
TagBleed: Breaking KASLR on the Isolated Kernel Address Space using Tagged TLBs

Jakob Koschel
Vrije Universiteit

Amsterdam

Cristiano Giuffrida
Vrije Universiteit

Amsterdam

Herbert Bos
Vrije Universiteit

Amsterdam

Kaveh Razavi
ETH Zürich

Abstract—Kernel Address Space Layout Randomization
(KASLR) has been repeatedly targeted by side-channel
attacks that exploit a typical unified user/kernel address
space organization to disclose randomized kernel addresses.
The community has responded with kernel address space
isolation techniques that separate user and kernel address
spaces (and associated resources) to eradicate all existing
side-channel attacks.

In this paper, we show that kernel address space iso-
lation is insufficient to harden KASLR against practical
side-channel attacks on modern tagged TLB architectures.
While tagged TLBs have been praised for optimizing the
performance of kernel address space isolation, we show that
they also silently break its original security guarantees and
open up opportunities for new derandomization attacks.
As a concrete demonstration, we present TagBleed, a new
side-channel attack that abuses tagged TLBs and residual
translation information to break KASLR even in the face of
state-of-the-art mitigations. TagBleed is practical and shows
that implementing secure address space isolation requires
deep partitioning of microarchitectural resources and a more
generous performance budget than previously assumed.

1. Introduction

Kernel-level Address Space Randomization (KASLR)
is a first line of defense against adversaries that aim to
exploit software vulnerabilities in the kernel for escalating
their privilege. While KASLR raises the bar for attackers,
previous work has shown many different possibilities for
side-channel attacks that can easily bypass KASLR [1],
[2], [3], [4]. These attacks exploit the unified kernel
and user address spaces that is exposed through various
microarchitectural resources.

To stop these attacks, recent mitigations propose sep-
arating kernel and user address spaces on these microar-
chitectural resources [5], [6]. While secure, these mit-
igation would be expensive without tagged Translation
Lookaside Buffer (TLB) available on all modern Intel
processors. Tagging the TLB significantly reduces the
overhead of these mitigations by avoiding TLB flushes
on every privilege switch which is now necessary. As
a result, tagged TLB is praised for enabling deployment
of such mitigations in practice [5], [7]. After the public
disclosure of speculative execution attacks [8], [9], [10],
[11], major operating systems such as Linux and Windows
turned these mitigations on-by-default.

In this paper, we show that while separating kernel
and user address spaces mitigates some of the specualative
execution attacks, they do not fullfill their original goal of

protecting against side-channel attacks on KASLR. Ironi-
cally, tagged TLB, the optimization that makes separating
kernel and user address spaces efficient, re-enables the
sharing of the TLB entries across kernel and user address
spaces. Our proof-of-concept exploit, TagBleed, uses the
new leakage introduced by this sharing to fully break
KASLR in spite of these deployed mitigations.

KASLR Attacks & Defenses. Existing side-channel at-
tacks against KASLR [1], [2], [3], [4] target shared
microarchitectural resources to derive information about
secret locations in the virtual address space where kernel
memory resides. These attacks are possible due to unified
kernel and user address spaces supported by the CPU
for reasons of efficiency. For instance, a unified virtual
address space between a user process and the kernel
allows the user process to measure timing differences of a
triggered CPU exception when accessing a kernel address
to determine whether that address is mapped, breaking
KASLR [2], [4]. Similar attacks are also possible without
even triggering an exception: by measuring the execution
time of the prefetch instruction for kernel addresses one
can probe the existence of address translation data struc-
tures in the CPU’s translation caches [3]. This unification
of address spaces even extends to microarchitectural re-
sources such as the Branch Target Buffer (BTB), making it
possible for attackers to find out the virtual address space
of branch targets in the kernel from user space [1].

To mitigate this class of attacks, recent proposals
advocate for isolation of the kernel address space. This
can be enforced by explicitly flushing microarchitectural
resources such as the BTB on privilege switches [6] (or
implicitly flushing them with hardware mitigations such as
eIBRS [12]) and placing the kernel memory on a separate
address space [6], [5]. This stops the attackers’ ability
for probing the existence of kernel addresses from a user
process. On every privilege switch (e.g., due to a system
call) the address space translation structures cached by the
CPU in the TLB (or translation caches [13]) need to be
flushed because of a different kernel address space. The
TLB in recent Intel processors improves the performance
of these mitigations with tagging. Every entry is tagged
with the address space identifier and as a result, it is
no longer necessary to flush the (tagged) TLB on every
privilege switch. Due to the improved performance, tagged
TLBs have been praised for making these mitigations
practical for deployment [5].

TagBleed. Unfortunately, a tagged TLB is not a panacea
and the gain in performance comes at a significant security
cost. Tagging implicitly re-enables the sharing of the TLB
between different address spaces. This allows an attacker

to probe addressing information in the TLB left by ker-
nel execution. As we will show, the leakage surface of
tagged TLB is limited compared to known attacks against
KASLR [1], [2], [3], [4]. Nevertheless, we show that this
leakage is enough to fully derandomize KASLR when
used in combination with a secondary side-channel attack
that uses the kernel as a confused deputy [14] to leak addi-
tional information about its address space. Mounting these
attacks is not trivial since kernel memory is mapped with
huge and super pages (i.e., 2 MB and 1 GB) and (tagged)
TLBs use previously-unexplored hashing functions for
storing the translation information for these pages. Our
proof-of-concept exploit, TagBleed, uses the information
we obtained through reverse engineering to break KASLR
in under one second using the aforementioned attacks
despite all existing state-of-the-art mitigations.

Contributions. In summary, our contributions are:
• We highlight the security implications of tagging

(previously-untagged) cache components for the first
time. While tagging components improves perfor-
mance, they can come at a security cost.

• We present an extended analysis of the architecture of
the TLB in modern processors. Expanding on the ex-
isting knowledge of the TLB for normal pages [15],
we reverse engineered the TLB architecture for both
2 MB huge pages and 1 GB super pages used when
mapping kernel entries.

• The design and implementation of our practical at-
tack, TagBleed, which derandomizes KASLR on a
recent Linux system with current defense mecha-
nisms deployed in under one second. TagBleed tar-
gets tagged TLB in combination with a confused
deputy attack to fully break KASLR.

2. Background

Virtual Memory. In modern operating systems, each
process has access to a private virtual address space and
operates solely on virtual addresses. The translation to the
actual physical addresses is the responsibility of the MMU
(Memory Management Unit) which walks the multi-level
page table structures that contain the virtual-to-physical
mappings for each address space, as well as permission
flags (such as the supervisor bit that indicates a page can
be accessed from user space). Since these address trans-
lations are expensive and happen at each memory access,
the MMU utilizes the TLB (Translation lookaside buffer)
to cache the last few lookups—speeding up subsequent
accesses to the same page by orders of magnitude.

In the operating systems with unified kernel and user
address spaces that were popular until very recently, the
kernel did not have an address space of its own, but
rather shared the page tables of the running user process
and relied on the supervisor bit to protect its pages from
illegitimate accesses from the user process. As neither the
address space (page tables) nor the content of the TLB
needed to change on kernel boundary crossings, such an
optimized memory organization was very efficient. The
optimization is especially effective on processors without
tagged TLBs, since they must perform a full TLB flush
on every address space switch [16].

As a result of a barrage of side channel attacks [2], [4],
[3], [8] that all abused the unified address space, modern
operating systems recently abandoned it altogether and
now provide the kernel with its own, completely separate
address space. On Linux, this is known as KPTI (Kernel
Page Table Isolation) [17], while Windows refers to it as
KVA (Kernel Virtual Address) Shadow [18]. Fortunately,
while the separation of address spaces is still quite ex-
pensive on older processors because of the TLB flushes,
newer CPUs offer tagged TLBs where each entry contains
an identifier (or “tag”) of the address that owns it. For
instance, Intel’s x86 64 processors have supported tags
in the form of 12-bit PCIDs (Process Context Identifiers)
since the SandyBridge architecture [19]. When performing
a lookup in the TLB, the entry’s tag must match that of
the currently active address space. Thus, flushes are no
longer needed, as there is never any confusion about the
validity of a TLB entry—greatly improving performance.

