
Off-the-shelf Embedded Devices as
Platforms for Security Research

Lucian Cojocar
l.cojocar@vu.nl

Kaveh Razavi
kaveh@cs.vu.nl

Herbert Bos
herbertb@cs.vu.nl

Vrije Universiteit Amsterdam

ABSTRACT
With increasing concerns about the security and trustwor-
thiness of embedded devices, the importance of research on
their firmware is growing. Unfortunately, researchers with
new ideas for improving the security of these devices (e.g.,
fuzzing) or studying adversarial scenarios (e.g., malware)
face massive hurdles when applying them to actual hard-
ware. To conduct realistic experiments, we need real-world
hardware that can be easily used for security research. Un-
fortunately, such devices are scarce and depend entirely on
efforts by the hacker community. In this paper, we describe
two new devices that we have opened up, a programmable
logic controller (PLC) and a solid sate drive (SSD). These
two types of devices have not been previously reverse engi-
neered and they are both interesting cases given the recent
developments on the security of embedded devices and the
rise of Internet of Things. We discuss possible new direc-
tions with these two “real-world” research platforms. We
further make the results of our efforts available to the secu-
rity community in order to make it easier to get started in
this research area.

1. INTRODUCTION
In the wake of Stuxnet [19] and a string of other inci-

dents [13, 3, 24], the research community is focusing more
and more on embedded devices [33, 34, 25, 10, 20, 16]. Fur-
thermore, with the advent of the Internet of Things, the
research into the security of closed-source embedded devices
is becoming increasingly important.

Because embedded devices are only one part of the eval-
uation process, the amount of effort spent on opening them
up for experimentation should ideally be smaller than that
spent on designing the solution itself. Valuable research time
should go to implementing or designing rather than hacking
a device. Unfortunately, things are typically the other way
around in practice. Researchers spend enormous effort on
trying to make a device do what the researcher wants to
test.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSec’17, April 23 2017, Belgrade, Serbia
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4935-2/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3065913.3065919

To repurpose a device for research, we need to achieve
three main goals: code execution on the device, convenient
firmware analysis, and a convenient debugging facility to
help with the development of the research idea. There are
a number of challenges that we should address to achieve
these goals. First, we need to find convenient interfaces that
provide us with control over code execution on the devices.
While interfaces such as JTAG provide this mechanism, the
mapping of the pins is not always known and sometimes dif-
ficult to reverse engineer. In these cases, reprogramming the
flash chip on the device is an alternative for achieving code
execution. Second, analysis of the firmware involves obtain-
ing information about the instruction set, the load address,
and so on. Debugging, finally, requires a direct communi-
cation channel with the device. Serial interfaces like UART
are often included in embedded devices that provide this
facility, but we still need to find the mapping of the pins.

We have addressed these challenges for two off-the-shelf
embedded devices that have not been previously reverse en-
gineered and are of significant interest to the security com-
munity: a programmable logic controller (PLC) and a solid
state drive (SSD). In the case of the PLC, we modify the
bootloader of the device, while on the SSD we find the JTAG
mapping on the circuit board to achieve code execution. In
both cases, we found an UART serial interface that in com-
bination with our ability to execute code make it possible to
start a gdb server on the device for debugging purposes.

There are many new applications that can make use of
the capabilities that we provide on the PLC and the SSD.
Remote attestation and intrusion detection on the PLC or
provenance on the SSD are some examples of defensive ap-
plications, while studying backdoors and hunting for vulner-
abilities are examples of offensive applications. We provide a
more comprehensive list of applications of these capabilities
on these two devices at the end of this paper. We further
share the results of our research with the community in or-
der to make it much faster to get started with these devices.
In summary, we make the following contributions:

• To guide future efforts in this area, we systematically
describe the challenges of achieving code execution and
debugging on closed-source embedded devices (Sec-
tion 2).

• We address these challenges for two embedded devices
that are of interest to the security community and have
not been previously studied: a PLC (Section 3) and an
SSD (Section 4).

• We make our results accessible to the security com-

http://dx.doi.org/10.1145/3065913.3065919

munity in order to make it easy to get started with
research on these devices. We will further discuss in-
teresting applications of the capabilities that we pro-
vide on these two devices (Section 5).

2. APPROACH
In this section, we describe the goals that we set for repur-

posing an off-the-shelf embedded device (OED), the chal-
lenges to achieve these goals and also a methodology for
addressing the challenges.

