BTI attacks in scenarios where the host is as-
sumed to be malicious and the guest has deployed hardware-
assisted isolation, such as Secure Encrypted Virtualization
- Secure Nested Paging (SEV-SNP) [10] or Trust Domain
Extensions (TDX) [11]. We additionally discover other vBTI
primitives that require consideration for other attack scenar-
ios that we will discuss in this paper.

VMSCAPE. To demonstrate the practicality and severity
of our vBTI primitives, we present VMSCAPE, the first
Spectre-based end-to-end exploit in which a malicious guest
user can leak arbitrary, sensitive information from the hy-
pervisor in the host domain, without requiring any code
modifications and in default configuration. We target the
widely used Kernel Virtual Machine (KVM)/QEMU [12],
[13] as the hypervisor, and particularly QEMU as the user-
space component of the hypervisor in the host. While the
vBTIGU→HU primitive demonstrates the feasibility of the
exploit, we address several additional challenges to enable a
reliable end-to-end attacks on AMD Zen 4 and Zen 5 CPUs.
For instance, achieving arbitrary memory leakage requires
a sufficiently large speculation window. However, obtaining
a large speculation window is challenging for a guest user,
since it cannot simply flush the victim branch pointer due to
lack of access to physical memory or code modifications in
QEMU. To overcome this, we reverse engineer AMD Zen 4
and Zen 5’s cache hierarchy to build eviction sets for their
non-inclusive Last Level Cache (LLC), thereby enabling
a sufficiently large speculation window for VMSCAPE to
succeed with the gadgets that we have found in QEMU.

VMSCAPE can leak the memory of the QEMU process
at a rate of 32B/s on AMD Zen 4. We use VMSCAPE to
find the location of secret data and leak it, all within 1092 s,
extracting the cryptographic key used for disk encryption/de-
cryption as an example. Our analysis shows that mitigating
VMSCAPE requires an Indirect Branch Prediction Barrier
(IBPB) in certain conditions. In particular, on each VMEXIT,
an IBPB is necessary before entering the hypervisor in
userspace. Our evaluation shows that such a mitigation, as
developed by the Linux kernel maintainers, introduces a
marginal performance overhead in common scenarios.

Contributions. We make the following contributions:

• The first systematic analysis of branch predictor iso-
lation across all possible virtualization and privilege
boundaries, leading to the discovery of new primitives
that are effective even with recent CPU mitigations.

• The first guest-to-host Spectre-BTI attack on unmod-
ified software, called VMSCAPE, using our newly-
discovered vBTIGU→HU primitive and new insights on
cache evictions on AMD Zen 4 and Zen 5 for increasing
the speculation window.

• An analysis of mitigation possibilities on various mi-
croarchitectures, leading to IBPB-on-VMEXIT as a basis
for mitigating VMSCAPE.

Responsible disclosure. We have disclosed VMSCAPE to
AMD and Intel PSIRT on June 7, 2025, and the issue
remained under embargo till September 11, 2025. Linux
maintainers mitigated VMSCAPE with patches based on
our IBPB-on-VMEXIT recommendation. We verified that
these patches are effective in stopping our vBTI primitives.
VMSCAPE is tracked under CVE-2025-40300. Further in-
formation, including the source code of our experiments and
exploit can be found at https://comsec.ethz.ch/vmscape.

2. Background

We provide some background on the Kernel Virtual
Machine (KVM)-based virtualization stack in Linux (Sec-
tion 2.1), branch prediction mechanisms (Section 2.2),
Spectre-BTI attacks (Section 2.3), and their respective mit-
igations (Section 2.4). We conclude by motivating the need
to explore Spectre-BTI attacks in the cloud scenario (Sec-
tion 2.5).

2.1. KVM-Based Virtualization in Linux

Hardware virtualization extensions such as AMD
SVM [10] and Intel VT-x [14] provide hardware support
for running multiple operating systems concurrently on the
same processor, offering strong isolation guarantees with
minimal performance overhead. The hypervisor presents
each guest Virtual Machine (VM) with the illusion of full
control over a physical system. On Linux, KVM acts as
the hypervisor and is implemented as a kernel module
running on the host. KVM relies on a user-space component
responsible for managing the lifecycle and emulated devices
of a VM. We refer to this user-space process as User-Mode
Component of the Hypervisor (Hypervisoruser). QEMU [13]
is a widely-used Hypervisoruser on Linux systems [15].
It performs tasks such as creating, starting, stopping, and
migrating VMs, and emulates required hardware devices.
Each guest virtual CPU (vCPU) maps to a dedicated thread
in the Hypervisoruser, allowing the host kernel to schedule
guest execution just like normal host processes since threads
and processes are treated similarly by the scheduler in
Linux. Consequently, the executions of the guest threads
are interleaved with other guest threads and host processes.

Entering and exiting VMs. A vCPU thread either runs in
“guest-mode” or “host-mode”. To transition from host-mode
to guest-mode, it issues a KVM_RUN ioctl to the KVM kernel
module, passing a pointer to its vCPU. Depending on the
platform, KVM either issues the VMLAUNCH/VMRESUME
(on Intel) or VMRUN (on AMD) instruction. The CPU re-
stores its state from the vCPU and starts the guest exe-
cution. When the guest executes a sensitive or privileged
instruction, the CPU intercepts it with a VMEXIT. The CPU
saves its internal state back into the vCPU structure and
continues execution in KVM. Depending on the VMEXIT
type, KVM either handles the exit directly or delegates it to
the Hypervisoruser through a KVM_EXIT.

Protection domains. To ensure confidentiality and integrity,
computing systems must enforce isolation between entities
operating in different protection domains. In many contexts,
the focus is on the distinction between the user and su-
pervisor domains (i.e. ring 0 vs ring 3). However, when
considering virtualized environments, this abstraction must
be extended to account for guest execution. As illustrated in
Figure 1, the user domain then comprises both Host User
(HU) and Guest User (GU) domains, while the supervisor
domain encompasses Host Supervisor (HS) and Guest Su-
pervisor (GS) domains.

2

https://comsec.ethz.ch/vmscape

Host Guest

Userspace Process
Host User

Kernel + KVM
Host Supervisor

Userspace Process
Guest User

Kernel
Guest Supervisor

U
se

r
Su

pe
r-

vi
so

r

Figure 1. On x86-64 systems with VMs, protection domains include HU,
HS, GU, and GS, extending beyond user and supervisor modes.

2.2. Branch Prediction

A cornerstone optimization of CPUs is the accurate pre-
diction of branch instructions and their targets. The Branch
Prediction Unit (BPU) in modern CPUs is highly complex,
composed of different predictors tailored to different branch
types and contexts. While static predictors only consider the
source address of a branch, dynamic predictors use the path
history of a branch as additional context [2], [3], [6], [7],
[16], [17]. Indirect branches impose a control flow transfer
to a destination either given by a register or through memory.
This allows them to have a multitude of destinations that the
BPU tries to correlate with the path history of the branch.
Intel CPUs predict indirect branches using a Branch Target
Buffer (BTB) (static) and an Indirect Branch Predictor (IBP)
(dynamic). On AMD CPUs, the dynamic predictor is called
Indirect Target Array (ITA) instead and is used when a
branch has encountered multiple targets. Otherwise only the
BTB is used [18]. Path history is recorded in the Branch
History Buffer (BHB) on both Intel and AMD. Figure 2
illustrates the structures involved when predicting indirect
branches.

2.3. Spectre-BTI

Spectre Branch Target Injection or Spectre-BTI [19]
is a class of speculative execution attacks that allow an
attacker to leak data across protection domain boundaries
by exploiting indirect branch mispredictions. The attacker
causes the BPU to predict the victim branch (as part of a
speculation gadget) to a disclosure gadget, inducing tran-
sient execution. In the disclosure gadget, a secret is accessed
in a way that lets the attacker later infer it through a side
channel, typically a cache-based FLUSH+RELOAD [20]. To
cause a misprediction of the victim branch, the attacker
trains the BPU using a training branch that collides with the
victim branch in the targeted predictor. To target a specific
predictor, the attacker may also need to mimic the path
history of the victim branch in the training branch.

Most prior work on Spectre-BTI has focused on sce-
narios in which an unprivileged host user process targets
the host supervisor [1], [2], [3], [5], [6], [21]. In contrast,
attacks between user processes have received relatively little
attention [7].

IP
BTB

...

...
IBP / ITA

...

...

BHB

Selector
New IP

Figure 2. BPU components involved in predicting indirect branches. A
BTB provides static predictions, while the IBP/ITA correlate targets with
path history stored in the BHB on Intel/AMD.

2.4. Spectre-BTI Mitigations

Spectre-Branch Target Injection (BTI) attacks require
the attacker to have control over the BTB state that is
used to predict the victim, implying the need for shared
BPU state between the attacker and victim domains. Do-
main isolation techniques aim to mitigate BTI attacks by
preventing the sharing of BPU state across critical protec-
tion domain boundaries. Indirect Branch Restricted Spec-
ulation (IBRS) [22] prevents branches of lower privileged
domains (e.g., user) from influencing branches of higher
privileged domains (e.g., supervisor), thereby defending the
kernel from user-mode attackers. Intel and AMD have de-
ployed Enhanced IBRS (eIBRS) [22] and Automatic IBRS
(AutoIBRS) [23] to improve IBRS; both mitigations are
always-on and do not require expensive model specific reg-
ister writes on privilege transitions. Mitigations that sanitize
the BPU remove potentially malicious entries before they
can influence a victim in a different protection domain. The
Indirect Branch Prediction Barrier (IBPB) allows develop-
ers to explicitly flush BPU state during domain transitions
that are not otherwise sufficiently isolated. BPU state may
also be shared among sibling threads on CPUs with Si-
multaneous Multithreading (SMT) enabled. Single Threaded
Indirect Branch Predictor (STIBP) [24] is a mitigation that
restricts BPU state sharing across SMT threads.