Address Space Layout Randomization. To prevent at-
tackers from locating suitable targets to divert a program’s
control flow in the presence of a vulnerability, all major
operating systems today support Address Space Layout
Randomization (ASLR). ASLR randomizes the locations
of the code, heap and stack in memory and forms an effec-
tive first line of defense against memory error attacks. The
kernel variant of ASLR, known as KASLR, is deployed
on all major operating systems. This requires attackers to
first break KASLR as a crucial step in kernel exploitation.

KASLR randomizes the location of the kernel and
drivers running in kernel space either at boot time or at
driver load time. Since brute forcing the randomization in
the kernel is typically not an option due to the high rate
of kernel panics, the randomization entropy in the kernel
can be lower than in user processes. For instance, at the
time of writing, the entropy for the kernel image in Linux
is 9 bits [20] , while the entropy for user space code is as
high as 30 bits [21].

More specifically, KASLR in Linux randomizes dif-
ferent kernel regions differently. At boot time the kernel
image is unpacked and relocated to a random location.
Regions for the identity map, vmalloc and vmemmap
are randomized separately. Finally, kernel modules are
randomized the first time a module is loaded. As shown
in Table 1, the kernel image has 9 bits of entropy, and
kernel modules have 10 bits. Identity map, vmalloc and
vmemmap are randomized with a shared entropy depend-
ing on the size of physical memory.

TLB Tagging. Switching address spaces on processors
prior to TLB tagging is a costly operation due to the inval-
idation of all entries. Therefore tagging TLB entries with
an identifier for its current address spaces was introduced
as an optimization. Intel processors use the first 12 bits
of the CR3 register to store a so called PCID (process-
context identifier) [19]. Entries in the TLB will only be
taken into account if the current PCID in CR3 matches
the PCID of the entry. This makes context switching more
performant, since the TLB does not require any flushing.

Cache Attacks. On address lookups, the TLB caches
virtual to physical memory translations and as a shared
resource between processes running on the same core,
clearly introduces a side-channel risk that was exploited

TABLE 1. KASLR ENTROPY IN LINUX 4.19.4 FOR THE KERNEL IMAGE, KERNEL MODULES AND PAGE OFFSET, VMMALLOC AND VMEMMAP.
THE NUMBER OF POSSIBLE SLOTS FOR THE KERNEL IMAGE ARE DEPENDENT ON THE SIZE OF THE KERNEL IMAGE. THE ENTROPY AND END

ADDRESS FOR PAGE OFFSET DEPENDS ON WHETHER FIVE PAGE TABLE LEVELS ARE SUPPORTED AND HOW MUCH PHYSICAL MEMORY IS
AVAILABLE.

start address end address entropy possible slots alignment

kernel image 0xffffffff81000000 0xffffffffbe000000 9 488 2MB
kernel modules 0xffffffffc0001000 0xffffffffc0400000 10 1024 4KB
page offset base, vmalloc base,
vmemmap base 0xffff888000000000 0xfffffe0000000000 15* 25600* 1GB

* depends on amount of physical memory and CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING configuration.

in the TLBleed attack by Gras et al. [15]. However, the
TLB is just one of many shared resources that have been
used for side-channel attacks. Modern Intel CPUs have
multiple levels of caches to speed up memory accesses.
Specifically, each core has its own L1 and L2 caches and
shares the last level cache (LLC) with the other cores.
Since attacker and victim don’t even need to run on the
same core, the LLC is a particularly interesting target for a
side channel attack [22], [23], [24], [25], [26]. Attackers
can simply populate cache sets and then measure whether
the victim process evicts their data. With this information
the attacker can infer that the victim used addresses that
map to the same cache set and researchers have shown
that this is enough to leak sensitive information such as
cryptographic keys [27], [28], [29], [30], [31].

AnC. The AnC [32] attack measures the timing of ac-
cesses performed by the MMU during virtual address
translation to break ASLR from within the browser. When-
ever an address translation is not cached in the TLB, the
MMU does a page table walk. It reads offsets within the
multi-level page tables in order to first dereference the
next page table and then the address of the physical page.
In order to speed up expensive page table walks, accessed
parts of the page tables are cached within the CPU’s data
caches. This makes consecutive translations faster even if
the MMU has to do a page table walk. Inevitably, caching
parts of the page table leaves traces in the CPU cache
depending on the translated virtual address. By partially
flushing the data caches, AnC can measure which cache
lines within the page table pages have been used during
a translation. This information already significantly com-
promises the ASLR entropy. To fully break ASLR, AnC
needs to find out which page table entries within the target
cache lines are accesses by the MMU. This is achieved by
accessing a large virtual contiguous buffer, and observing
the transitions between activated cache lines, known as
sliding. The demonstrated attack requires large accessible
virtually consecutive buffers (e.g., 8 GB). While this is
possible in the browsers, it becomes challenging when
applied to the kernel.

3. Threat Model

We assume an attacker that can execute unprivileged
code on the target system with a kernel that is hard-
ened with all common mitigations, including KASLR
and DEP [33]. For the hardware, we assume a modern
processor with a tagged TLB. In this paper we focus on
Intel processors with PCID-based TLB tagging, ARM and
AMD however also provides a similar feature through
ASIDs. The attacker aims to elevate privileges to ring 0 by

Execution Unit

Load/Store Unit
Virtual

Address

MMU

TLB CR3

Level 4 Level 3 Level 2 Level 1

L3 Cache

DRAM

Figure 1. High level overview: On a memory access the MMU will
translate a virtual address to a physical address using the page table
structures. The result of the translation will be cached in the TLB and
parts of the page tables in the L3 cache (LLC). By observing the state
of the TLB and LLC we locate the position of kernel translations in
the cache. Because the position is dependent on the translated virtual
address we can successfully derandomize KASLR.

exploiting a memory corruption vulnerability in the kernel
or a kernel module. To do so, the attacker first needs to
break KASLR. In general, breaking KASLR is possible
via a software-based information disclosure vulnerability
or a side-channel attack. We assume that the kernel does
not contain a known information disclosure vulnerability
and that powerful mitigations against side-channel attacks
on KASLR are turned on [5], [6]. The attacker’s aim is to
bypass these mitigations and successfully break KASLR
with a side-channel attack. In this paper, we mostly focus
on the Linux kernel, but the techniques we develop will
likely be applicable in other kernels as well.

4. Attack Overview

Existing side-channel attacks on KASLR rely on the
kernel being mapped in the same address space as the user
process [3], [4], [2]. Specifically, these attacks can detect
whether the kernel is mapped at a given address without
the permission to access that address. By removing the
kernel from the user address space and moving it to its
own memory space these side channels are no longer
possible [5], [6]. As kernel address space isolation ensures
that kernel memory is only mapped while executing in ker-
nel space, an attacker needs to perform a confused deputy
attack [14] on the kernel, tricking it into performing the
attack on itself.

Unfortunately for the attacker, the confused deputy
attack is not possible with any of the existing techniques.
For instance, the TSX attack [4] would require the kernel
to access a user-controlled pointer in a hardware trans-
action. However, since the Linux kernel does not use
transactions, this is not a feasible attack vector. The same
is true for the prefetch instruction [3], while triggering
invalid kernel page faults when performing the attacks
described by Hund et al. [2] would crash the kernel.
Therefore, our confused deputy attack should find other
mechanisms. The simplest operation that we can force a
kernel to perform is an access to its own memory. Memory
accesses occur on every single instruction as the processor
loads text and often data from memory. An important
research question is whether it is possible to break KASLR
using uncontrolled valid memory accesses performed by
the kernel—and as we will see, the answer is yes.

Figure 1 shows how the information that the kernel
maintains for address translation leaves traces in vari-
ous caches when performing a memory access. On each
memory access, the MMU performs a virtual to physical
address translation, first consulting the TLB to see whether
the result is already cached there. If the translation is not in
the TLB, the MMU performs a page table walk to translate
the virtual address into a physical one. Accessing page
table entries in the page table results in caching parts of
the page table in the CPU’s data caches. Bits of the virtual
address determine the set in the TLB and which part of
the page table is being cached.