2.1 Goals

G1: Code execution. The most important goal of the re-
purposing process is to get new code executed on the OED.
Getting some code executed on the device is useful not only
for prototyping a new attack scenario, but also for defenses.
Moreover, combining code execution with a communication
channel allows us to obtain a snapshot of the entire memory
and perform subsequent firmware analysis on this snapshot.

G2: Firmware analysis. For prototyping software on em-
bedded devices, we need to know the following: 1. the load
address of the new code, 2. the instruction set used, and
3. (IO) address space information. We can base our anal-
ysis on a memory snapshot of the current code that runs
on the OED. We can obtain a memory snapshot via debug
access, or, using G1, via a communication channel. An-
alyzing a static memory snapshot rather than a firmware
update (FU) has advantages: it captures the full state of
the system at a certain point in time which means that we
no longer need to worry about the format of FU and whether
it was obfuscated or encrypted.

G3: Debugging facility. Once we can access the old code
from the flash we can reprogram the flash with similar cus-
tom code. The trick with developing code for such embedded
devices is to start small. In general, when developing new
software, the first building block required is a way to debug
and test the new code. For this purpose, the control of the
exception vector is useful, as it allows us to control break
points and inspect the cause of an unexpected exception.

2.2 Methodology
With the previous goals in mind, we divide the repurpos-

ing process in three phases: reconnaissance, code execution,
and communication channel.

Phase 1: Reconnaissance. In this phase, we gather as
much information as possible about the OED to be repur-
posed. Doing so requires reading the available user or ser-
vice manuals for the targeted device. In addition, public
information may be available in communities devoted to re-
pairing such devices. Also, by taking off the device covers,
it is possible to identify the main components and look for
their data-sheets. Finally, a brief inspection of the available
contents of flash, FU, or the update process is often helpful.

Phase 2: Code execution. The goal of this phase is to ex-
ecute some valid code on the OED. First, we may start with
the FU process and perform a FU modification attack [9].
Second, it may be possible to reprogram the device’s persis-

tent memory (usually flash). Third, we can potentially gain
access via JTAG or other debug channel.

A good way to check whether we gained code execution is
to use what is known as the tight loop technique: we replace
one conditional jump with a while(1); equivalent and ob-
serve if the behaviour of the OED changes accordingly.

Phase 3: Communication channel. We can use anything
observable from the outside world as a (one-way) communi-
cation channel. However, the vast majority of OEDs have
a usable serial communication (universal asynchronous re-
ceiver/transmiter (UART)) connection. If we cannot find
a dedicated communication channel, we can instead use a
debug channel (e.g., JTAG) to emulate the communication.

2.3 Challenges

C1: Accessing the flash. For G1 and sometimes for G2
we want to get access to the storage device (usually a flash
chip) that keeps the code that executes on the OED. For
accessing the flash chip we have two options: 1) desolder
some (or all) of the pins or, 2) keep the flash in-place. In-
circuit programming of the flash chip is possible with an IC
test clip that we can connect to a dedicated flash reading
device. Powering up the flash while in-circuit may uninten-
tionally power up other components too which may hamper
the reading/writing process. One extra hurdle when chang-
ing the content of the flash is checksumming or crypto sig-
natures. Bypassing correctly implemented signatures may
be impossible, however, recomputing the checksum only re-
quires more reverse engineering.

C2: Watchdog timer interference. While JTAG is con-
venient, most of the embedded devices have a watchdog
timer that resets the device after a certain inactivity period.
Therefore, to achieve G1 or G3, the code has to explicitly
write the reset value to the timer before it expires. In most
of the cases, the debugging mode accessed via JTAG dis-
ables the receiving of interrupts on the targeted CPU and,
in turn, the watchdog timer.

C3: Physical signals pinout. After the software reverse
engineering process of finding some interesting IO memory
address, to achieve G3, we need to find the physical pins
that correspond to output signals. With the help of an os-
cilloscope, we can probe candidates for the generated signal
while running the test code. The best candidates are pins
that are routed to outside headers and test pads.

Duplex communication (G3) is harder than searching for
the output signal. While identifying the send (TX) pin is
easy, finding the input pin is often harder and requires trial
and error. Fortunately, the RX signal is often routed on the
PCB next to the TX signal (e.g., Figure 2).