Available mitigations vary across microarchitectures,
and the default mitigation depends on both hardware support
and kernel configuration. Table 1 shows the available miti-
gations on the systems we evaluated and indicates whether
they are enabled by default on Ubuntu 24.04.

2.5. Motivation

While Spectre-BTI attacks from user to kernel show-
case a security violation, they require code execution on
the victim machine which limits the impact of such attacks.
Arguably, the more interesting threat model for Spectre-BTI
is in the cloud where it is easy for an attacker to rent a
VM and execute their attack against the hypervisor or other
VMs. Previous work [1], [5] has explored the case where
a malicious guest targets the hypervisor. These attacks,
however, rely on modifying the code in the hypervisor to
inject the desirable gadgets, which significantly limits their
practicality and impact. This raises an important question:
can Spectre-BTI attacks be mounted across virtualization
boundaries without imposing overly strong assumptions?

3

TABLE 1. EVALUATED MICROARCHITECTURES AND THEIR ISOLATION MECHANISMS AGAINST SPECTRE-BTI.

Isolation Mechanism
Vendor CPU Year Codename Microarchitecture Microcode

IBPB IBRS eIBRS/AutoIBRS STIBP

Core i7-8700 2017 Coffee Lake S Coffee Lake 0xfa
Raptor Cove 0x12cIntel

Core i7-13700K 2022 Raptor Lake
Gracemont 0x12c

Ryzen 5 1600X 2017 Summit Ridge Zen 1 0x8001137
EPYC 7252 2019 Rome Zen 2 0x8301038
EPYC 7413 2021 Milan Zen 3 0xa0011d3
Ryzen 7 7700X 2022 Raphael Zen 4 0xa601203

AMD

Ryzen 5 9600X 2024 Granite Ridge Zen 5 0xb404023

Not available Available Available and Default (Ubuntu 24.04)

3. Threat Models

The goal of the attacker is to infer secrets across the host-
guest virtualization boundary. In particular, we consider the
following three threat models: First, TMG→H considers the
scenario where an attacker controlling a guest VM targets
the host system. Second, TMH→G represents a malicious
host targeting a guest running on the system. This threat
model is particularly relevant when considering guests that
rely on Intel’s Trust Domain Extensions (TDX) or AMD’s
Secure Encrypted Virtualization - Secure Nested Paging
(SEV-SNP) to defend against malicious hosts. Third, instead
of targeting the host, a malicious guest can target another
guest, which is reflected by the TMG1→G2 model. We assume
the use of hardware virtualization extensions: SVM [10] for
AMD and VT-x [14] for Intel. Furthermore, we assume the
absence of software vulnerabilities in all components, in par-
ticular in the host and guest kernel, and the Hypervisoruser.
Finally, and importantly, we assume that the systems employ
all the default security mitigations against Spectre-BTI, as
listed in Table 1.

4. Overview of Challenges

As discussed in Section 2, existing Spectre-BTI mitiga-
tions aim to isolate the branch predictor state across different
virtualization boundaries. While the most obvious case of a
malicious guest attacking the hypervisor has been explored
in the past [1], [5], a systematic analysis of BPU state
isolation in virtualized environments when considering the
different privilege levels in the guest and host is still lacking.
This brings us to our first challenge:

Challenge C1. Identifying gaps in protection domain
isolation in the BPU.

To address this challenge, we need to carefully assess
the isolation of the individual structures of the BPU. In Sec-
tion 5, we systematically test the isolation that is provided by
the BTB and IBP/ITA when considering different privilege
levels in the guest and host. Our systematic analysis shows
that many of the recent microarchitectures are susceptible

to some Virtualization-based Spectre-BTI (vBTI) primitives,
indicating a lack of proper host-guest isolation in the BPU.

However, the exact consequences and potentials for ex-
ploitation using these new vBTI primitives are not directly
evident. Our next challenge is to identify the precise circum-
stances under which an attacker could build relevant attacks
in different threat models.

Challenge C2. Understanding and identifying different
threat models affected by the porous BTB isolation in a
virtualized environment.

Addressing this challenge necessitates a detailed analysis
of the requirements for an attacker to exploit the identi-
fied vBTI primitives. In Section 6, we present five novel
attack scenarios within the three threat models introduced
in Section 3. These attack scenarios allow an adversary
to attack a victim across the virtualization boundary using
the identified primitives. Among these scenarios, we target
a novel cross-privilege vBTI primitive for exploitation, in
which a malicious guest attacks the Hypervisoruser to leak
sensitive information, such as cloud infrastructure secrets.
Although the underlying speculation primitive is concep-
tually simple, constructing a practical, end-to-end exploit
remains a challenge.

Challenge C3. Enabling practical exploitation and data
leakage across virtualization boundaries.

The limited interaction between the guest and host soft-
ware layers makes it challenging to find suitable speculation
gadgets and reliable side channels. A critical requirement
for successful data leakage is ensuring a sufficiently large
speculation window. However, effective cache eviction on
modern AMD Zen microarchitectures, in particular on Zen 4
and Zen 5, is an open problem. In Section 7, we detail the
construction of the first reliable cache evictions on AMD
Zen 4 and Zen 5. Building on these findings, Section 8 de-
velops VMSCAPE, a practical Spectre exploit that enables a
guest to leak host memory across the virtualization boundary
using one of our newly discovered vBTI primitives.

4

t1 s1

rdi = h1
rsi = A

rdi = h2
rsi = C

Train Signal

BHB Setup
hist(rdi)

BHB Setup
hist(rdi)

A: Training
jmp rsi

A: Training
jmp rsi

1:test $0x1, rdi; jz 1f
nop, nop, nop, ...

1:test $0x2, rdi; jz 1f
nop, nop, nop, ...

1:test $0x4, rdi; jz 1f
...

B: Dummy
lfence

B: Gadget
// F+R

C: Dummy
nop

Architectural

Transient

Figure 3. Training (t1) and signaling (s1) traces of the vBTI experiment
allow us to evaluate BPU state isolation across the training–signaling
domain boundary. The indirect branch source A and destination B are
mapped to the same virtual addresses in both domains. Each indirect branch
is preceded by a BHB setup, a sequence of branches that initializes the BHB
to the same state in both traces using a seed value in rdi. This ensures
that the BPU cannot distinguish between training and signaling branches,
as both collide in the BTB and ITA/IBP. If isolation lacks, the signaling
branch deviates from the architectural target given by rsi and transiently
executes the trained target at B, which we detect using a disclosure gadget.

5. BPU Isolation under Virtualization

We analyze the isolation of indirect branch prediction
across protection domain boundaries in virtualized environ-
ments on a range of microarchitectures. To assess the overall
isolation guarantees, we need to consider the isolation of the
static and dynamic indirect branch predictors individually,
and test for interference among all four fundamental pro-
tection domains of x86 with hardware virtualization. These
are namely HU, HS, GU, and GS. We list all systems that
we evaluate in Table 1. Recent Intel CPUs like Raptor Lake
feature a heterogeneous design consisting of two microar-
chitectures. Raptor Cove is optimized for high-performance
computing tasks, while Gracemont is optimized for low-
power tasks.

5.1. Methodology

To evaluate cross-domain BPU interference for indirect
branches, we use a classic Spectre-BTI [1] experiment, as
illustrated in Figure 3. We train in one domain, and signal for
interference in another domain, using a FLUSH+RELOAD
side channel [20].

This analysis requires us to execute arbitrary code in all
four evaluated domains. For HS code execution, we imple-
ment a kernel module that enables a user to run arbitrary user
code as supervisor. This requires disabling Supervisor Mode
Execution Prevention (SMEP) and Supervisor Mode Access
Prevention (SMAP) on the host system. For guest execution,
we rely on the KVM selftest infrastructure that is part of
the Linux kernel. This simplistic hypervisor allows us to
map code to arbitrary guest virtual addresses and execute it.
However, KVM selftests run as GS by default, leading us to

t1 t2 s1 s2 s3

rdi=h1
rsi=C

rdi=h2
rsi=B

rdi=h3
rsi=B

rdi=h4
rsi=D

rdi=h2
rsi=E

Train Signal

BHB Setup BHB Setup
A: Training A: Victim

B

C

B

C

D

E

Dummy

Gadget

Dummy

Dummy

Architect.

Transient

Figure 4. By combining different training traces (t1 , t2 , s1 , s2) we
can induce the BPU to use the prediction for the signaling trace s3 from
either the BTB or the IBP/ITA. The virtual addresses of the branch source
A and targets B and C are identical across both domains.

extend the framework and implement an additional privilege
transition to reach GU.

It is critical for our evaluation that we verify the isola-
tion for all structures involved in the prediction of indirect
branches. These structures include the BTB and IBP on
Intel, and BTB and ITA on AMD. The reverse engineering
requires us to control the state of the BHB to cause or
prevent collision in the IBP/ITA. As shown in Figure 3, we
initialize the BHB by executing a pseudo-random sequence
of branches, depending on a controlled seed value. This
history setup snippet is placed directly preceding the training
and victim branches, giving control over the BHB states at
the indirect branch.

Note that all modifications mentioned in this section are
solely for the purpose of the reverse engineering. The final
attack presented in Section 8 does not require any software
modifications, and runs with the default mitigations, as listed
in Table 1.

BTB prediction. As visualized in Figure 2, multiple struc-
tures are involved in the prediction of the indirect branches.
Hence, a precise experiment setup is required to ensure that
the prediction is served from the BTB and not the IBP/ITA.
Intel always checks for a hit in the BTB but gives precedence
to IBP hits whenever available [17]. AMD uses the BTB to
predict all indirect branches that have only seen a single
target, otherwise it prefers predictions from the ITA [18].