Ironically, the introduction of tagged TLBs, so impor-
tant for the performance of systems with an isolated kernel
address space, undermines the very isolation it should be
helping, since it is now possible for a user process to probe
TLB sets in its own address space to detect kernel activity
in these same sets. Moreover the sets in which there is
activity reveal information about the virtual address of
kernel memory. However, breaking KASLR by observing
such TLB activations presents several challenges:

C1 Since the kernel is mapped using huge or super
pages, we need to understand the TLB architecture
for these page types and their addressing function.
The TLB architecture for 4 KB pages has only re-
cently been reverse engineered by Gras et al. [15], but
the TLB behaviour for larger pages remains entirely
unknown.

C2 Given the small number of TLB sets, the partial
information retrieved from a tagged TLB is unlikely
to be sufficient to fully derandomize KASLR. We
therefore need an auxiliary side channel to combine
it with the side channel over tagged TLB. This raises
the challenge of combining these side channels.

C3 Timing a kernel memory access in a confused deputy-
style attack requires forcing the kernel to perform a
certain operation on behalf of a user process (e.g.,
a system call). Compared to existing attacks that
simply time a single memory access by itself, the
system call introduces significant additional noise.
Building a practical side-channel attack in such a
setting is challenging.

We first address C1 by reverse engineering the TLB
architecture for huge and super pages in Section 5. In
Section 6, we then show how an EVICT+TIME attack

0 32 64 96 12
8

TLB set

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

co
ns

ec
ut

iv
e

hu
ge

 p
ag

es

Figure 2. The graph shows the TLB set for 256 virtual consecutive huge
pages starting at address 0x6ffe00000000. The hash function for
huge pages is linear, given by the 7 bits after the page offset.

on a tagged TLB combined with a constrained variant of
the AnC attack [32] allows breaking KASLR (address-
ing C2). We further show how selective TLB flushing,
made possible through our reverse engineering efforts,
can significantly reduce noise to make our attack practical
(addressing C3).

5. Reverse Engineering the TLB

For the TLBleed attack [15], the authors present their
efforts in reverse engineering the TLB architecture to
understand how virtual addresses map to different sets in
the TLB. They use Intel Performance Counters (PMCs)
to gather fine-grained information about TLB misses
and their level. Intel provides performance events like
dtlb_load_misses.stlb_hit and
dtlb_load_misses.miss_causes_a_walk
which allow differentiating between a L2 sTLB hit and a
miss.

With their findings they define the L1 TLB as linearly-
mapped TLBs. This describes the hash function deter-
mining the TLB set of a virtual address. In a linearly-
mapped TLB the hash function is given by tlb set(va) =
pageva mod s. A TLBs architecture is defined by its
sets s, ways w and its hash function tlb set(va). The L2
sTLB however is a complex-mapped TLB in recent Intel
architectures. This means the hash function is not linear.
In the Skylake sTLB, for example, the hash function is
given by a XOR-7 function which xors bits 19 to 13 with
the bits 26 to 20 of the virtual address.

We first tested whether we can evict a TLB entry for
a huge page (i.e., 2 MB) by flushing the whole TLB with
4 KB pages. Using performance counters we verified that
we were able to evict the TLB entry of the 2 MB page
from the L1 dTLB and the L2 sTLB. We conclude from
this that both L1 dTLB and L2 sTLB are shared between
4 KB and 2 MB pages. This information already gives us
the set and ways for the L2 sTLB since it is the same
for normal pages. Contradictory to the information from
cpuid, the L1 dTLB (2 MB pages) on Skylake therefore
has 64 entries with 16 sets and 4 ways instead of the
stated 32 entries and is shared with the L1 dTLB for
4KB page translations. Based on our findings the dTLB
for 2MB pages, as well as the sTLB for 1GB pages are
linearly mapped with the bits after the page offset. We,

TABLE 2. TLB ARCHITECTURE FOR SKYLAKE ARCHITECTURE BASED ON OUR REVERSE ENGINEERING EFFORTS. THE INDEXING COLUMN
DETERMINES THE BITS USED FOR THE LINEAR INDEXING FUNCTION. ONLY THE STLB FOR 4 KB PAGES IS INDEXED WITH THE COMPLEX

XOR-7 INDEXING FUNCTION.

L1 dTLB L2 sTLB
sets ways indexing shared sets ways indexing shared

4 KB page [15] 16 4 VA[15:12] 3 128 12 XOR-7(VA[25:12]) 3
2 MB page 16 4 VA[24:21] 3 128 12 VA[27:21] 3
1 GB page - 4 fully associative 7 4 4 VA[31:30] 7

1111	1111	1 111	1111	10

Page Table Level 2

4KB	aligned

Page Offset

47 39 38 30 29 21 20

47 39 38 30

25

20

PTO	(6	bit)

29 24

Page Table Level 1

Page Offset

12 11

12

11

KASLR11	1111	1	0

TLB	Set	(14	bit)

PTO	(6	bit)

15

1111	1111	1 111	1111	10

Page Table Level 4

2MB	aligned

Page Offset

KASLR

47 39 38 30 29 21 20

47 39 38 30

27 21

20

PTO	(6	bit)

TLB	Set	(7	bit)
Page Table Level 3Page Table Level 4

29 24

Page Offset

Kernel modules

Kernel image

Page Table Level 3 Page Table Level 2

Page Table Level 4

Page Table Level 4 Page Table Level 3

Page Table Level 3

Figure 3. For the kernel image the whole second page table level
(PTL) is randomized by KASLR. Using TLB sets we are able to
randomize the lower 7 bits. Combining it with page table offset (PTO)
information, which derandomizes the higher 6 bits, we can successfully
break KASLR. For kernel modules PTL1 and the lowest bit of PTL2
are randomized. Using the TLB set, given by the XOR-7 hash function,
together with the offset within the page table is enough to derandomize
those 10 bits of entropy.

however, still need to reverse engineer the hash function
that determines in which of the 128 sTLB sets a huge
page is put in. We know that the sTLB is shared with
4KB pages where, on Skylake, the set is determined by a
complex XOR-7 hash function. To observe the addressing
function for 2MB pages we evict one set in the sTLB at
a time using 4KB pages. That allows us to observe which
TLB set the huge page is mapped to. Figure 2 presents
our results on Skylake for measuring the TLB set for 2MB
pages. Based on our measurements, the sTLB set for 2 MB
huge pages is determined by bits 27 to 21 of the virtual
address (VA[27:21]). Contradictory to the complex XOR-
7 hash function for 4 KB pages, for 2 MB pages it is only
addressed with a linear addressing function. An overview
of our findings on the TLB architecture is summarized in
Table 2.

6. TagBleed

In this section, we discuss the building blocks of
our TagBleed attack. We first discuss how we can force
the kernel to access its virtual memory to start off our
confused deputy attack. We then describe how we utilized
the knowledge we gained through our reverse engineering
for leaking kernel virtual address information through the
tagged TLB and to reduce noise during the attack. After
that, we discuss how we utilized a constrained version of
the AnC attack to break the remaining residual (2 bits) of

entropy for the kernel text. We further extend our attack
to derandomize the location of kernel modules and data.

6.1. Forcing Kernel Memory Access

Measuring a memory translation in the kernel is chal-
lenging. Simply measuring a single translation is not pos-
sible. We need to start the timer prior to entering the kernel
and stop it once returned to user space. Measuring the
entire kernel operation introduces additional noise caused
by other instructions being executed. System calls are an
easy way for a user process to communicate with the
kernel. To minimize noise of other code executed during
the system call, we took the shortest possible system call
by providing an invalid system call number. Early in the
system call handler the kernel will look for a system call
with the provided number and abort because of the invalid
argument. We note that the SYSCALL instruction is also
considerably faster than INT 0x80, in order to shorten
the execution path.