Once we manage to gain code execution and have a com-
munication channel with the OED, we can provide debug-
ging facility via a simple library that we developed for pro-
viding a gdb server stub. At this point, we have successfully
transformed the OED into a test platform for a new appli-
cation.

3. SHOWCASE 1: PLC
Our target PLC is often found in SCADA systems. The

model we considered is a Siemens SIMATIC S7-1200, CPU
1212C, 6ES7 212-1BE31 0XB0, firmware version 3.1. We
note that a memory disclosure vulnerability was found on
another (older) version of a PLC from the same class of
products[6]. The PLC has an Ethernet port, an input port,
an output port, two external expansion ports and an MMC
port.

3.1 Reconnaissance phase

Software. Upon installing the tools required to interact
with the PLC, we had to comply to a set of software li-
censes which gave us hints about what software the PLC
runs. While firmware updates are available for this device,
the PLC ran the most recent version of the firmware avail-
able at the time and downgrading to an older version was
not possible.

Hardware. We remove the plastic covers and found three
stacked printed circuit boards (PCBs): a power board, an
actuator board (containing relays) and the main logic board.
We focus on the components from the main board. Among
interesting identifiable chips, we find a 1Mbit, serial (SPI)
flash, for which a data-sheet is available and also a parallel
flash chip. The main board also contains two external ex-
pansion ports to which extension modules can be connected.

3.2 Code execution
To achieve G1, we first tried to interface with the de-

vice using JTAG. However, finding the physical mapping of
signals was not straightforward. Instead, we looked into in-
jecting our code in the FU or to reprogramming the flash
contents.

Inject code via FU. The FU format is unknown and com-
pressed with a custom algorithm. To test if an integrity
check is in-place, we changed one byte from the FU and
then uploaded it via the PLC’s web-interface. Because the
modified FU was rejected, we concluded that the firmware
is checked on the device against a checksum or that the
firmware is signed. At this stage, we looked for an alterna-
tive approach for gaining code execution.

Inject code via flash reprogramming. There are two flash
chips present on the PLC: a small flash chip with a serial
interface and a larger flash chip with a parallel interface.
As the reconnaissance phase gave us information about the
signal placement of the small serial flash, we now probe the
clock signal of this flash with the help of an oscilloscope we
probe. Doing so, we noticed that it is only in use for a couple
of seconds after powering up the PLC. We further sniff the
data traffic (C1) between the serial flash and the main SoC
and encounter ARM opcodes. We conclude that this flash
contains bootloading code and the larger flash contains the
rest of the firmware.

For the SPI flash used by the PLC, flash write protec-
tion is enabled by asserting one pin. We avoid the power-up
problem and the write protection by partially desoldering
(C1) some of the pins. A man-in-the-middle like setup now
allows us to quickly prototype and test a bootloader replace-

TX RXGND

Figure 1: UART send and receive signals that can be used
to interact with the PLC.

ment. This setup enables either reprogramming the flash or
in-circuit usage of the flash. The setup is capable of switch-
ing important signals (data clock, data in or chip select) of
the SPI flash from the programmer to the PLC and vice-
versa. Note that once the developed code is stable, there is
no need for the switch.

Working towards G2, we observed that a multi-stage boot-
loader is involved: the first stage of the bootloader is loaded
from the SPI flash. The first stage checks the integrity of
the main firmware and it further copies it to main memory
(the second stage). The second stage will have to replace
the exception vectors used in the first stage with new excep-
tion vectors. Now that we have access to the code that is
executed in the early stage, we can inspect it and modify it
to change the exception vectors of the main flash when it is
being copied to memory (G2 achieved).

3.3 Establishing a communication channel
By manual inspection of the original firmware, we now

discover that an UART interface is present on this device.
The default configuration for the UART is polling mode. In
polling mode, a status flag that indicates the state of the
input and output is checked until either there is space for
sending data or input data is available. Polling (blocking)
code is often simple to recognize (Listing 1).

Listing 1: Code for putc function over the UART interface

while (∗0 x1c00a62c & 0x40) ;
∗0 x1c00a624 = c ;

We identify a similar code pattern as the one in Listing 1
by looking at the main firmware that we gained access to in
the previous step. We now need to find which PCB tracks
carry the UART signal. We reprogram the flash such that it
outputs on the alleged UART port bytes from 0x0 to 0xff
in an infinite loop (C3). We probe some of the test-pads
with our test program running and soon discover the signal
that we are searching for. The discovered communication
parameters are: even parity, two start bits and 38400 bps.