In the training domain, the execution of the training
branch from A to B inserts an entry into the BTB on
both Intel and AMD (Figure 3 t1). After switching to the
signaling domain, we execute the signaling branch at A to C
(s1). As A is the same virtual address in both the training
and signaling domain, the BTB is unable to distinguish the
two. Additionally, the distinct BTB states achieved by using
different seed values h1 and h2 ensure that the IBP on Intel
cannot provide a prediction and falls back to the BTB. On
AMD, since branch source A has so far only encountered
the target C, no entry has been created in the ITA, making it
get predicted from the BTB too. To ensure a clean state, we
place an IBPB in-between each iteration. Getting a signal
in this experiment shows susceptibility to vBTI in the same
SMT thread.

5

TABLE 2. SUMMARY OF THE OBSERVED VBTI PRIMITIVES FOR ALL
EVALUATED SYSTEMS. EMPTY HALVE CIRCLES INDICATE

VULNERABLE, WHILE COLORED ONES INDICATE THE DEFAULT
MITIGATION PREVENTING A LEAK.

vBTI / vBTI-SMT Primitive

Microarch.
HU→

GU

HU→
GS

HS→
GU

HS→
GS

GU→
HU

GU→
HS

GS→
HU

GS→
HS

G 1U
→G 2U

G 1S
→G 2U

Zen 1
Zen 2
Zen 3
Zen 4
Zen 5
Coffee Lake
Raptor Cove
Gracemont
same-thread is: vulnerable, or protected by: retpoline, IBPB, AutoIBRS/eIBRS
cross-SMT is: vulnerable, or protected by: retpoline, STIBP

IBP/ITA prediction. The key challenge of testing the
IBP/ITA predictions is that we need to ensure the predictions
are not served from the BTB. This requires us to execute
specific training traces, as visualized in Figure 4. In the
training phase, we execute the training branch twice, each
time to different target and with a different history (Figure 4
t1 and t2). Having a different history h1 and h2, but the
same branch source A, forces the BPU to distinguish the
two branches. Consequently, not only an entry in the BTB
created, but also inside the IBP/ITA.

The domain transition from the training to the signaling
domain may invalidate or isolate BTB entries. However, on
both Intel and AMD, a valid entry in the BTB is necessary to
get a prediction from the IBP/ITA. Therefore, after switching
to the signaling domain, we need to retrain the BTB to
ensure our final signaling branch can be served by the
IBP/ITA. On Intel, a single encounter of the indirect branch
at A (s1) is sufficient to make subsequent encounters (s3)
get predicted by the IBP. On AMD, we need an additional
branch encounter (s2) to a different target, before the
prediction for the final branch encounter (s3) is seeded
from the ITA. If we get a signal on a domain transition
in this experiment but not to the prior one, it indicates an
imbalanced isolation of the BTB and IBP/ITA.

5.2. Primitive Evaluation

To assess the isolation guarantees, we systematically test
all combinations of protection domains across the virtual-
ization and privilege boundaries. We enable all the default
mitigation mechanisms listed in Table 1. Additionally, we
have repeated all the experiments once with indirect jumps
and once with indirect calls as the training and signaling
instructions, allowing us to assess whether both are predicted
similarly and isolated properly. Our results indicate no dif-
ference between indirect jumps and indirect calls, suggesting
that they are handled equivalently by the mitigations. Hence,
we do not distinguish between them in the remainder of this
work. Moreover, we observe that the interference signal is
symmetric between the guest and the host, indicating that

Host Guest

Userspace Process
Host User

Kernel + KVM
Host Supervisor

Userspace Process
Guest User

Kernel
Guest Supervisor

U
se

r
Su

pe
r-

vi
so

r

Figure 5. Effective protection domain isolation on Zen 4, susceptible to
vBTIGU→HU, vBTIGS→HU, vBTIHU→GU, and vBTIHS→GU.

the isolation mechanism is equivalent in both directions. We
use the notation vBTIX→Y for a vBTI primitive with training
in domain X and signaling in domain Y .

Table 2 shows which microarchitectures are vulnerable
to which vBTI primitives. Since we find no differences in
vulnerability between the BTB and the IBP/ITA, Table 2
does not need to distinguish between them. We observe
that all microarchitectures, except for Intel Raptor Cove and
Gracemont, are susceptible to some vBTI primitives. Most
notably, Zen 1 through Zen 5 are vulnerable to vBTIHU→GU
and vBTIGU→HU, with Zen 1 to Zen 4 additionally vul-
nerable to vBTIHS→GU and vBTIGS→HU, as visualized in
Figure 5. While both Raptor Cove and Gracemont are
adequately protected, Coffee Lake is also vulnerable to the
aforementioned primitives for Zen 1 to Zen 4. However, we
find that no microarchitecture is susceptible to any primitive
targeting the HS and GS domains.

Observation O1. Despite the latest mitigations being
enabled, all AMD Zen microarchitectures and Intel Cof-
fee Lake are vulnerable to vBTIGU→HU and vBTIHU→GU.
Additionally, Zen 1 through Zen 4 and Coffee Lake are
affected by vBTIGS→HU and vBTIHS→GU.

BPU isolation mechanism. AMD Zen 4 and Zen 5 em-
ploy AutoIBRS as a mitigation which has been shown to
simply disable speculative execution at targets of indirect
branches [5], [6]. By re-running the previous experiments
with AutoIBRS disabled, we can gain further insights into
the isolation enforcement on Zen 4 and Zen 5 microarchi-
tectures. While Zen 4 is susceptible to all vBTI primitives
without AutoIBRS, Zen 5 remains unaffected by the primi-
tives crossing the user-supervisor boundaries. This suggests
that AMD Zen 5 CPUs feature an additional native isolation
mechanism on top of AutoIBRS, equivalent to a single-bit
privilege level tag for prediction entries.

Observation O2. On Zen 5, branch prediction entries
are tagged with a single-bit privilege level to isolate user
and supervisor domains.

However, a single bit is insufficient in distinguishing
between the four domains present in virtualized environ-
ments. Consequently, AutoIBRS is still required to isolate,
for example, the HS and GS domains.

6

Observation O3. Despite the addition of isolation bits
in the BTB, the BPU on Zen 5 is unable to distinguish
between host and guest domains and therefore still relies
on AutoIBRS to protect the supervisor domains.

SMT isolation. The previous experiments tested only same-
SMT isolation. To verify the isolation of SMT sibling cores
and check for working Virtualization-based Spectre-BTI-
SMT (vBTI-SMT) primitives, we adapt our experiments as
follows. We have a training process that iteratively executes
a training branch (Figure 3 t1). The signaling process
is then bound to the SMT sibling core and executes the
signaling branch with different history (t2). After the sig-
naling, we flush the BPU using an IBPB to make it “forget”
about the gadget destination. As listed in Table 2, while
STIBP on Zen 2 through Zen 5 and Raptor Lake success-
fully isolates sibling threads, the lack of STIBP on Zen 1
enables the vBTI-SMTHU→GU, vBTI-SMTGU→HU, vBTI-
SMTHS→GU, and vBTI-SMTGS→HU primitives. Furthermore,
we find that although Coffee Lake supports STIBP, it is not
always enabled by default, thereby allowing the same cross-
SMT primitives.

Observation O4. With STIBP entirely absent on
Zen 1 and only conditionally enabled on Coffee Lake,
both microarchitectures appear vulnerable to vBTI-
SMTGU→HU, vBTI-SMTHU→GU, vBTI-SMTGS→HU, and
vBTI-SMTHS→GU.

6. Exploitation in Different Threat Models

Our experiments have shown that some virtualization
boundaries are not adequately isolated, allowing branch
target interference across these boundaries. In this section,
we contextualize our findings with respect to the three threat
models introduced in Section 3, and discuss five realistic,
previously unexplored scenarios in which these findings lead
to concrete security violations. We represent each attack
scenario as A→B | V, where A and B denote the protection
domains of the attacker and the victim, respectively, and V
refers to the specific target (e.g., a process).

6.1. Attacks from Guest to Host

The first threat model we analyze is TMG→H, which
considers a malicious guest targeting the host system. We
identify three scenarios within this model.

S1 G→H | Host Process. In this scenario, a malicious
guest targets a host user process to leak a secret, like a pass-
word hash of a SUID process [7]. The victim process may
either be scheduled on the same hardware thread after the
guest is preempted (i.e., same-thread), or on a SMT sibling
thread on the same physical core (i.e., cross-SMT thread).
In the same-thread case, in addition to the lack of guest-to-
host BTB isolation, the attack also requires the absence of

BTB sanitization during task switches. Based on our reverse
engineering observations, we find that Zen 1 through Zen 5,
as well as Intel Coffee Lake, lack sufficient isolation and
are vulnerable to the vBTIGS→HU and vBTIGU→HU primi-
tives. For cross-SMT attacks, guest-to-host BTB interference
must be coupled with shared predictor states between sib-
ling threads, indicated by the vBTI-SMTGS→HU and vBTI-
SMTGU→HU primitives. This condition is met on Zen 1 and
Coffee Lake microarchitectures.

While theoretically feasible, such attacks face several
practical challenges. A guest-based attacker typically has
limited influence over host user processes, making it difficult
to reliably manipulate or interact with them. Establishing a
robust side channel between a guest and an arbitrary host
user process is particularly challenging, as the attacker lacks
both spatial and temporal control. In particular, the attacker
cannot dictate when or where the target process is scheduled
for execution, further complicating precise exploitation.