6.2. Leaking Through Tagged TLB

As mentioned in Section 2, KASLR support in Linux
aligns the kernel text to 2 MB and randomizes bit 21 to 29
of the virtual address, in other words, the slot in second
page table level (i.e., PTL2) as shown in Figure 3. We
craft an EVICT+TIME attack, evicting one TLB set at
a time and timing a target (kernel) memory access. If the
TLB set with the desired entry is evicted, the MMU is
forced to perform a page table walk. A page table walk is
considerably slower than just using the cached translation
from the TLB. Note that due to KPTI the TLB would be
flushed entirely on a context switch if no TLB tagging
would be in-place. With the tagged TLB, we now have
the capability to selectively evict parts of the TLB and
observe the effects across context switches. As already
presented, the L2 sTLB set for huge pages is determined
by VA[27:21], which allows derandomizing the lower 7
bits of the second page table level. The last 2 bits of PTL2
, which remain unknown, are derandomized by combining
this attack with information obtained through page table
walker discussed in the next section.

Reducing noise. Selectively flushing one TLB set at a
time also reduces the noise. Not evicting the entire TLB
massively reduces the amount of unwanted page table
walks which create a large amount of false positives.

6.3. Confused Deputy Attack with AnC

The AnC attack on the MMU can break ASLR
when the attacker can freely slide in the virtual address
space [32]. AnC relies on the MMU caching parts of

for each tlb set do
for each cache line do

evict l1 tlb()
evict l2 tlb set(tlb set)
evict cache line(page table cache line)
past← rdtscp()
syscall
now ← rdtscp()
timing[tlb set][cache line]← now − past

end for
end for

Figure 4. Timing a system call by only evicting one TLB set and one
page table cache line at a time.

the page table page on a page table walk. Depending
on the virtual address, different parts of the page table
end up being cached in the LLC. Using EVICT+TIME,
AnC locates the cache lines containing the accessed page
table entries by the MMU. However this will not reveal
the complete virtual address since multiple 8-byte page
table entries are stored in the same 64-byte cache line.
AnC addressed this problem by accessing large virtually
contiguous memory addresses, i.e., sliding. Accessing sub-
sequent virtual addresses cause subsequent cache lines to
be accessed by the MMU. The point at which a new cache
line is accessed reveals the offset of page table entries in a
cache line – fully derandomizing ASLR. While powerful,
it is not trivial to apply the AnC attack to the kernel due
to two reasons. First, we cannot make the kernel slide its
address space, and second, each step of the AnC attack
causes up to four cache line activations due to four levels
of the page table, introducing false positives. We present
a variant of this attack integrated into our tagged TLB
side channel to leak the remaining 2 bits of entropy and
making TagBleed more noise-resistant.

Sliding. As shown in Figure 3, the residual 2-bits of
entropy left from our TLB attack are not related to the
offset of page table entries within the cache lines. This
means that we do not need to perform sliding to retrieve
these two bits. As a result, a single memory access by the
kernel is enough to break KASLR when combining these
two side channels.

Other PTLs. In order to speed up page table walks Intel
not only caches complete virtual to physical translations
in the TLB, but also partial translations in its
translation caches [13]. These caches allow the MMU to
skip page levels during the translation. We make use these
translation caches to force the MMU to skip page tables
that are not interesting for KASLR (see Figure 3). This
allows us to avoid false positives caused by other page
table levels.

Combining the side channels. Figure 4 shows the high
level operation of TagBleed when combining the tagged
TLB and AnC attacks. We generate a two dimensional
matrix with all combinations of evicting one TLB set and
one cache line. Then we use a simple script to identify
the best candidate. We first identify the best candidate for
the TLB set. Since this derandomizes the lower 7 bits
of PTL2, only the 2 highest bits are missing. Therefore
we only need to choose between 4 possible cache lines.

TABLE 3. MICROARCHITECTURES USED IN EVALUATION.

Vendor Microarchitecture CPU model Year TLB tagging
Intel Haswell i7-4650U 2013 PCID
Intel Skylake i7-6700K 2015 PCID

Since the AnC attack gives us the upper 6 bits of PTL2,
we can use the upper 4 bits of the best candidate from
the previous step as a noise filter when selecting the final
candidate.

6.4. Derandomizing Kernel Modules

Kernel modules are loaded with an offset randomized
by KASLR when the first module is loaded in the system.
In order to observe the signal, we need to force an
access to a memory location within the kernel module.
We achieve this by performing an ioctl call to a loaded
kernel module. Kernel modules are mapped with 4 KB
pages, contrary to 2 MB pages used for the kernel image.
Therefore, as shown in Figure 4, bits 12 to 21 of the
virtual address are randomized, since kernel modules are
not 2 MB, but 4 KB aligned. This slightly changes our
approach since the TLB indexing function for 4 KB pages
is different than for 2 MB pages. For example, on Skylake
the TLB set for 4 KB pages is determined by an XOR of
bits 12 to 18 with the bits 19 to 25 of the virtual address.
Hence, using TLB sets alone we cannot break any KASLR
bits. The AnC attack, however, provides us with bit 15-20
through the offset of the activated PTL1 cacheline. Bits
19 and 20 allow us to find bits 12 and 13 as well, since
bits 19 and 20 are XORed with bits 12 and 13 in the
TLB’s XOR-7 pattern [15]. The remaining entropy will
be a single bit, since we cannot break KASLR at bit 14
and 21 while we know their XOR value.

6.5. Derandomizing Physmap

Derandomizing physmap is challenging because it is
1 GB aligned and randomized in PTL3 and PTL4. The
TLB indexing function for 2 MB pages does not use those
upper bits. Most of the physmap, however, is mapped with
1 GB pages with a separate TLB with its own indexing
function. But since the sTLB for 1GB pages only has 4
sets, we can only use it to derandomize the lower 2 bits
of PTL3. To derandomize the rest, we can make use of
AnC to derandomize the higher 6 bits of both PTL3 and
PTL4 reducing the entropy by another 10 bits. This still
leaves us 4 bits of entropy (16 possible locations).

7. Evaluation

We evaluated TagBleed on a machine running
Ubuntu 18.04 LTS (Linux kernel v4.19.4) with an Intel
Core i7-4650U @1.70 GHz (Haswell) and 8 GB of RAM.
In order to ensure portability across different architectures,
we confirmed our evaluation results on another worksta-
tion running Ubuntu 18.04.1 LTS (Linux kernel v4.15.0)
with an Intel Core i7-6700K @4.00 GHz (Skylake) and
16 GB of RAM. This also allowed us to confirm that a
range of different TLB architectures is susceptible to our
TagBleed attack. Table 3 details the CPUs and microar-
chitectures considered in our evaluation. In our evaluation,

0 16 32 48 64 80 96 112 128
L2 sTLB set

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125

Ro
un

d

645

660

675

690

705

Figure 5. We can clearly see that evicting some TLB sets will slow
down the time of an invalid system call. This can only happen when the
(tagged) TLB is not fully flushed as the kernel switches address spaces
with KPTI enabled.

we targeted the derandomization of KASLR for the kernel
image.

7.1. Side channel by TLB set eviction

We first evaluated our assumption on whether the
partial TLB set eviction from user space can influence the
MMU’s virtual-to-physical memory address translation.
Without KPTI, the (unified user/kernel) address space is
not switched on kernel entry, so no TLB flushing is per-
formed. With KPTI, however, the kernel updates the CR3
register to switch to the separate kernel address space.
This operation does flush the TLB on legacy architectures,
hindering our partial TLB set eviction strategy. However,
on modern tagged TLB architectures, tagged entries are
no longer flushed at mode switching time and we should
be able to surgically trigger a page table walk only when
evicting the correct TLB set.

Figure 5 validates our assumption, depicting the im-
pact of evicting different TLB sets on the execution time
of a dummy (i.e., invalid) syscall. Note that using an
invalid syscall, that is a syscall with an invalid syscall
number, is a convenient way to trigger short-lived ker-
nel activity, but using any other short-lived syscall (e.g.,
reboot without root privileges) would also serve our
purposes.

As Figure 5 shows, the execution time increases only
when evicting specific TLB sets (revealing the virtual
memory activity of the syscall). The signal persists if we
disable KPTI, since the address space is not changed on
a context switch, keeping the current state of the TLB.
KPTI on a legacy TLB architecture without a tagged TLB
requires a full TLB flush on a context switch. This clears
the state of the TLB cache and therefore stops TagBleed,
but it comes at a high performance cost for each user to
kernel transition.