Because we could not find any JTAG footprint, to achieve
G3, we (partially) implement the gdb protocol over serial
communication. The gdb functionality enables dynamic
analysis of the PLC’s firmware which will significantly in-
crease the number of applications of the targeted OED.

With the help of a multimeter, we discover that the send
(TX) signal is routed to an external header (C3), while the
RX signal is connected to the same external header. Fig-
ure 1 shows the partial pinout of the undocumented external
header that is ready for communication.

Goal G3 is only partially achieved at this point as the de-
bug connection was dropped after a while, because of C2.
Using G2, we locate the watchdog timer reset code by fol-
lowing simple heuristics, searching for slow operations (e.g.

serial communication, error logging) in the firmware and dis-
cover a write to an MMIO address with a magic (hardcoded)
value. We now include this write in our gdb server. When-
ever gdb is performing a blocking operation (i.e. sending a
character or receiving a character) the firmware writes the
same magic value to the same address. This solves the prob-
lem of spurious resets due to watchdog trigger on the PLC.

Goal G3 is now achieved by having a stable debug con-
nection via a custom gdb server that runs in the PLC from
the SPI flash.

4. SHOWCASE 2: SSD
The SSD model is Crucial MX100 128 GB SATA 6Gb/s

2.5” Internal (product code: CT128MX100SSD1).

4.1 Reconnaissance phase

Software. Firmware updates are available for this device.
At first glance, the FU seems to be cryptographically signed.
Therefore, we do not try to further analyse the FU process.
The SSD’s user guide is not very helpful for this embedded
device. However, the user guide mentions that the firmware
is user upgradable and that the SSD implements hardware
encryption.

Hardware. The SSD is built around the Marvell 88SS9189
controller. Apart from the main SoC, we can find NAND
flash chips, one MSP430 MCU and one serial flash (marked
25P16). Even from online reviews [1], one can observe in-
teresting PCB properties: an unpopulated 2x7 header, an
unpopulated 1x4 header and a set of test points. The un-
populated headers give us enough confidence to select this
device for repurposing.

4.2 Code execution phase
The way the traces are routed on the PCB hinted that the

unpopulated 14-pin header may be a JTAG header. This is
because the PCB traces are routed from the alleged JTAG
header to the main SoC and a 14 pin header is a common
way to connect the JTAG signals. After confirming that the
unpopulated 14 pin header is indeed ARM JTAG, we easily
reverse engineer the orientation of the ARM14 JTAG header
by tracing the ground pins. We connect our JTAG debugger
and detect two cores. We can immediately halt and resume
execution on both cores. Memory is also accessible for read
and write from this debug interface. This result is similar
to work that has been done on a HDD by Domburg [27].
We make the OpenOCD configuration used to connect to the
debug interface available as part of this paper.

We are now able to write in the SSD’s memory our own
data with OpenOCD commands and resume execution at any
address. To test if our code is executed, we halted the core
when it allegedly executed our test and observed that the
program counter is bounded in our test loop. To avoid the
watchdog (C2), the core that is not executing our test is
halted during this phase.

Finding the JTAG debug port means we achieved G1 but
also G3. G2 is achieved by dumping the memory via the
debug interface.

4.3 Communication channel phase
Even though we could have used the already discovered

TX

RX

GND

JTAG

Figure 2: UART pinout and JTAG header positioning for
the SSD.

debug as a G3 communication channel (as described in Sec-
tion 2.2), we choose to search for a dedicated communication
channel. Emulating the communication channel through
JTAG will be slow and we can easily run into race con-
ditions. Having a dedicated communication channel also
allows us to reuse existing software.

Using hints provided by the error messages and the results
of G2, we discover the IO address range that corresponds to
an UART device. We face the same challenge as in the case
of the PLC for finding the UART signal on the PCB and
we solve it using the same approach. The communication
parameters are: one stop bit, no parity, 115200 bps.

Once we discover the transmit signal mapped on an un-
populated footprint (C3), we have an obvious candidate for
the receive signal. We note that while on the PLC the ad-
dresses of the input and output MMIO registers were the
same, on the SSD these registers were mapped at different
addresses.

The interesting pinout is shown in Figure 2. On the SSD
we achieved code execution via JTAG and establish a com-
munication channel via the UART port. The JTAG client
can already start a gdb session on the SSD without any
modification.