S2 G→H | Hypervisoruser. This scenario considers a ma-
licious guest targeting its own Hypervisoruser. This requires
insufficient BTB sanitization on VMEXITs and KVM_EXITs,
alongside a lack of BTB state isolation between the guest
and the host on the same-thread case. Compared to general
G→H | Host Process attacks, exploitation here is simpler.
The guest can deliberately trigger VMEXITs that are han-
dled by its Hypervisoruser, enabling frequent attacker–victim
interactions in the same-SMT case. The cross-SMT case is
also more practical. Ordinarily, scheduling mitigates cross-
SMT BTI attacks by reducing the likelihood of colocating
attacker and victim. Here, however, the victim executes
the Hypervisoruser of the same guest, making colocations
much more likely. Although the attacker can only access
memory mapped into the Hypervisoruser’s address space, this
can still include sensitive data, such as cloud infrastructure
secrets used for networking or storage [25]. We observe that
Zen 1 through Zen 5 and Coffee Lake are vulnerable to this
scenario, with Zen 1 and Coffee Lake additionally being
vulnerable to the cross-SMT case.

Observation O5. Cross-SMT G→H | Hypervisoruser
attacks are facilitated as the attacker and victim belong
to the same guest execution, making colocation far more
likely.

S3 G→H | Guest Kernel. In this scenario, the attacker
leverages the Hypervisoruser as a confused deputy to ex-
tract kernel memory from the attacker’s own guest in-
stance. As such, this scenario assumes that the attacker
is an unprivileged process running in the guest. It is a
variant of the G→H | Hypervisoruser scenario, but instead
of leaking a Hypervisoruser secret, it leaks the guest’s own
memory, that is being mapped in the Hypervisoruser. Be-
sides the requirement for the Hypervisoruser to have the
guest’s memory mapped, the prerequisites are identical to
G→H | Hypervisoruser. Specifically, these prerequisites in-
clude the lack of guest-to-host BTB isolation and inadequate
sanitization on VMEXITs and KVM_EXITs.

7

TABLE 3. ATTACK SCENARIOS BY THREAT MODELS, INDICATING REQUIREMENTS, TARGET, AND VULNERABLE MICROARCHITECTURES.

Exploitable on

Scenario Target SMT Required Primitives

Z
en

1

Z
en

2

Z
en

3

Z
en

4

Z
en

5

C
of

fe
e

L
ak

e

R
ap

to
r

C
ov

e

G
ra

ce
m

on
t

Same vBTIGS→HU or vBTIGU→HU ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
S1 G→H | Host Process Host user process

Cross vBTI-SMTGS→HU or vBTI-SMTGU→HU ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Same vBTIGS→HU or vBTIGU→HU ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
S2 G→H | Hypervisoruser Hypervisoruser Cross vBTI-SMTGS→HU or vBTI-SMTGU→HU ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Same vBTIGU→HU ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
S3 G→H | Guest Kernel Guest supervisor

Cross vBTI-SMTGU→HU ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Same vBTIHU→GU or vBTIHS→GU - - ✓ ? ✗ - ✗ ✗
S4 H→G | SEV-SNP Process Guest user process

Cross vBTI-SMTHU→GU or vBTI-SMTHS→GU - - ✗ ✗ ✗ - ✗ ✗

Same vBTIG1U→G2U ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
S5 G1→G2 | Guest Process Other guest user process

Cross vBTI-SMTG1U→G2U ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗

✓ Vulnerable ✗ Not vulnerable - Not applicable ? Not supported on the tested system

Observation O6. Multiple recent microarchitectures,
including Zen 5, are vulnerable to G→H | Guest Kernel
attacks.

6.2. Attacks from Host to Guest

The second threat model we analyze is TMH→G in which
a malicious host targets a guest.
S4 H→G | SEV-SNP Process. In this scenario, a malicious
host targets a guest, typically one that assumes a hostile host
and employs a hardware-based isolation technology such as
SEV-SNP [10] or TDX [11]. Unlike in TMG→H, the attacker
controls the scheduling of the guest thread, providing the at-
tacker more control over the victim. Since these technologies
impose additional security measures, the presence of work-
ing vBTIHS→GU, vBTIHU→GU, vBTI-SMTHS→GU, and vBTI-
SMTHU→GU primitives on systems without SEV-SNP/TDX
is not sufficient to determine vulnerability of different mi-
croarchitectures. However, we were able to confirm that
on Zen 3, by default, SEV-SNP does not isolate the BTB
between the guest and the host. On Zen 5, we noticed that
the predictions appear properly isolated between the host
and a SEV-SNP guest, and we do not possess a Zen 4
server to check this isolation. While Zen 1 and Zen 2 do
not support SEV-SNP, they could be vulnerable in scenarios
using weaker technologies like SEV or SEV-ES.

Observation O7. AMD Zen 3 is vulnerable to
H→G | SEV-SNP attacks.

SEV-SNP provides various optional protection mech-
anisms for guests, which we will discuss in Sec-
tion 9.2. While our analysis demonstrates the suscep-
tibility of older, pre-eIBRS Intel microarchitectures to
vBTIHS→GU, vBTIHU→GU, vBTI-SMTHS→GU, and vBTI-
SMTHU→GU primitives, these systems do not support TDX.

6.3. Attacks Between Guests

The third threat model we analyze is TMG1→G2 . In
this model, a malicious guest attacks another guest running
on the same host system. Within this model, we examine
the following scenario, which highlights the risks of co-
residency between untrusted virtual machines.

S5 G1→G2 | Guest Process. In this scenario, a malicious
guest targets a user process of another guest. This requires
a lack of BTB isolation between different guests. As with
earlier scenarios, we differentiate between a same-thread
and cross-SMT case. In the same-thread case, the victim
executes on the same thread as the attacker, following a pre-
emption of the attacker’s thread. This additionally requires
the lack of BTB sanitization on VM switches. However,
this is mitigated in the Linux kernel through an IBPB on
VM switches. The cross-SMT case, instead, requires that
BTB state be shared across sibling threads. Based on our
reverse engineering in Section 5.2, we find that both Zen 1
and Coffee Lake lack SMT thread isolation, rendering them
vulnerable to G1→G2 | Guest Process attacks.

Observation O8. AMD Zen 1 and Intel Coffee Lake
are vulnerable to G1→G2 | Guest Process attacks.

Practical exploitation, however, remains challenging.
There is generally no direct channel for interaction between
arbitrary VMs on a public cloud, and there is no shared
memory that could serve as a side channel between two
arbitrary VMs.

6.4. Summary

Table 3 provides an overview of the attack scenarios,
summarizing their prerequisites, intended targets, and the
vulnerable microarchitectures. Our analysis demonstrates
that vBTI primitives can lead to concrete security violations

8

L1 L2 LLC RAM
Cache Level

0

20

40

60

80

100

W
in

do
w

 S
iz

e
[L

oa
ds

]

1 5
17

88

Figure 6. Speculation window size on Zen 4 as the maximum number of
executed dependent loads with the pointer to the indirect branch destination
residing in the respective cache level.

across all three threat models introduced in Section 3. These
include attacks from a malicious guest against the host
(TMG→H), from a malicious host against a guest (TMH→G),
and even between two guests (TMG1→G2).

To demonstrate the feasibility of vBTI attacks, we
present VMSCAPE, an end-to-end exploit targeting the
G→H | Hypervisoruser scenario. This scenario represents
a particularly severe case for cloud providers, as leaking
Hypervisoruser memory targets their infrastructure.

7. Increasing the Speculation Window

Our aim is to build an end-to-end memory leak exploit
in the G→H | Hypervisoruser scenario on up-to-date AMD
Zen 4 and Zen 5 systems. While building this exploit, we
observed that the speculation window of the victim branch
was too short. To measure the size of the speculation win-
dow, we design the following experiment: we use an indirect
branch that takes its target address from memory to create
a speculation window. The size of the window depends on
how quickly the target address can resolve architecturally
which we can control by controlling which cache level holds
the target address of the indirect branch. We can measure
the size of the speculation window by chaining n dependent
loads during speculation and checking for the cache hit of
the last load. We ensure that all loads, except for the last
one, reside in the L1 cache and we repeat the experiment
4096 times for each n ∈ [1, 127].

As shown in Figure 6, when the target address resides
in L1, only a single dependent load is executed during
the speculation window, which prevents our attack that
requires at least two dependent loads to leak information via
FLUSH+RELOAD. While our results for L2 indicate a suf-
ficiently large speculation window for a perfect speculation
gadget, attacks sometimes require even larger speculation
windows. This can be due to additional contention from
previous instructions that slow down the disclosure gadget or
due to the victim software starting to load the target address
earlier in the instruction stream to e.g., check if it is a
valid pointer. Such effects reduce the size of the speculation
window that is available to the disclosure gadget, requiring
the attacker to somehow extend the (overall) speculation
window to counteract these effects.

TABLE 4. CACHE DETAILS ON AMD ZEN 3, ZEN 4 AND ZEN 5. THE
SIZES MAY VARY BETWEEN PROCESSORS OF THE SAME GENERATION.

Core L1 L2 Last Level Cache (LLC)
Size Sets Ways Size Sets Ways Size Sets Ways

Zen 3 32KiB 64 8 512KiB 2048 8 32MiB 32768 16
Zen 4 32KiB 64 8 1MiB 2048 8 32MiB 32768 16
Zen 5 48KiB 64 12 1MiB 1024 16 32MiB 32768 16

22 25 28 211 214 217 220

Memory Size [kB]

4
8

16
32
64

128
256
512

La
te

nc
y

[C
yc

le
s]

L1
L2

LLC

RAM

6
16

51

400

Figure 7. Median memory access latencies for a memory region of
increasing size on Zen 4, shown on logarithmic axes. The latency readings
of the plateaus indicate the L1, L2, LLC, and RAM latencies.