7.2. Side channel by cache line eviction

Our second assumption is that we can observe the
cache lines being accessed during a kernel page table

0 8 16 24 32 40 48 56 64
Cache line offset in page table

0

100

200

300

400

500

Co
ns

ec
ut

iv
e

pa
ge

s

1050

1200

1350

1500

1650

Figure 6. Although more noisy than a same-process page table walk
signal, the sliding is still visible when timing the execution of an ioctl
syscall to our kernel module. The offset within the buffer, which the
kernel module accesses, is passed as an ioctl argument.

Figure 7. Cache evictions can slow down syscall execution in many
unpredictable ways. As shown in the figure, not one but many different
cache lines introduce cache misses in kernel execution even for an
invalid syscall. The graph was created with the kernel target page being
mapped using the sixth cache line, whose signal does not even stand out
compared to other cache lines.

walk. In order to test this assumption, we built a kernel
module to perform an AnC-style cache attack to monitor
the page table walks performed by the MMU. The kernel
module gives us the ability to access a given offset within
a kernel buffer to perform sliding on the virtual address
space and make the signal more visible. By accessing
virtually contigous pages, which we define as sliding, the
cache line of the page table entry will also be incremented.
We then time the execution of an ioctl syscall that
causes the kernel module to access a byte at a given offset.
Figure 6 validates our assumption, depicting the signal for
512 contiguous virtual memory pages measured by timing
the execution of the ioctl syscall.

However, when we repeat the experiment with an
invalid syscall and without our kernel module (and there-
fore without sliding), the signal becomes very noisy, as
depicted in Figure 7. This shows that, due to the entire
cache activity of the kernel being impacted by cache

0 8 16 24 32 40 48 56 64
Cache line offset in page table

0

16

32

48

64

80

96

112

128

L2
 sT

LB
 se

t

130

135

140

145

150

Figure 8. A combined EVICT+TIME attack on a user-level huge page
access. Only when evicting the TLB set 55, the MMU performs an
expensive page table walk. Moreover, when evicting cache line 54, the
page table entries need to be loaded from memory which slows down
the page table walk.

0 8 16 24 32 40 48 56 64
Cache line offset in page table

0

16

32

48

64

80

96

112

128

L2
 sT

LB
 se

t

650

675

700

725

750

Figure 9. A combined EVICT+TIME attack on an invalid syscall. Based
on our solver, we can see a signal for the TLB sets 25 and 27. These
TLB sets have been selected based on their high slowdown for the last
cacheline relative to all other cache lines. When testing for the four
possible cache lines 3, 19, 35, 51 we can identify cache line 19 as the
one containing the page table entries. Cache line 19 has been selected
because it’s not slow across all TLB sets but destintively in TLB set 25
and 27.

evictions, without detecting the jump in between cache
lines and absent other side channels, it is challenging to
detect if an eviction induced a cache miss during a page
table walk or in other kernel operations.

7.3. Combining the two side channels

Next, we combine the two side channels used by
TagBleed to 1) derandomize all the required bits of en-
tropy and 2) combine the available information for better
TLB set and cache line detection. We first showcase our
TagBleed attack sensing the second page table level for
a huge page access in user space. This scenario demon-
strates our attack in a low-noise scenario due to the ability
to carefully time a single user-level memory access. Next,
we show that TagBleed’s signal is still detectable when

measuring it through kernel activity triggered by a system
call.

Figure 8 depicts the signal for our combined
EVICT+TIME attack on user-level huge page access. As
shown in the figure, the attack yields a fast access for
all TLB sets except the one triggering a page table walk.
If, for that TLB set, we also evict the cache line of the
second-level page table entry, the page table walk (and
ultimately the access) is even slower. To only analyze the
signal for the second-level page table, we keep the higher
levels cached in the page table caches.

Figure 9 presents the same experiment but operated
on an invalid syscall—a more useful but also more noisy
scenario. As expected, the kernel activity yields several
other memory access and results in several other cache
misses. Nonetheless, we can identify the correct TLB set
for kernel pages by finding the TLB sets that consistently
keep getting evicted for all the cache lines. Another stratey
to find the correct TLB set is finding several TLB sets
close to each other. This evidences accesses within dif-
ferent parts of the kernel image in consecutive TLB sets.
However, the most reliable way to determine the correct
TLB set is verifying if one of the four possible cache lines
is considerably slower than the other cache lines.

7.4. Success rate

In order to evaluate the success rate of TagBleed, we
ran 50 trials, restarting the system each time to trigger
a rerandomization with KASLR. For each trial, we per-
formed a total of 20 runs to minimize the risk of temporary
noise. In 47 of 50 trials, we are able to recover the correct
location of the kernel. In three other trials, we could not
reliably disambiguate two cache lines. This translates to
a 94% success rate while reducing the KASLR entropy
down to 1 bit in the other cases.

7.5. Attack time

Our TagBleed attack can be run in less than a second
with satisfying results. Nonetheless, timing is usually not
critical when building kernel exploits in a local exploita-
tion scenario, where the attacker has already been granted
(or achieved) unprivileged code execution. By default, we
therefore increase the number of rounds to 10 for each
TLB set to reduce the amount of false positives. This still
allows us to run the attack in less 3 seconds including the
time to run our solver script.

7.6. Noise

For the purpose of noise reduction, TagBleed com-
bines two different side channels. Figure 7 shows that,
without combining multiple side channels, TagBleed can-
not easily battle spatial noise. For increased reliability
against temporal noise, we repeat our measurements in
several rounds. Temporal noise is especially critical when
timing system calls. The kernel can potentially reschedule
other processes after the system call instead of reschedul-
ing the attacker-controlled process. By repeating the evic-
tions in several rounds, we make sure that temporal noise
does not negatively affect the measurements. As we lower

TABLE 4. KASLR ATTACKS VS. DEFENSES.

KAISER [5] LAZARUS [6] time

Double PF [2] 7 7 < 1 min
prefetch [3] 7 7 12 s
TSX [4] 7 7 0.2 s
BTB [1] 3 7 60 ms
TagBleed 3 3 < 1s

the number of rounds below the default value of 10, we
quickly observed degradation of the success rate due to
temporal noise. As we increase the number of rounds
above 10, we observed minor improvements to the pre-
viously reported success rate. Overall, we believe 10 is a
good choice even for relatively noisy environments.

To asses noise in a realistic use case, we ran the
experiment with additional workload on a Ubuntu Desktop
with an open browser, running a youtube video, and
several applications running such as an email client. We
could not measure any effect that suggests TagBleed is
affected by such noise. The attack is also not required to
run longer compared to the experiment without additional
workload.

7.7. Comparison against other KASLR attacks

In Table 4, we compare our attack with existing at-
tacks when considering existing state-of-the-art mitiga-
tions. TagBleed compromises KASLR regardless of either
mitigation since it relies only on the shared tagged TLB
and CPU data caches rather than shared branch state or
shared address space. We verified our attack TagBleed
against the latest Linux kernel with KPTI, which is based
on the KAISER patches. All other existing attacks are
mitigated by LAZARUS. Since TagBleed does not rely
on a unified address space or the BTB, it is not mitigated
by LAZARUS. Furthermore, KAISER protects against
all existing attacks except BTB-based attacks (although
the latter can be also mitigated using complementary
mitigations such as eIBRS [12]).

8. Mitigations

We distinguish between defenses specific for the TLB
side channels, defenses targetting cache side channels, and
generic mitigations that target the timing primitives.

Stopping TLB side-channel attacks. Completely remov-
ing the TLB side channels requires all shared state to
be removed. There are two ways to do so: spatial and
temporal partitioning.

Spatial partitioning removes the side channel by isolat-
ing user processes from the TLB sets associated with the
kernel. With current architectures this is not practically
possible, since a partitioned TLB makes it extremely
hard to guarantee contiguous virtual memory. Changing
the TLB indexing function in future architectures could
work, although hardware changes are expensive, and it
is not unlikely that doing so will introduce performance
degradation. After all, the current function is specifically
chosen for performance.