5. ENABLED SECURITY APPLICATIONS
We now list a number of examples of security projects

that our open devices enable, and group them in attack
and defense categories. In practice, some attack ideas (e.g.
fuzzing for penetration testing) may also serve as defense.
We emphasize that these are examples only and many other
security-related research projects are possible. For this work,
we consider non security oriented projects (e.g., reliability
algorithms for industrial control systems or development of
new storage scheduling algorithms) as out of scope.

5.1 Defenses
In the literature, we see many examples of offensive re-

search on embedded devices [34, 15, 7, 36] but far fewer
examples for defensive research. The main reason for this
unbalance is the lack of open development platforms.

PLC. Most defenses for PLCs are based on intrusion de-
tection [32, 17, 21] and require an external component that
monitors the activity of the PLC. This paper enables de-
ployment of these solutions on the PLC itself.

In addition, now that we can execute code on the PLC,
we can add remote attestation [12, 20] and benchmark it.
The software attestation layer will authenticate the PLC to
the main system. The components of the attestation can be
implemented in the PLC itself.

Finally, inspired by the Avatar framework [33, 18], more
advanced analysis to discover vulnerabilities becomes pos-
sible when we can access memory on the device. Specifi-
cally, we can run the firmware through a symbolic execution
engine and transfer memory requests from/to the real de-
vice. This is needed because the emulation environments
for firmware typically do not emulate the peripherals that
are attached in the real world. We can further exercise code
paths that handle communications with peripherals.

SSD. Secure data deletion [23, 30] is still an open prob-
lem. Without the need for special devices or desoldering the
flash chips, one can now prototype and investigate different
data deletion techniques and evaluate the trade-off between
security and performance.

Another open research area concerns data provenance.
Provenance techniques track the usage of data. It can be
used to defend against an internal adversary that wants to
exfiltrate sensitive information from within an organization.
The work proposed in ProvUSB [28] can be extended to
storage devices through our work, while a TPM can be used
to attest the validity of the SSD. The SSD can also provide
provenance storage functionality.

As a final example, it is now possible to perform logging
and auditing deployed at the SSD firmware. This solution
will be transparent to the operating system.

5.2 Attacks
Besides defenses, a variety of new attacks are now possible.

PLC. Stuxnet [19] is the first malware that attacked the
SCADA ecosystem and mainly attacked the application on
the PLC. Since then, researchers proved that it is possible
to implement a rootkit [5, 14, 22, 2] in the PLC’s firmware.

Today’s state-of-the-art fuzzers for testing PLCs are usu-
ally simple network protocol fuzzers [35, 29]. These fuzzers
end up exploring the same code paths many times, thus
wasting computation time. Evolutionary fuzzers, on the
other hand, progress by looking at what code is reached by a
new input. They then further refine this knowledge to reach
unexplored paths and improve code coverage. Opening up
the PLC benefits the building of a gray-box fuzzer. Better
still, as the firmware may be shared across several devices,
the findings will have impact on other PLCs. Moreover, by
intercepting the exception handler, we can provide more in-
formation about the vulnerability (e.g. stack dump, crash
location or even the instruction causing the crash) making
exploit development and bug fixing easier.

SSD. With access to the mapping between physical blocks
and the logical block view of the storage device, a subtle
denial of service attack can be mounted on the SSD. The
malware can bypass the wear leveling algorithm by reading
and writing always from the same blocks, thus causing a
premature malfunctioning of the device.

In addition, a very stealthy backdoor can be implemented
by actively harvesting the information that is sent to the
SSD and storing it information in a physical block that is

hidden from normal SATA commands. The information can
be exfiltrated later, for example by using a “magic” LBA
read sequence that makes the hidden physical block visible.
As shown by Zaddach et al. [34], the information can even
be exfiltrated remotely.

6. RELATED WORK
We present related work in two categories: reverse en-

gineering (repurposing) of embedded devices and existing
dedicated open research platforms.

Reverse engineering (repurposing) OED. Zaddach et al. [34]
reverse engineer and access the firmware of a hard drive.
Their goal is to measure the security impact of a hard disk
backdoor. They also implement a debugging channel. Cui
et al. [9] and Costin et al. [8] are exploiting vulnerabilities
in network printers’ firmware. After the exploitation they
achieve similar results to our work. We extend the current
literature with two new devices as well as providing sup-
port for further research by open-sourcing our software and
tools. Duflot et al. [11] reverse engineer the firmware of a
network card to show the impact of an adversary that can
control this device. Li et al. [20] implements software attes-
tation at firmware level using a network card. Weinmann
et al. [31] shows attacks enabled by changing the firmware
of the GSM modem of mobile phones. They too needed
a debugging channel to develop their exploit. Driessen et
al. [10] reverse engineers satellite phones. By analyzing the
firmware, they find weaknesses in the encryption algorithm
used in communication.