The speculation window can be extended by evicting the
memory that holds the destination of the indirection branch
from the cache, thereby slowing the resolution of the victim
branch [1]. An attacker inside a VM cannot simply flush
the target pointer as the physical memory that backs it is
allocated to the host process and not available to the VM.
Hence, the attacker needs to evict the target pointer from
the cache hierarchy instead. We note that eviction should
target only the necessary cache sets to avoid slowing down
the entire victim execution during speculation.

7.1. LLC eviction on AMD Zen 4 and Zen 5

Recent work by Wang et al. [26] demonstrated the feasi-
bility of creating LLC eviction sets on AMD Zen 3. We build
on their insights to present the first LLC evictions for AMD
Zen 4 and Zen 5. To achieve this goal, we progress through
all levels of the cache hierarchy, identifying differences to
Zen 3 and learning to evict progressively larger cache levels,
which results in increasingly longer speculation windows.
We then show how the eviction set building can be ported in-
side a VM and how the xor-based indexing can be exploited
to make the process highly efficient and reliable. Table 4
lists relevant cache geometries for the evaluated processors.
In the interest of brevity, we first write exclusively about
Zen 4 before summarizing the differences to Zen 5.

For reverse engineering purposes, we use 1GB paging to
ensure matching bits between virtual and physical addresses.
We further use AMD’s accurate APERF timer, which is
accessible through the rdpru instruction [27]. By default,
both the 1GB paging as well as the precise counter are not
available to guests. Consequently, we only use these features
during reverse engineering and not for the end-to-end exploit
in Section 8.

9

Cache access latencies. We first calibrate the memory
access timing function for each cache level. This allows us
to determine whether a memory access was served from
L1, L2, LLC, or main memory. To determine the latencies,
we proceed as follows. We start with a memory region
consisting of N cache lines. We access all cache lines in
pseudorandom order, recording the access times. We repeat
this procedure for increasing values of N . In Figure 7, we
plot the median access time for increasing memory region
size N . The latency plateaus indicate the L1, L2, LLC, and
RAM access latencies.

L1 eviction sets. Based on our earlier cache access measure-
ments, we can confirm that the L1 indexing scheme on Zen 4
matches Zen 3. We can evict any L1 entry by accessing 8
distinct cache lines (corresponding to the L1 ways), all of
which share matching bits [6 : 11].

L2 eviction sets. Let us assume that L2 indexing is designed
in a way such that the memory inside a 2MB huge page is
evenly distributed across all L2 sets. Consequently, at least
11 indexing bits below the 2MB page boundary are required
to map to all 2048 L2 cache sets. Based on prior work on
cache reverse engineering of Zen 3 [26], we further assume
that some higher bits below the 2MB page boundary are
not used for L2 indexing. Given that there are 21 address
bits in a 2MB page where 11 bits are used for indexing and
6 bits are used for the offset within a 64B cache line, we
hypothesize that the 4 highest bits are not used for cache
indexing. This would result in 16 entries per L2 set which
we expect to be sufficient for eviction of all 8 ways.

We verify the above hypothesis as follows. We select
a random 2MB huge page and split all cache line-aligned
addresses within the huge page into sets according to the
value of bits [6 : 16]. We then confirm that each of the
generated sets is self-evicting by measuring the mean latency
of repeatedly accessing all entries within a set. We further
confirm that no two generated sets are mutually evicting
by measuring the latency of repeatedly accessing half the
addresses from each set. Given our results, we conclude
that the L2 cache indexing on AMD Zen 4 does not use
bits [17 : 20].

Observation O9. Bits [17 : 20] remain unused in L2
cache indexing on AMD Zen 4.

The L2 on AMD Zen 4 has 8 ways which leads us to
expect a minimal eviction set size of 8 addresses, given a
Least Recently Used (LRU) replacement policy. However,
we find that at least 12 eviction addresses are required to
reliably evict a victim address from the L2 cache in our
experiments. We attribute this behavior to a more complex
replacement policy than LRU.

LLC eviction sets. The LLC on AMD Zen 4 is a non-
inclusive victim cache for the L2. Hence, to insert cache
lines into the LLC for eviction, said cache lines need to
first be evicted from the L2. Given an L2 eviction set, we
can identify all addresses within the same 1GB huge page

P0
E0 =

[
e00 , e10 , . . . , e20470

]
P1

E1 =
[
e01 , e11 , . . . , e20471

]

P31
E31 =

[
e031 , e131 , . . . , e204731

]




16-entry L2 sets 512-entry L2 sets

extract combine2MB page L2 set

Figure 8. LLC cache eviction set building strategy for VM-based attackers.
In a first step, we extract the L2 eviction sets contained in different 2MB
pages. In a second step, we then combine L2 sets originating from different
2MB pages.

that map to this eviction set by testing whether they are
evicted by it. Assuming an even distribution of addresses
across the 2048 L2 sets within a 1GB huge page, we would
expect 8192 addresses to map to the same L2 set, which our
experiments confirm. We have further confirmed that the first
512 of these addresses already provide reliable LLC eviction
for any address within the same L2 cache set. While this
does not constitute a minimal eviction set, it is sufficiently
efficient for our attack and significantly increases the length
of the speculation window, as shown in Figure 6 (RAM).

Zen 5. Due to the additional ways in the L1 and L2 caches,
the cache eviction set sizes increase correspondingly. Zen 5
reduced the number of L2 sets compared to Zen 4 to again
match Zen 3. Hence, we find that the same bits within the
2MB pages remain unused as in Zen 3, namely [16 : 20].
Lastly, we require twice the number of addresses to reliably
increase the speculation window on Zen 5 when compared
to Zen 4.

7.2. Eviction from a VM

Our LLC eviction enables our attack to succeed, but it
is using the precise counter and 1GB paging which are not
available to QEMU guests by default. Furthermore, increas-
ing the size of each L2 eviction set by brute-forcing the
set membership of new addresses is slow and susceptible to
noise. First, we overcome the timer limitation by measuring
the access times of all entries in an eviction set together
rather than separately to amplify the signal. Second, we
propose a significantly more efficient eviction set generation
approach without relying on 1GB huge pages.

We note that Linux, by default, aims to back VM pages
with transparent 2MB huge pages to improve performance.
Hence, our approach for constructing L2 sets using 2MB
pages remains applicable from within a VM. Moreover, we
argue that given many such 2MB pages, we can extract L2
sets for each of them as shown in Figure 8. While this leaves
us with sufficient addresses for LLC eviction, we need to
find an efficient approach to combine L2 sets generated from
different pages.

10

Host Guest

QEMU Process Secret

Kernel KVM

Attacker Process

Kernel

vCPU

CPU

Figure 9. KVM-based guest running on a CPU with hardware virtualization
support, managed by QEMU.

Let eij be the i-th eviction set originating from page j
where i is given by the lower L2 set indexing bits [6 : 16].
Let Ej = {eij |i ∈ [0, 2047]} be the set of eviction sets for
page j. Our aim is to merge all L2 sets in Ej (j ̸= 0) into
L2 sets of E0. Now, assume that for some j, a, and b, the
set eaj collides with the set eb0. We would like to efficiently
determine with which set ecj will collide. We hypothesize
that the L2 and LLC are using XOR-based indexing func-
tions which would allow calculating the colliding set ed0 as
follows:

d = a⊕ b⊕ c

Using this approach, finding the matching L2 set for a
single element of each Ej (j ̸= 0) is sufficient to determine
the colliding eviction sets for all other elements. The pre-
vious approach on Zen 3 [26] would increase the size of
the initial L2 sets by sampling addresses one by one and
testing each for eviction. Our new approach only requires
this process once, using the whole first L2 set within a 2MB
page, which then allows all other 32752 addresses from
the same page to be assigned their respective set without
further testing. Additionally, the approach is highly reliable,
creating LLC eviction sets with 100% success rate on the
first try over 100 runs whereas previous work [26] reported
around 60% on Zen 3 when using 1GB pages.

Observation O10. Xor-based cache indexing functions
enable efficient merging of L2 sets from different 2MB
pages into bigger L2 sets.

With the successful extension of the speculation window,
we now proceed to construct VMSCAPE.

8. VMSCAPE

Our cross-domain experiments introduced in Section 5
unveiled that all AMD Zen CPUs and Intel Coffee Lake
CPUs are vulnerable to the vBTIGU→HU primitive. In this
section, we present VMSCAPE, our end-to-end exploit to
leak hypervisor secrets as a malicious guest.

Figure 9 illustrates the involved components. We target
QEMU, a common Hypervisoruser in the Linux ecosys-
tem used in industry [15]. However, none of our assump-
tions in the threat model (see Section 3) or in the design
of the exploit fundamentally prevent targeting a different
Hypervisoruser with a slightly modified version of the same
technique. We run the attack on an AMD Zen 4 CPU with

Linux kernel version 6.8.0-60-generic and Ubuntu 25.10
packages, featuring the recent QEMU v10.0.2. We further
verified that the attack works on an AMD Zen 5 server
system. In Section 7, we addressed the speculation window
challenge of the attack. However, to develop an end-to-end
exploit, two additional challenges must be addressed:

• First, we need to identify a suitable exploit chain con-
sisting of a side channel, a speculation gadget and a
disclosure gadget (Section 8.1).

• Second, we need to derandomize the Address Space
Layout Randomization (ASLR) of QEMU to find the
victim branch address as well as the reload buffer
address (Section 8.2).

Finally, we combine our solutions with the speculation win-
dow lengthening technique to construct an arbitrary memory
leak attack against QEMU (Section 8.3).

8.1. Exploit chain

We aim to find an exploit chain in unmodified code of
QEMU. To construct such a chain, we need to find a suitable
side channel as well as a speculation gadget and a disclosure
gadget in the QEMU binary.

Side channel. We begin with defining the side channel to
be used for leaking host secrets. Through our investigation,
we realized that QEMU maps all guest memory into its
virtual address space. Shared memory between host and
guest enables FLUSH+RELOAD as a side channel [20].