Instead of spatial partitioning, it is also possible to
kill the side channel by partitioning the TLB in time—
by performing a full TLB flush upon crossing security
boundaries. Disabling TLB tagging/PCIDs to flush the
TLB completely effectively mitigates our attack but at the
cost of high performance overhead for all implementations
of kernel address space isolation.

Stopping LLC side-channel attacks. As temporal parti-
tioning of the last level cache, although possible in theory,
is not a feasible solution for obvious performance reasons,
we consider only spatial isolation.

Cache coloring divides pages between kernel and user
process in such a way that they do not share cache sets.
Doing so will stop leaking through the LLC, but is far
from trivial [34], has serious performance implications for
both user processes and the kernel [35], [36], and needs to
account for all memory used on behalf of the user process.
Moreover, LLCs are not the only side channel option for
the determined attacker.

Instead of caching the content of the page table in
the LLC, future processor generations could put it in
a dedicated, isolated page table cache. Clearly, such a
solution requires expensive hardware changes. Also, that
page table cache would have to be designed carefully, lest
it opens up a new potential side channel (e.g., if it is shared
between user processes and kernel).

Stopping general kernel timing attacks. At heart, our
attack is possible because attackers can measure subtle
timing differences in system call execution. Removing this
ability would also stop the attack. To do so, we identify
three approaches: detection of timing attacks, constant
time system calls, and timer crippling.

HexPads [37] has shown that, in principle, perfor-
mance counters can be used to detect ongoing side-
channel attacks. However, it is hard to guarantee full
mitigation and detection also introduces the risk of false
positives and false negatives. While at first sight it may
also seem possible to introduce a defense in the kernel
to detect a high rate of failed system calls, say, such a
solution would be naive. First, it is hard to be sure if the
failed calls are really due to a side-channel attack. Second,
attackers can easily make their attack more silent by
extending its time and running it from separate processes.
In order to mitigate the ability to time invalid system
call the kernel could enforce a constant execution time
for invalid system calls. Doing so would not influence
performance during normal use, since invalid system call
number are not typically used by normal applications.
However this is also not very effective because we could
just find a short valid system call as an alternative to an
invalid system call. The alternative, making all system
calls constant time is not a practical solution. The most
obvious mitigation is to cripple the timers, for instance by
removing the availability of high resolution timers such
as rdtsc. Again, this solution is not realistic since high
resolution timers are vital to many applications. Moreover,
crafting ad-hoc high-accuracy timers, e.g.. using concur-
rent threads is always possible.

In summary, mitigating side channels for every single
memory access is challenging and/or expensive. The sim-
plest and most practical mitigation may be to simply use
the higher bits of the virtual address for the operating

system’s implementation of KASLR. Since our attack
fully derandomizes PTL2, extending the randomized bits
into PTL3 could work as a possible mitigation, even
though moving the location of the Linux kernel may (and
probably will) introduce unforeseen performance issues.
We point out that with our technique we would still be
able to derandomize PTL2 which removes those bits from
the actual entropy of both KASLR and user-space ASLR.

9. Related Work

Derandomizing (K)ASLR. Derandomizing ASLR has
been an active research topic as a fundamental primi-
tive for code reuse attacks [38]. The simplest way to
break ASLR is to leak code or data pointers with mem-
ory disclosure vulnerabilities [39], [40]. However, side-
channel attacks showed that even without disclosures it is
possible to derandomize the address space layout. These
side-channel attacks use techniques such as control flow
timing [41], [42], memory deduplication [43], [44], or
CPU caches [32], [3], [2], [4], [1].

Hund et al. [2] showed three different scenarios for
breaking KASLR by perfoming timing attacks on CPU
caches and the TLB. Yang et al. [4] used Intel TSX
to suppress exceptions that normally happen on faulty
memory accesses. Since no page fault is raised but the
transaction aborts and returns directly back to the user,
the difference between invalid permissions or a missing
mapping is measurable. Grus et al. [3] showed that the
excution time of the prefetch instructions can be used
to detect the existence of virtual mappings in the kernel
region. Evtyushkin et al. [1] demonstrated that the BTB
(Branch target buffer) leaks bits to break current KASLR
implementations in Linux. Finally, in 2018 Meltdown [8]
used a speculative execution vulnerability in Intel CPUs
to read the entire virtual and physical address space. This
of course also breaks both ASLR and KASLR.

Most of the presented KASLR attacks suggested better
isolation between kernel and user space as a defense.
The attacks are possible because the kernel is mapped
into each user process address space. Gruss et al. [5]
presented KAISER as a kernel page table isolation (now
implemented as KPTI in Linux) with low performance
impact. With KPTI the whole kernel is no longer mapped
into each user address space which defends successfully
against the presented attacks except Evtyushkin et al.’s
BTB attack [45], which instead is mitigated by explicitly
(as done by LAZARUS [6]) or implicitly (as done by
eIBRS [12]) flushing the BTB on privilege switches.
eIBRS [12] can additionally prevent cross-thread BTB
attacks if SMT is enabled.

Hardware timing side channels. Physical shared re-
source may easily give rise to side channels. For instance,
as early as 1996 when Kocher [46] presented his tim-
ing side channel on crypto primitives, Kelsey et al. [47]
mentioned the idea of using the cache hit ratio as a side
channel on large S-box ciphers to break cryptographic
keys. This theoretical idea was formalized by Page [48] in
2002. Just one year later the first successful cache-based
attack against DES was presented by Tsunoo et al. [49].

EVICT+TIME. [22], [23] attacks can only observe a
single cache set per measurement and have been used

to recover AES keys from the victim’s process. Concur-
rently, two other papers presented cache attacks to leak
cryptographic keys. Bernstein used a similar method to
EVICT+TIME to break AES, which required reference
measurements for a known key in an identical configura-
tion to the victims [27]. The second paper, by Percival [28]
presented a cache-based attack on RSA with SMT.

Meanwhile, the PRIME+PROBE [22], [24] and
FLUSH+RELOAD [25], [26] attacks are able to observe
the state of the whole cache which makes them popular
due to its faster bandwidth compared to EVICT+TIME.
PRIME+PROBE was utilized by several researchers to
leak private keys [50], [51], keystrokes [52] and to read
information from other processes or VMs on the same
machine from JavaScript [53]. The FLUSH+RELOAD
attack requires page sharing with the victim, for example
by some sort of memory deduplication. However, it is
more fine grained than PRIME+PROBE by measuring
the exact cache line. Memory deduplication was deployed
in most major operating systems which resulted in sev-
eral FLUSH+RELOAD based attacks exploiting shared
memory [54], [55], [56], [57]. Several others used the
CPU cache to extract private keys from AES imple-
mentations [29], [30], [31]. All previous attacks focused
on reading secret information across boundaries, either
from other processes or other VMs running on the same
physical machine. Gras et al. [32] broke ASLR within the
JavaScript sandbox with an EVICT+TIME technique.

However not only CPU caches are an attractive target
for side channels. TLBleed [15] showed that the TLB
can also be used to leak sensitive information with all
CPU cache defenses deployed. The BTB (Branch Target
Buffer) has also been shown to leak sensitive information
through side-channel attacks [1]. Pessl et al. [58] presented
DRAMA a cross-CPU side-channel attack exploiting the
DRAM row buffer.

SGX enclave attacks with TLB as an attack vector. Pre-
vious work has shown that the TLB is shared between the
SGX enclave and the process it is running in [59]. Since
they run in the same address space this means classic
TLB attacks apply on SGX environment [15], similarly to
breaking KASLR without KPTI enabled. Therefore tagged
TLBs do not enable new leakage in such a case, but can
be interesting if the address space is isloated like with
AMD SEV [60].