Open research hardware platforms. While there are some
options for an open PLC design (OpenPLC [4]), currently,
they suffers from a low adoption rate. OpenSSD [26] plat-
form is an open research platform that enables experimen-
tation and benchmarking of flash storage related ideas. We
note, that its resources are limited compared to real OEDs.
NetFPGA [37] is another example of an open source plat-
form designed for networking research.

Our work not only adds two new real-world, closed-source
devices, but also systemically presents the challenges and a
methodology for the repurposing process.

7. CONCLUSION
Recent attacks on embedded systems that run critical in-

frastructures are disconcerting and require immediate at-
tention from the security community. Furthermore, with
the growth of the Internet of Things, research on security of
embedded devices is becoming ever more important. Unfor-
tunately, getting started with real-world embedded systems
is not straightforward due to lack of manuals and documen-
tation. In this work, we opened up two devices that are
security-sensitive and have not been investigated before: a
PLC and an SSD. We managed to gain code execution on
these two devices and built a convenient debugging facil-
ity for developing new ideas ranging from intrusion detec-
tion to fuzzing. To help the security community move for-
ward with this type of research, we are open-sourcing all
the tools and source code associated with these two devices:
https://github.com/cojocar/embedded-reveng-research

https://github.com/cojocar/embedded-reveng-research

8. ACKNOWLEDGMENTS
This research was supported by the NWO CYBSEC“OpenS-

esame” project (628.001.006) and by the European Commis-
sion through project H2020 ICT-32-2014 “SHARCS” under
Grant Agreement No. 64457. We thank Roel Verdult for
his help on choosing the right SSD.

9. REFERENCES
[1] Crucial MX100 SSD review. http://tweakers.net/.

[2] Abbasi, A. Ghost in the PLC: Stealth on-the-fly
manipulation of programmable logic controllers’.
BHEU’16.

[3] Advisory, C. S. CiscoWorks Internetwork
Performance Monitor Remote Command Execution
Vulnerability. CISCO-SA-20080313.

[4] Alves, T. R., Buratto, M., de Souza, F. M., and
Rodrigues, T. V. Openplc: An open source
alternative to automation. GHTC’14.

[5] Basnight, Z., Butts, J., Jr, J. L., and Dube, T.
Firmware modification attacks on programmable logic
controllers. Int. J. Crit. Infrastruct. Prot., 2013.

[6] Beresford, D. Exploiting Siemens Simatic S7 PLCs.
BH’11 .

[7] Breeuwsma, M., De Jongh, M., Klaver, C., Van
Der Knijff, R., and Roeloffs, M. Forensic Data
Recovery from Flash Memory. Small Scale Digit.
Device Forensics J., 2007.

[8] Costin, A. Hacking Printers For Fun And Profit.
EuSecWest10.

[9] Cui, A., Costello, M., and Stolfo, S. J. When
Firmware Modifications Attack: A Case Study of
Embedded Exploitation. NDSS’13.

[10] Driessen, B., Hund, R., Willems, C., Paar, C.,
and Holz, T. Don’t Trust Satellite Phones: A
Security Analysis of Two Satphone Standards.
S&P’12.

[11] Duflot, L., Perez, Y.-A., and Morin, B. What if
you can’t trust your network card? RAID’11.

[12] Francillon, A., Nguyen, Q., Rasmussen, K. B.,
and Tsudik, G. A Minimalist Approach to Remote
Attestation. DATE’14.

[13] Garcia, F., de Koning Gans, G., Muijrers, R.,
van Rossum, P., Verdult, R., Schreur, R., and
Jacobs, B. Dismantling MIFARE Classic.
ESORICS’08.

[14] Garcia Jr, A. M. Firmware modification analysis in
programmable logic controllers. DTIC’14.

[15] Guri, M., Solewicz, Y., Daidakulov, A., and
Elovici, Y. DiskFiltration: Data Exfiltration from
Speakerless Air-Gapped Computers via Covert Hard
Drive Noise. ArXiv Prepr. ArXiv160803431.