Observation O11. QEMU maps all guest memory
into the Hypervisoruser virtual address space, facilitating
FLUSH+RELOAD.

FLUSH+RELOAD leaks secret information by detecting
what memory locations (shared with the victim) were re-
cently accessed. The shared memory that serves as the side
channel is called a reload buffer.

Speculation gadget. Our exploit chain needs to trigger
speculation for which our vBTI primitives use indirect calls
or indirect jumps. We search for such speculation gadgets in
places where we have some degree of control over registers
in order to influence execution at the speculated target.
Using FLUSH+RELOAD, we aim to control two registers,
one containing a secret pointer and another containing the
reload buffer address. Furthermore, a desired speculation
gadget can be triggered repeatedly, reliably, and with high
frequency, enabling high bandwidth leakage.

QEMU primarily handles I/O and device emulation
when managing a KVM-based VM. Consequently, the active
code footprint of QEMU is relatively small. We restrict
our gadget search to general I/O handling code and avoid
targeting specific device emulations, so as not to impose
additional assumptions on the threat model.

We identified a suitable victim branch in QEMU’s
Memory Mapped I/O (MMIO) write handling as shown
in Listing 1. The attacker has control over the value in

11

� �
1 static MemTxResult memory region write accessor(
2 MemoryRegion *mr,
3 hwaddr addr,
4 uint64 t *value ,
5 unsigned size ,
6 signed shift ,
7 uint64 t mask,
8 MemTxAttrs attrs) {
9 uint64 t tmp = memory region shift write access(

10 value , shift , mask);
11 // [...]
12 mr−>ops−>write(mr−>opaque, addr, tmp, size);
13 return MEMTX OK;
14 }� �

Listing 1. Extract from QEMU’s system/memory.c source file, showing
the victim branch on line 12, with the attacker-controlled value in tmp.

tmp which corresponds to the value written in the MMIO
operation. While the adversary only directly controls a single
64 bit register (RDX) at the function call, dynamic analysis
revealed that the same value is also left over from earlier use
in a second register (R12). We can overcome the limitation
of controlling only a single value by passing additional
values through shared memory, at the cost of requiring an
extra load in the disclosure gadget.

Observation O12. MMIO provides repeatable, reli-
able, and high-frequency interaction with register control
between the guest and the hypervisor.

One caveat is that while general MMIO supports 8B
writes, the device to which we write must also support writes
at this granularity. For our main exploit, we use the hpet
high precision event timer that is present in QEMU VMs
by default.

Disclosure gadget. To leak secrets from the guest, we
require a disclosure gadget that leverages FLUSH+RELOAD.
We build on the disclosure gadget scanner from Wikner and
Razavi [2]. Since the original scanner does not find the gad-
gets we require in the QEMU binary, we expand the scanner
by improving the tainting logic for memory instructions that
use differently tainted base and index registers. Additionally,
we add the capability to search for chained gadgets where
we combine two separate gadgets, the first of which ends
in an indirect call that we can train to mispredict to the
second gadget. These changes enable us to find the desired
disclosure gadget. Listing 2 shows the final gadget chain
used in our attack.

The gadget does not apply any multiplier to the secret
which can be problematic for FLUSH+RELOAD. However,
previous work demonstrated how we can rely on a technique
of shifting the base of the reload buffer and checking when
the secret ends up in a different cache line to overcome this
limitation [2].

Branch collisions. When the victim branch in QEMU is
reached, the control flow has just passed through a VMEXIT
followed by a KVM_EXIT. Thus, the branch history is
influenced by branches in the guest, KVM, and QEMU,

� �
1 // first part of the gadget chain
2 0xac334e mov rdi, qword ptr [r12 + 0x2b58]
3 0xac3356 call qword ptr [r12 + 0x2b50]
4
5 // second part of the gadget chain
6 0x8260b5 add cl, byte ptr [rdi]
7 0x8260b7 test dword ptr [rdx + rcx], esp� �

Listing 2. Disclosure gadget in two parts. Line 2 loads the secret pointer,
line 6 retrieves one byte of the secret and line 7 accesses the reload buffer.

depending on the size of the history buffer. Since AMD’s
history-based branch predictor takes precedence over the
static BTB predictions, this necessitates either overwriting
or invalidating the history-based predictions for our injected
targets to be observed. Accurately replicating the history
during training is possible but challenging.

According to AMD’s documentation [18], [28], history
is only considered for indirect branches that have encoun-
tered multiple targets. By flushing the BPU using an IBPB
before training, the malicious guest can ensure that the vic-
tim branch has only observed the training target. Hence, the
branch is mispredicted without requiring matching history
beyond the last two branches, which are relatively easy to
replicate. While guests having access to IBPB may appear
to be a strong assumption, this is in fact expected for guests
to be able to enforce domain isolation themselves.

Observation O13. Guest software can exploit access
to mitigation controls to influence what branch prediction
entries are available to host software.

We can now reliably and repeatedly hijack the victim
branch in QEMU from the guest, redirecting transient exe-
cution to our disclosure gadget.

8.2. Breaking ASLR

Linux randomizes the virtual addresses of userspace
code, heap and stack in memory using ASLR by default.
To mount a successful attack, we need to know the location
of the speculation gadget and the disclosure gadget as well
as the virtual address at which QEMU mapped the VM
memory where our reload buffer resides. As a first step, we
derandomize the location of the speculation gadget, which
also reveals the location of the disclosure gadget, since
ASLR only randomizes the base address of the executable
and preserves offsets. As a second step, we find the QEMU
virtual address of our reload buffer.

Locating the gadgets. Linux implements ASLR as a ran-
dom offset from the non-ASLR base address of a program.
The maximum offset is a configurable parameter that de-
faults to some dynamic value, chosen by Linux. The target
system uses a default maximum offset of 232.

Similar to prior work, we aim to find the address of
the speculation gadget by checking all possible locations
of the victim branch [8], [29]. They train a branch Bi

at some hypothesized victim location Vi in the attacker

12

context, trigger the execution of the victim and measure
whether the prediction for Bi was evicted. This approach
is not applicable in our case for two main reasons. First,
in contrast to Intel, the BTB on AMD Zen 4 and Zen 5
does not overwrite the target with every misprediction but
rather inserts the new target into the ITA while keeping
the previous target in the BTB. Second, we would need
to separately check up to around 232 locations, which is
prohibitively time-consuming.

We optimize the above approach by reversing the at-
tacker and victim roles as proposed by prior work [7]. Given
a hypothesized victim branch location Vi, we can calculate
the corresponding target address Ti. Thus, we can first
trigger the victim to train the branch predictor and then we
execute a matching branch in the attacker domain at location
Vi to some non-signaling target. By additionally placing a
signaling gadget in the attacker domain at the hypothesized
victim target location Ti, we can detect collisions.

Using our new approach, a single execution of the victim
branch and a single reload of the reload buffer for signaling
suffice to check many potential victim locations (e.g., 1024
locations). Once a signal is observed, we can determine
which of the locations was correct.

Results. We can derandomize the location of the victim
branch within median 326 s and with 74% accuracy. Since
VMs usually run for days, weeks, or months at a time, it
is realistic to assume that an attacker has sufficient time to
break ASLR. Furthermore, once ASLR is broken, it is not
re-randomized, allowing for continued attacks thereafter.

Locating the reload buffer. Derandomizing the victim
binary location provides access to the speculation and dis-
closure gadgets. However, to leak arbitrary data through
FLUSH+RELOAD, we also need to identify the virtual ad-
dress where QEMU has mapped the memory used by the
attacker’s VM to back the reload buffer. Since ASLR also
randomizes the base virtual address of the mappings created
by QEMU, independently of the executable location, we
need to derandomize it separately.

In line with prior work [2], we brute-force the reload
buffer location using our speculation and disclosure gadgets.
Conveniently, as previously observed, Linux and QEMU
collaborate to map VM pages as 2MB huge pages. Hence,
by mapping the reload buffer as a 2MB huge page inside
the VM, we can significantly reduce the number of potential
reload buffer locations. Additionally, we find that since
searching for the reload buffer only requires a single load
in the speculation window, there is no need for lengthening
it yet.

Results. We can successfully derandomize the reload buffer
location within a median 224 s and success rate of 96% over
100 repetitions.

8.3. Arbitrary Memory Leak

We now have all the components required for building an
arbitrary memory leak attack: the exploit chain, an ASLR-

breaking primitive, and a reliable approach to provide suf-
ficiently large speculation windows.

Our VMSCAPE attack proceeds as follows. First, we
locate the victim branch using our ASLR-breaking tech-
nique. Once the gadgets are identified, we can determine
the QEMU virtual address of our reload buffer. Next, we
construct our LLC eviction sets and identify the correct
eviction set by testing which one enables dependent loads to
leave a cache trace. We then use our gadgets with the long
speculation window to leak QEMU’s internal data structures
to find the address of the secret data and then leak said secret
data.

Results. We need a median 1092 s for the full end-to-end
attack, leaking a 4KiB QEMU secret object, which we set
to be a disk encryption and decryption key as an example.
Of this, 326 s are needed to find the victim branch and
the reload buffer. Our exploit leaks leak arbitrary QEMU
memory at a rate of 32B/s with 99.78% byte accuracy and
we successfully complete all preliminary steps for leaking
with a probability of 55%.

9. Discussion

We discuss additional vBTI variants that we discovered
after our initial responsible disclosure (Section 9.1) and the
mitigation strategies for vBTI primitives (Section 9.2).