Defenses against timing side channels on CPU caches.
As CPU caches became a target for side-channel attacks,
several defenses were proposed. All defenses focus on
scenarios where several untrusted entities share hardware
(e.g., multiple tenants in the cloud). Cache isolation is
intended to protect a tenant against an attacker running
on the same physical machine [61], [35], [36], [62], [63],
[64], [65], [66]. Some of the existing defenses focus on
isolating critical code sections and disallow leaking infor-
mation through the cache while executing in isolation [35],
[62], [66]. Others protect areas in memory from leaking
information to the cache [64], [36]. Some claim to provide
full isolation between untrusted VMs running on a multi-
tenant system [61], [63], [65]. None of these defenses
isolate the kernel against the user or fully defeat CPU
cache side channels. Especially traces left in the cache by
the MMU, not by the user itself, will not be affected by

any of these defenses. We rely on information in the cache
that is cached on every single address translation by the
MMU. Providing cache isolation is limited by resources
and therefore can only be provided for a limited time to
execute security sensitive sections. Address translations
are always present, therefore not just a small portion of
the code can be isolated.

Concurrent work. In concurrent work, Data Bounce [67]
and EchoLoad [68] present side-channel attacks to bypass
KASLR in face of KPTI (and absent CPU bugs like
RIDL [11]). In contrast to TagBleed, both attacks rely
on the current KPTI implementation leaving a few kernel
pages mapped in the user-visible address space with the
same KASLR entropy used for all the other kernel pages.
As such, similar to traditional address probing attacks
against KASLR [3], [2], [4], such attacks can probe for
user-mapped kernel pages and indirectly infer that of
the other kernel pages. In contrast, TagBleed’s confused
deputy attack can directly drop the entropy of kernel pages
mapped and used only by the kernel, showing that even
a perfect implementation of KPTI as well as the most
recent mitigations against address probing attacks such as
FLARE [68] are insufficient.

10. Conclusions

In this paper, we demonstrated that isolating the ad-
dress space organization of the kernel from that of user
processes is not enough to prevent attackers from break-
ing randomization in the kernel (KASLR). Ironically, the
one feature that is commonly hailed as the performance
saviour for kernel address space isolation, the presence of
address space tags in modern TLBs, turns out to break its
isolation guarantees. Our attack makes use of the fact that
tagged TLBs allow attackers to observe kernel memory
accesses if they occur in the same TLB set. Moreover, by
reverse engineering the TLB architecture, we were able to
infer part of the kernel’s virtual address from knowing the
TLB set. Complementing our side channel with second
one (based on cache activity as a result of page table
walks), we completely broke KASLR in the Linux kernel,
even in the presence of advanced defenses and kernel page
table isolation. In conclusion, since we demonstrated that
we need to reconsider the current designs and counter
measures are invariably expensive and typically compli-
cated, we now know that the transition from a unified
address space organisation to one where the kernel gets
its own address space will be more costly than we thought.

Acknowledgements

We would like to thank our anonymous reviewers for
their feedback. We would also like to thank Ben Gras for
his help with the project. This work was supported by
the European Union’s Horizon 2020 research and innova-
tion programme under grant agreements No. 786669 (Re-
Act) and No. 825377 (UNICORE), by Intel Corporation
through the Side Channel Vulnerability ISRA, and by the
Netherlands Organisation for Scientific Research through
grants NWO 639.021.753, VENI “PantaRhei”, and NWO
016.Veni.192.262. This paper reflects only the authors’
view. The funding agencies are not responsible for any
use that may be made of the information it contains.

References

[1] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
aslr: Attacking branch predictors to bypass aslr,” in The 49th
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-49, (Piscataway, NJ, USA), pp. 40:1–40:13, IEEE Press,
2016.

[2] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space aslr,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, SP ’13, (Washington, DC,
USA), pp. 191–205, IEEE Computer Society, 2013.

[3] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing smap and kernel aslr,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, (New York, NY, USA),
pp. 368–379, ACM, 2016.

[4] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout
randomization with intel tsx,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’16, (New York, NY, USA), pp. 380–392, ACM, 2016.

[5] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard, “KASLR is dead: Long live KASLR,” in Engineering
Secure Software and Systems - 9th International Symposium, ESSoS
2017, Bonn, Germany, July 3-5, 2017, Proceedings, pp. 161–176,
2017.

[6] D. Gens, O. Arias, D. Sullivan, C. Liebchen, Y. Jin, and A. Sadeghi,
“LAZARUS: practical side-channel resilient kernel-space random-
ization,” in Research in Attacks, Intrusions, and Defenses - 20th
International Symposium, RAID 2017, Atlanta, GA, USA, Septem-
ber 18-20, 2017, Proceedings, pp. 238–258, 2017.

[7] G. Tene, “Pcid is now a critical performance/security feature
on x86.” https://groups.google.com/forum/m/#!topic/mechanical-
sympathy/L9mHTbeQLNU, 2018.

[8] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading kernel memory from user space,” in
27th USENIX Security Symposium, USENIX Security 2018, Balti-
more, MD, USA, August 15-17, 2018., pp. 973–990, 2018.

[9] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[10] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution,” in Proceedings
of the 27th USENIX Security Symposium, USENIX Association,
August 2018.

[11] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data
load,” in S&P, 2019.

[12] “Deep dive: Indirect branch restricted speculation.”
https://software.intel.com/security-software-guidance/insights/
deep-dive-indirect-branch-restricted-speculation.

[13] S. van Schaik, C. Giuffrida, H. Bos, and K. Razavi, “Malicious
management unit: Why stopping cache attacks in software is harder
than you think,” in 27th USENIX Security Symposium (USENIX
Security 18), (Baltimore, MD), pp. 937–954, USENIX Association,
2018.

[14] N. Hardy, “The confused deputy: (or why capabilities might have
been invented),” SIGOPS Oper. Syst. Rev., vol. 22, pp. 36–38, Oct.
1988.

[15] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-
aside buffer: Defeating cache side-channel protections with TLB
attacks,” in 27th USENIX Security Symposium (USENIX Security
18), (Baltimore, MD), pp. 955–972, USENIX Association, 2018.

[16] “Kpti/kaiser meltdown initial performance regressions.”
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-
meltdown-performance.html, Feb. 2018.

https://groups.google.com/forum/m/#!topic/mechanical-sympathy/L9mHTbeQLNU
https://groups.google.com/forum/m/#!topic/mechanical-sympathy/L9mHTbeQLNU
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html

[17] “The current state of kernel page-table isolation.” https://lwn.net/
Articles/741878/, 2017.

[18] “Kva shadow: Mitigating meltdown on windows.”
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-
mitigating-meltdown-on-windows, 2018.

[19] “Intel 64 and ia-32 architectures software developer’s manual,
volume 3a: System programming guide, part 1 (table 4-13).” Order
Number: 253668-060US, 2016.

[20] “Github linux source code: kaslr.c.” https://github.com/torvalds/
linux/blob/12ad143e1b803e541e48b8ba40f550250259ecdd/arch/
x86/boot/compressed/kaslr.c#L836, 2019.

[21] “Comparing aslr between mainline linux, grsecurity
and linux-hardened.” https://gist.github.com/thestinger/
b43b460cfccfade51b5a2220a0550c35#file-linux-vanilla, 2018.

[22] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of aes,” in Proceedings of the 2006
The Cryptographers’ Track at the RSA Conference on Topics in
Cryptology, CT-RSA’06, (Berlin, Heidelberg), pp. 1–20, Springer-
Verlag, 2006.

[23] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks
on aes, and countermeasures,” J. Cryptol., vol. 23, pp. 37–71, Jan.
2010.

[24] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proceedings of the 2015
IEEE Symposium on Security and Privacy, SP ’15, (Washington,
DC, USA), pp. 605–622, IEEE Computer Society, 2015.

[25] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games – bringing
access-based cache attacks on aes to practice,” in Proceedings
of the 2011 IEEE Symposium on Security and Privacy, SP ’11,
(Washington, DC, USA), pp. 490–505, IEEE Computer Society,
2011.

[26] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low
noise, l3 cache side-channel attack,” in 23rd USENIX Security
Symposium (USENIX Security 14), (San Diego, CA), pp. 719–732,
USENIX Association, 2014.

[27] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[28] C. Percival, “Cache missing for fun and profit,” in Proc. of BSDCan
2005, 2005.

[29] J. Bonneau and I. Mironov, “Cache-collision timing attacks against
aes,” in Proceedings of the 8th International Conference on Cryp-
tographic Hardware and Embedded Systems, CHES’06, (Berlin,
Heidelberg), pp. 201–215, Springer-Verlag, 2006.