[16] Halperin, D., Heydt-Benjamin, T. S., Ransford,
B., Clark, S. S., Defend, B., Morgan, W., Fu,
K., Kohno, T., and Maisel, W. H. Pacemakers and
implantable cardiac defibrillators: Software radio
attacks and zero-power defenses. S&P’08.

[17] Janicke, H., Nicholson, A., Webber, S., and
Cau, A. Runtime-monitoring for industrial control
systems. Electronics, vol. 4, no. 4, 2015.

[18] Kammerstetter, M., Platzer, C., and Kastner,
W. Prospect: peripheral proxying supported

embedded code testing. AsiaCCS’14.

[19] Langner, R. Stuxnet: Dissecting a Cyberwarfare
Weapon. S&P’11.

[20] Li, Y., McCune, J. M., and Perrig, A. VIPER:
verifying the integrity of PERipherals’ firmware.
CCS’11.

[21] Linda, O., Vollmer, T., and Manic, M. Neural
network based intrusion detection system for critical
infrastructures. IJCNN’09.

[22] Newman, T., Rad, T., ELCnetworks, L.,
Strauchs, J., and Strauchs, L. SCADA & PLC
vulnerabilities in correctional facilities. Core Secur.’11.

[23] Reardon, J., Basin, D., and Capkun, S. Sok:
Secure data deletion. S&P’13.

[24] Schneier, B. NSA Exploit of the Day, 2014.

[25] Shoshitaishvili, Y., Wang, R., Hauser, C.,
Kruegel, C., and Vigna, G. Firmalice-Automatic
Detection of Authentication Bypass Vulnerabilities in
Binary Firmware.

[26] Song, Y. H., Jung, S., Lee, S.-W., and Kim, J.-S.
Cosmos openSSD: A PCIe-based open source SSD
platform. Flash Memory Summit ’14.

[27] Sprite tm. Hard disk hacking.
http://spritesmods.com/?art=hddhack.

[28] Tian, D. J., Bates, A., Butler, K. R., and
Rangaswami, R. ProvUSB: Block-level
Provenance-Based Data Protection for USB Storage
Devices. CCS’16.

[29] Voyiatzis, A. G., Katsigiannis, K., and Koubias,
S. A Modbus/TCP fuzzer for testing internetworked
industrial systems. ETFA’15.

[30] Wei, M. Y. C., Grupp, L. M., Spada, F. E., and
Swanson, S. Reliably Erasing Data from Flash-Based
Solid State Drives. In FAST, vol. 11, pp. 8–8.

[31] Weinmann, R.-P. Baseband Attacks: Remote
Exploitation of Memory Corruptions in Cellular
Protocol Stacks. USENIX Association. WOOT’12.

[32] Yang, D., Usynin, A., and Hines, J. W.
Anomaly-based intrusion detection for SCADA
systems. NPIC&HMIT’05).

[33] Zaddach, J., Bruno, L., Francillon, A., and
Balzarotti, D. AVATAR: A Framework to Support
Dynamic Security Analysis of Embedded Systems’
Firmwares. NDSS’14.

[34] Zaddach, J., Kurmus, A., Balzarotti, D., Blass,
E.-O., Francillon, A., Goodspeed, T., Gupta,
M., and Koltsidas, I. Implementation and
Implications of a Stealth Hard-Drive Backdoor.
ACSAC’13.

[35] Zhang, D., Wang, J., and Zhang, H. Peach
Improvement on Profinet-DCP for Industrial Control
System Vulnerability Detection. ECEE’15’.

[36] Zhang, L., Hao, S.-g., Zheng, J., Tan, Y.-a.,
Zhang, Q.-x., and Li, Y.-z. Descrambling data on
solid-state disks by reverse-engineering the firmware.
Digit. Investig.’15.

[37] Zilberman, N., Audzevich, Y., Covington, G. A.,
and Moore, A. W. NetFPGA SUME: Toward 100

Gbps as research commodity. IEEE Micro’14.

http://tweakers.net/
http://spritesmods.com/?art=hddhack

	Introduction
	Approach
	Goals
	Methodology
	Challenges

	Showcase 1: PLC
	Reconnaissance phase
	Code execution
	Establishing a communication channel

	Showcase 2: SSD
	Reconnaissance phase
	Code execution phase
	Communication channel phase

	Enabled security applications
	Defenses
	Attacks

	Related work
	Conclusion
	Acknowledgments
	References