9.1. BHI variants

Intel’s response to classical Spectre-BTI [1] was eIBRS,
a hardware mitigation that effectively isolates user and
supervisor entries in the BTB. Branch History Injection
(BHI) [3], however, re-enabled cross-privilege Spectre at-
tacks by exploiting the lack of BHB isolation between the
user and supervisor domains. As we show in Section 5,
eIBRS successfully enforces BTB isolation in virtualized
environments. Yet, akin to BHI, eIBRS does not inherently
prevent a guest from (partially) controlling the branch his-
tory. While this case is mitigated for attacks against the
HS [5], [30], we believe that there is no mitigation for the
HU. While we did not verify this, Intel has confirmed that
this is indeed the case, indicating that recent Intel CPUs are
potentially vulnerable to Virtualization-based Spectre-BHI
(vBHI) primitives.

9.2. Mitigation

As described in Section 5, our reverse engineering re-
vealed multiple vBTI primitives across recent microarchi-
tectures. In this section, we examine mitigation strategies to
prevent such primitives, beginning with IBPB-on-VMEXIT,
which forms the basis of the deployed VMSCAPE patches.

IBPB-on-VMEXIT. This mitigation protects the host in the
TMG→H model by flushing the BPU state with an IBPB on
every VMEXIT. As a result, it enforces BTB isolation be-
tween guest and host on each guest-to-host transition. How-
ever, IBPB-based mitigations typically impose substantial

13

performance overhead [2], [6], which becomes particularly
problematic when applied to a fast path such as VMEXIT.

To quantify this overhead, we benchmarked the miti-
gation using the UnixBench test suite [31], following the
methodology of prior work [2], [6], [8]. We run the work-
loads in a guest with 4GB of memory and two cores, in mul-
tithreaded mode. The geometric mean of the performance
overhead (over five repetitions) is 57% on Zen 5.

Linux kernel developers based their mitigation on IBPB-
on-VMEXIT but optimized it by conditionally issuing the
IBPB only on KVM_EXIT that follow guest execution. Since
not every VMEXIT results in a KVM_EXIT and subsequent
userspace execution, this change moves the IBPB off the fast
path while preserving its security guarantees. They refer to
this mitigation as “IBPB before exit to userspace”. This
patch gets applied to all affected systems, including AMD
Zen 5 and recent Intel CPUs such as Lunar Lake and Granite
Rapids.

In addition to verifying the effectiveness of the patches,
we benchmarked their performance overhead on the same
setup. UnixBench shows only a marginal overhead of 1%
on Zen 4. However, as a compute-oriented benchmark,
UnixBench causes relatively few exits to userspace. To eval-
uate a workload that causes frequent exits to userspace, we
used fio [32] to generate disk I/O, by randomly reading and
writing 10GB on a virtio disk repeatedly for 10 times.
On Zen 4, the optimized mitigation has an overhead of 51%,
approaching the 60% overhead of IBPB-on-KVM_EXIT.
When using devices handled by the host kernel (vhost) or
a pass-through devices, exits to userspace are remediated.
These results demonstrate that the performance impact of
the mitigation strongly depends on both the workload and
the QEMU configuration, but is expected to remain marginal
in most real-world settings.

Retpoline. Retpoline is a classic software-based Spectre-
BTI mitigation that replaces certain indirect branches
(jmp and call) by other indirect branches (ret) that
are predicted using a different predictor [33]. Compiling
Hypervisorusers using retpoline would protect them against
attackers in the G→H | Hypervisoruser scenario on sys-
tems not also vulnerable to earlier attacks against re-
turns [6]. While not protecting other host user processes
considering G→H | Host Process, the induced perfor-
mance overhead is lower compared to IBPB-on-VMEXIT.
Performance evaluation of retpoline using the UnixBench
workloads shows an overhead of 3.9%. Combining ret-
poline with selective host process isolation using the
PR_SET_SPECULATION_CTRL prctl can serve as an
alternative strategy to the high-overhead IBPB-on-VMEXIT,
depending on the threat model. Our investigations show
that none of the popular open-source Hypervisorusers de-
ploy retpoline [13], [34], [35], [36]. This mitigations is
only applicable to CPUs that are unaffected by Phantom
speculation [37], like Zen 5.

Protecing SEV-SNP Guest. While Intel systems affected
by vBTI primitives do not support TDX, SVM on Zen 3
through Zen 5 provides several optional protections for an

SEV-SNP-enabled guest [18], [28]. (1) Branch Target Buffer
Isolation restricts execution outside the guest domain from
influencing branches within the guest execution. (2) Indirect
Branch Prediction Barrier on Entry forces the CPU to issue
an IBPB on every VMRUN. (3) SMT Protection forces the
sibling SMT thread to be idle while the guest is running
on the other sibling thread. Our experiments in Section 5
indicated that Zen 5 already provides sufficient isolation for
SEV-SNP guests by default. Hence, such mitigations are
appropriate on earlier CPUs.

Protecting SMT. STIBP is a hardware mitigation that iso-
lates the BPU of SMT cores. We identified that most systems
enable STIBP by default, protecting against vBTI-SMT
primitives. However, STIBP is not always-on in some CPUs,
like Coffee Lake. Systems that do not support STIBP, such
as Zen 1, have no option other than to disable SMT entirely,
resulting in significant performance impact [2], [38].

Hardware-based isolation. Ultimately, the root cause of
vBTI primitives is the lack of BPU state isolation between
host and guest domains. Zen 5 CPUs introduce privilege
domain tagging to distinguish between user and supervisor
domains. A similar tagging to distinguish the host and the
guest can prevent vBTI primitives and should be considered
for future revisions of the Zen microarchitectures.

10. Related Work

There is a substantial body of research on microarchi-
tectural security spanning decades, starting with timing side
channels, in particular on caches [39], [40]. Acıiçmez et
al. [41], [42] presented similar work but targeting early
branch predictors. Evtyushkin et al. [29] later demonstrated
that modern BTBs can be similarly exploited to break
ASLR. Ge et al. [43] presented a classification of such (and
many other) exploitable timing side channels through the
shared resources and contexts.

Spectre. Kocher et al. [1] presented the first transient execu-
tion attack caused by branch misprediction. A host of other
transient execution attacks then followed [44], [45], [46],
[47], [48], [49], [50], [51]. Canella et al. [52] provide an
evaluation and classification of many such attacks. We cate-
gorize prior speculative execution attacks into three groups
based on their victim protection domain: (1) hypervisor
attacks, (2) supervisor attacks, and (3) userspace attacks.

(1) Hypervisor attacks. The original work on Spectre [1],
alongside later work [5], [8], provided proof of concept at-
tacks against modified supervisor components of hypervisor
software. Google researchers partially published an attack
against KVM [53], based on Inception [6]. Our work, in
contrast, presents the first real end-to-end attack where a
malicious KVM guest targets userspace components of the
hypervisor.

(2) Supervisor attacks. Supervisor mode has been an attrac-
tive target for BTI exploits early on [1]. While CPU vendors
and operating system developers scrambled for mitigations,
researchers continued to find gaps in the new defenses.

14

Wikner and Razavi circumvented retpoline in Retbleed [2]
and in-hardware mitigations in Phantom [37] and Incep-
tion [6] by invalidating assumptions about predictor training.
BHI and follow-up work demonstrated repeatedly that same-
mode training is possible despite various measures against
it [3], [4], [5], breaking assumptions made by cross-privilege
BTI mitigations.

(3) Userspace attacks. Various attacks against userspace
have been proposed, in particular against browser sandbox-
ing. Ragab et al. [54] generalized machine clears as a source
of speculative execution and identified novel causes of ma-
chine clears that they exploited in the browser. Ret2spec [55]
and Spectre Returns [21] both explore Return Stack Buffer
(RSB) predictions to attack userspace victims in various sce-
narios. Spring [56] then showed that despite various system
and in-browser mitigations, RSB predictions could still be
exploited. More recent attacks also target other predictors
to similarly leak secrets across sandbox boundaries [57],
[58]. Wikner and Razavi [7] then were the first to demon-
strate a full end-to-end cross-process attack. In contrast
to previous attacks targeting userspace, we identified and
exploited primitives that operate not only across context,
but also across privilege and virtualization boundaries si-
multaneously.

11. Conclusion

We presented VMSCAPE, the first practical Spectre-
BTI attack from a malicious KVM guest on QEMU, leak-
ing memory at 32B/s on AMD Zen 4. Unlike previous
Spectre-BTI attacks from a malicious guest, VMSCAPE
does not require any hypervisor code modification. VM-
SCAPE achieves this using a novel vBTI primitive that we
discovered by systematically exploring isolation gaps in
the branch predictor state between the guest and host at
different privilege levels on different AMD and Intel CPUs.
Mitigating VMSCAPE requires an IBPB after a VMEXIT
when entering a userspace hypervisor, which introduces a
marginal performance overhead.

Acknowledgments

We would like to thank the anonymous reviewers for
their feedback. We would also like to thank the Intel PSIRT,
AMD PSIRT and Linux security teams for coordination
and collaboration on this issue. Furthermore, we thank
Alexandra Sandulescu from Google for her feedback on our
mitigation analysis. This work was supported by the Swiss
State Secretariat for Education, Research and Innovation
under contract number MB22.00057 (ERC-StG PROMISE).

References

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in 2019 IEEE
Symposium on Security and Privacy (SP), May 2019, pp. 1–19.

[2] J. Wikner and K. Razavi, “RETBLEED: Arbitrary Speculative Code
Execution with Return Instructions,” in 31st USENIX Security Sym-
posium (USENIX Security 22), 2022, pp. 3825–3842.

[3] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
History Injection: On the Effectiveness of Hardware Mitigations
Against Cross-Privilege Spectre-v2 Attacks,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 971–988.

[4] S. Wiebing, A. d. F. Tron, H. Bos, and C. Giuffrida, “InSpectre
Gadget: Inspecting the Residual Attack Surface of Cross-privilege
Spectre v2,” in 33rd USENIX Security Symposium (USENIX Security
24), 2024, pp. 577–594.