[30] O. Acıiçmez and c. K. Koç, “Trace-driven cache attacks on aes
(short paper),” in Proceedings of the 8th International Conference
on Information and Communications Security, ICICS’06, (Berlin,
Heidelberg), pp. 112–121, Springer-Verlag, 2006.

[31] R. Spreitzer and T. Plos, “Cache-access pattern attack on disaligned
aes t-tables,” in Proceedings of the 4th International Confer-
ence on Constructive Side-Channel Analysis and Secure Design,
COSADE’13, (Berlin, Heidelberg), pp. 200–214, Springer-Verlag,
2013.

[32] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR
on the Line: Practical Cache Attacks on the MMU,” in NDSS, Feb.
2017.

[33] “Microsoft: A detailed description of the data execution prevention
(dep) feature in windows xp service pack 2, windows xp tablet pc
edition 2005, and windows server 2003,” Sept. 2006.

[34] “Lkml: Page colouring.” https://goo.gl/7o101i, 2003.

[35] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based
side-channel in multi-tenant cloud using dynamic page coloring.,”
in DSN Workshops, pp. 194–199, IEEE, 2011.

[36] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM:
System-level protection against cache-based side channel attacks
in the cloud,” in Presented as part of the 21st USENIX Security
Symposium (USENIX Security 12), (Bellevue, WA), pp. 189–204,
USENIX, 2012.

[37] M. Payer, “Hexpads: A platform to detect ”stealth” attacks,” in
Proceedings of the 8th International Symposium on Engineering
Secure Software and Systems - Volume 9639, ESSoS 2016, (Berlin,
Heidelberg), pp. 138–154, Springer-Verlag, 2016.

[38] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
oriented programming: Systems, languages, and applications,”
ACM Trans. Inf. Syst. Secur., vol. 15, pp. 2:1–2:34, Mar. 2012.

[39] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization,” in Proceedings
of the 2013 IEEE Symposium on Security and Privacy, SP ’13,
(Washington, DC, USA), pp. 574–588, IEEE Computer Society,
2013.

[40] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-
oriented programming,” in NDSS, 2015.

[41] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi,
“Missing the point(er): On the effectiveness of code pointer in-
tegrity,” in 2015 IEEE Symposium on Security and Privacy (SP),
vol. 00, pp. 781–796, May 2015.

[42] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks with-
out memory disclosures: Remote side channel attacks on diversified
code,” in In ACM Conference on Computer and Communications
Security (CCS), 2014.

[43] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est
machina: Memory deduplication as an advanced exploitation vec-
tor,” in Proceedings - 2016 IEEE Symposium on Security and Pri-
vacy, SP 2016, pp. 987–1004, Institute of Electrical and Electronics
Engineers, Inc., 8 2016.

[44] A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN: Silently
breaking ASLR in the cloud,” in WOOT, 2015.

[45] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Pono-
marev, “BranchScope: A New Side-Channel Attack on Directional
Branch Predictor,” in Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’18, pp. 693–707, 2018.

[46] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems,” in Proceedings of the 16th
Annual International Cryptology Conference on Advances in Cryp-
tology, CRYPTO ’96, (London, UK, UK), pp. 104–113, Springer-
Verlag, 1996.

[47] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel crypt-
analysis of product ciphers,” J. Comput. Secur., vol. 8, pp. 141–158,
Aug. 2000.

[48] D. Page, “Theoretical use of cache memory as a cryptanalytic side-
channel,” 2002.

[49] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi,
“Cryptanalysis of des implemented on computers with cache,” in
Cryptographic Hardware and Embedded Systems - CHES 2003, 5th
International Workshop, Cologne, Germany, September 8-10, 2003,
Proceedings, vol. 2779 of Lecture Notes in Computer Science,
pp. 62–76, Springer, 2003.

[50] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm
side channels and their use to extract private keys,” in Proceedings
of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, (New York, NY, USA), pp. 305–316, ACM,
2012.

[51] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A shared cache
attack that works across cores and defies vm sandboxing – and its
application to aes,” in Proceedings of the 2015 IEEE Symposium on
Security and Privacy, SP ’15, (Washington, DC, USA), pp. 591–
604, IEEE Computer Society, 2015.

[52] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off of my cloud: Exploring information leakage in third-party
compute clouds,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09, (New York,
NY, USA), pp. 199–212, ACM, 2009.

[53] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript
and their implications,” in Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15,
(New York, NY, USA), pp. 1406–1418, ACM, 2015.

[54] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a
minute! a fast, cross-vm attack on aes,” pp. 299–319, 09 2014.

https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows
https://github.com/torvalds/linux/blob/12ad143e1b803e541e48b8ba40f550250259ecdd/arch/x86/boot/compressed/kaslr.c#L836
https://github.com/torvalds/linux/blob/12ad143e1b803e541e48b8ba40f550250259ecdd/arch/x86/boot/compressed/kaslr.c#L836
https://github.com/torvalds/linux/blob/12ad143e1b803e541e48b8ba40f550250259ecdd/arch/x86/boot/compressed/kaslr.c#L836
https://gist.github.com/thestinger/b43b460cfccfade51b5a2220a0550c35#file-linux-vanilla
https://gist.github.com/thestinger/b43b460cfccfade51b5a2220a0550c35#file-linux-vanilla
https://goo.gl/7o101i

[55] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
tenant side-channel attacks in paas clouds,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, (New York, NY, USA), pp. 990–1003, ACM,
2014.

[56] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Lucky 13
strikes back,” in Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS
’15, (New York, NY, USA), pp. 85–96, ACM, 2015.

[57] T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and Y. Yarom,
“Amplifying side channels through performance degradation,” in
Proceedings of the 32Nd Annual Conference on Computer Security
Applications, ACSAC ’16, (New York, NY, USA), pp. 422–435,
ACM, 2016.

[58] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM addressing for cross-cpu attacks,” in
25th USENIX Security Symposium (USENIX Security 16), (Austin,
TX), pp. 565–581, USENIX Association, 2016.

[59] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in sgx,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, (New York, NY, USA), p. 2421–2434,
Association for Computing Machinery, 2017.

[60] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,”
2016.

[61] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource manage-
ment for isolation enhanced cloud services,” in Proceedings of the
2009 ACM Workshop on Cloud Computing Security, CCSW ’09,
(New York, NY, USA), pp. 77–84, ACM, 2009.

[62] B. A. Braun, S. Jana, and D. Boneh, “Robust and effi-
cient elimination of cache and timing side channels,” CoRR,
vol. abs/1506.00189, 2015.

[63] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to
defeating side channels in last-level caches,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, (New York, NY, USA), pp. 871–882, ACM,
2016.

[64] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in
cloud computing,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 406–418, March
2016.

[65] R. Sprabery, K. Evchenko, A. Raj, R. B. Bobba, S. Mohan,
and R. H. Campbell, “A novel scheduling framework leveraging
hardware cache partitioning for cache-side-channel elimination in
clouds,” CoRR, vol. abs/1708.09538, 2017.

[66] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
M. Costa, “Strong and efficient cache side-channel protection
using hardware transactional memory,” in Proceedings of the 26th
USENIX Conference on Security Symposium, SEC’17, (Berkeley,
CA, USA), pp. 217–233, USENIX Association, 2017.

[67] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, et al., “Fallout:
Leaking data on Meltdown-resistant CPUs,” in CCS, 2019.

[68] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and
D. Gruss, “KASLR: Break it, fix it, repeat,” 2020.

	Introduction
	Background
	Threat Model
	Attack Overview
	Reverse Engineering the TLB
	TagBleed
	Forcing Kernel Memory Access
	Leaking Through Tagged TLB
	Confused Deputy Attack with AnC
	Derandomizing Kernel Modules
	Derandomizing Physmap

	Evaluation
	Side channel by TLB set eviction
	Side channel by cache line eviction
	Combining the two side channels
	Success rate
	Attack time
	Noise
	Comparison against other KASLR attacks

	Mitigations
	Related Work
	Conclusions
	References