[5] S. Wiebing and C. Giuffrida, “Training Solo: On the Limitations
of Domain Isolation Against Spectre-v2 Attacks,” in 2025 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society,
May 2025, pp. 3599–3616.

[6] D. Trujillo, J. Wikner, and K. Razavi, “Inception: Exposing New At-
tack Surfaces with Training in Transient Execution,” in 32nd USENIX
Security Symposium (USENIX Security 23), 2023, pp. 7303–7320.

[7] J. Wikner and K. Razavi, “Breaking the Barrier: Post-Barrier Spectre
Attacks,” in S&P, May 2025.

[8] S. Rüegge, J. Wikner, and K. Razavi, “Branch Privilege Injection:
Compromising Spectre v2 Hardware Mitigations by Exploiting
Branch Predictor Race Conditions,” in USENIX Security, Aug.
2025, intel Bounty Reward, BlackHat USA presentation. [Online].
Available: Paper=https://comsec.ethz.ch/wp-content/files/bprc sec25.
pdfURL=https://comsec.ethz.ch/bprc

[9] M.-M. Bazm, M. Lacoste, M. Südholt, and J.-M. Menaud, “Isolation
in cloud computing infrastructures: New security challenges,” Annals
of Telecommunications, vol. 74, no. 3, pp. 197–209, Apr. 2019.

[10] Advanced Micro Devices, Inc., “AMD64 APM, Volume 2: System
Programming,” Tech. Rep. 24593, Mar. 2024.

[11] “Intel Trust Domain Extension,” Tech. Rep.

[12] “Kernel virtual machine,” https://linux-kvm.org/page/Main Page.

[13] “QEMU: A generic and open source machine emulator and virtual-
izer,” https://www.qemu.org//.

[14] “Intel64 SDM, Volume 3 (3A, 3B, 3C & 3D): System Programming
Guide,” Tech. Rep.

[15] “Proxmox: Simplify your data center,” https://proxmox.com/en/.

[16] H. Yavarzadeh, A. Agarwal, M. Christman, C. Garman, D. Genkin,
A. Kwong, D. Moghimi, D. Stefan, K. Taram, and D. Tullsen,
“Pathfinder: High-Resolution Control-Flow Attacks Exploiting the
Conditional Branch Predictor,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. La Jolla CA USA:
ACM, Apr. 2024, pp. 770–784.

[17] L. Li, H. Yavarzadeh, and D. Tullsen, “Indirector: High-Precision
Branch Target Injection Attacks Exploiting the Indirect Branch Pre-
dictor,” in 33rd USENIX Security Symposium (USENIX Security 24),
2024, pp. 2137–2154.

[18] Advanced Micro Devices, Inc., “Software Optimization Guide for the
AMD Zen5 Microarchitecture,” Tech. Rep. 58455, Aug. 2024.

[19] Y. Zhang and R. Sion, “Speculative Execution Attacks and Cloud
Security,” in Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, ser. CCSW’19. New York,
NY, USA: Association for Computing Machinery, Nov. 2019, p. 201.

[20] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in 23rd USENIX Secu-
rity Symposium (USENIX Security 14), 2014, pp. 719–732.

[21] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre Returns! Speculation Attacks using the Return Stack Buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18),
2018.

15

Paper=https://comsec.ethz.ch/wp-content/files/bprc_sec25.pdf URL=https://comsec.ethz.ch/bprc
Paper=https://comsec.ethz.ch/wp-content/files/bprc_sec25.pdf URL=https://comsec.ethz.ch/bprc
https://linux-kvm.org/page/Main_Page
https://www.qemu.org//
https://proxmox.com/en/

[22] “Indirect Branch Restricted Speculation,” Tech. Rep.

[23] Advanced Micro Devices, Inc., “Amd64 Technology Indirect Branch
Control Extension,” Tech. Rep., Jul. 2018.

[24] “Single Thread Indirect Branch Predictors,” Tech. Rep.

[25] “Providing secret data to QEMU,” https://www.qemu.org/docs/
master/system/secrets.html.

[26] H. Wang, M. Tang, Q. Wang, K. Xu, and Y. Zhang, “ZenLeak:
Practical Last-Level Cache Side-Channel Attacks on AMD Zen Pro-
cessors,” 2025.

[27] Advanced Micro Devices, Inc., “AMD64 APM, Volume 3: General-
Purpose and System Instructions,” Tech. Rep. 24594, Mar. 2024.

[28] ——, “Software Optimization Guide for the AMD Zen4 Microarchi-
tecture,” Tech. Rep. 57647, Jan. 2023.

[29] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
ASLR: Attacking branch predictors to bypass ASLR,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct. 2016, pp. 1–13.

[30] “Branch History Injection and Intra-mode Branch Target Injection,”
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/technical-documentation/
branch-history-injection.html.

[31] “UnixBench test suite,” https://github.com/kdlucas/byte-unixbench.

[32] “Flexible I/O Tester,” https://github.com/kdlucas/byte-unixbench.

[33] “Retpoline: A software construct for preventing branch-target-
injection,” https://support.google.com/faqs/answer/7625886.

[34] “VirtualBox: Powerful open source virtualization For personal and
enterprise use,” https://www.virtualbox.org/.

[35] “Firecracker: Secure and fast microVMs for serverless computing.”

[36] “Crosvm: The ChromeOS Virtual Machine Monitor.”

[37] J. Wikner, D. Trujillo, and K. Razavi, “Phantom: Exploiting Decoder-
detectable Mispredictions,” in 56th Annual IEEE/ACM International
Symposium on Microarchitecture. Toronto ON Canada: ACM, Oct.
2023, pp. 49–61.

[38] P. Michaud and A. Seznec, “A Comprehensive Study of Dynamic
Global History Branch Prediction,” Report, INRIA, 2001.

[39] W.-M. Hu, “Lattice scheduling and covert channels,” in Proceedings
1992 IEEE Computer Society Symposium on Research in Security
and Privacy, 1992, pp. 52–61.

[40] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Advances in Cryptology — CRYPTO
’96, N. Koblitz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 104–113.

[41] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Topics in Cryptology – CT-RSA 2007, M. Abe,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 225–
242.

[42] O. Aciiçmez, c. K. Koç, and J.-P. Seifert, “On the power of
simple branch prediction analysis,” in Proceedings of the 2nd
ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 312–320. [Online]. Available:
https://doi.org/10.1145/1229285.1266999

[43] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
2018.

[44] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading Kernel Memory from User Space,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018, pp. 973–
990.

[45] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Fore-
shadow: Extracting the Keys to the Intel SGX Kingdom with Tran-
sient Out-of-Order Execution,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, p. 991.

[46] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows:
Attacks and defenses,” 2018. [Online]. Available: https://arxiv.org/
abs/1807.03757

[47] J. Stecklina and T. Prescher, “Lazyfp: Leaking fpu register state
using microarchitectural side-channels,” 2018. [Online]. Available:
https://arxiv.org/abs/1806.07480

[48] D. Moghimi, “Downfall: Exploiting speculative data gathering,”
in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
7179–7193. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/moghimi

[49] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data
load,” in S&P, May 2019.

[50] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi et al., “Fallout: Leaking data on meltdown-resistant
cpus,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2019.

[51] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary
data sampling,” in CCS, 2019.

[52] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 249–266. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/canella

[53] “Google CPU security research,” https://github.com/google/
security-research/tree/master/pocs/cpus.

[54] H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage against
the machine clear: A systematic analysis of machine clears
and their implications for transient execution attacks,” in 30th
USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 1451–1468. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/ragab

[55] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution
using return stack buffers,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 2109–2122. [Online]. Available: https://doi.org/10.1145/
3243734.3243761

[56] J. Wikner, C. Giuffrida, H. Bos, and K. Razavi, “Spring: Spectre
returning in the browser with speculative load queuing and deep
stacks,” in WOOT, 2022.

[57] J. Kim, D. Genkin, and Y. Yarom, “Slap: Data speculation attacks
via load address prediction on apple silicon,” in S&P, 2025.

[58] J. Kim, J. Chuang, D. Genkin, and Y. Yarom, “Flop: Breaking the
apple m3 cpu via false load output predictions,” in USENIX Security,
2025.

16

https://www.qemu.org/docs/master/system/secrets.html
https://www.qemu.org/docs/master/system/secrets.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://github.com/kdlucas/byte-unixbench
https://github.com/kdlucas/byte-unixbench
https://support.google.com/faqs/answer/7625886
https://www.virtualbox.org/
https://doi.org/10.1145/1229285.1266999
https://arxiv.org/abs/1807.03757
https://arxiv.org/abs/1807.03757
https://arxiv.org/abs/1806.07480
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://github.com/google/security-research/tree/master/pocs/cpus
https://github.com/google/security-research/tree/master/pocs/cpus
https://www.usenix.org/conference/usenixsecurity21/presentation/ragab
https://www.usenix.org/conference/usenixsecurity21/presentation/ragab
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761

	Introduction
	Background
	KVM-Based Virtualization in Linux
	Branch Prediction
	Spectre-BTI
	Spectre-BTI Mitigations
	Motivation

	Threat Models
	Overview of Challenges
	BPU Isolation under Virtualization
	Methodology
	Primitive Evaluation

	Exploitation in Different Threat Models
	Attacks from Guest to Host
	Attacks from Host to Guest
	Attacks Between Guests
	Summary

	Increasing the Speculation Window
	LLC eviction on AMD Zen 4 and Zen 5
	Eviction from a vm

	VMScape
	Exploit chain
	Breaking ASLR
	Arbitrary Memory Leak

	Discussion
	BHI variants
	Mitigation

	Related Work
	Conclusion
	References

