
Spring: Spectre Returning in the Browser with
Speculative Load Queuing and Deep Stacks
Johannes Wikner

ETH Zurich
kwikner@ethz.ch

Cristiano Giuffrida
VU Amsterdam

giuffrida@cs.vu.nl

Herbert Bos
VU Amsterdam

herbertb@cs.vu.nl

Kaveh Razavi
ETH Zurich

kaveh@ethz.ch

Abstract—There has been a substantial community effort
in mitigating transient execution attacks in the web browser.
Lightweight “catch-all” timer mitigations, deployed in all popular
browsers, are presumed to raise the bar against these attacks.
More heavyweight mitigations, such as pointer and array index
masking are deployed more selectively to further make such at-
tacks impractical. How secure are browsers with these mitigations
taken together?

In this paper, we show that a combination of new techniques
allows an attacker to employ Spectre-RSB and leak sensitive
information from browsers that deploy all these mitigations. First,
we show that queuing up many transient loads during a single
speculation window and using repeated measurements enable
cache covert channels, even with jittery, millisecond precision
timers. Second, we reverse engineer the newer RSB structure
in Intel CPUs to find that deeper call stacks allow the attacker
to hijack speculative execution for bypassing pointer and array
index masking mitigations. Third, we show how an attacker
can leverage memory massaging to reduce the entropy of the
target secret’s memory address. Our end-to-end exploit, Spring,
combines these observations to leak an access token from an
unmodified version of Firefox. Our disclosure effort has led to a
deployed mitigation in the latest version of the Firefox browser.

I. INTRODUCTION

Transient execution attacks have shaken the security foun-
dation of modern computing systems [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10]. Whereas significant effort has been devoted
to protecting operating systems [11], [12], [13], [14], [15],
hypervisors [16], [17] and trusted execution environments [3],
[7], [8], the most important battleground for end users is
arguably the browser. Particularly dangerous are transient
execution vulnerabilities that allow attackers to leak sensitive
information from JavaScript [1], [18], [4], [19], [20], [21].

To thwart these attacks, browser vendors have deployed a
variety of mitigations. Some are lightweight and deployed ev-
erywhere, whereas others are more heavyweight and deployed
more selectively. The various timer mitigations, now present
in all the major browsers, are examples of the former [22],
[23], [24], [25], [26], while masking techniques [27], [26] and
site isolation [24], [28] are examples of latter. Site isolation
is on-by-default only on Chrome due to its high cost and has
recently been shown to be vulnerable when its consolidation
policy co-locates mutually distrusting security contexts into
the same process [20]. Without site isolation, browsers such
as Firefox rely on timer mitigations and masking techniques
for protecting against transient execution attacks. The question

we ask in this paper is whether the combination of these mit-
igations provides an adequate protection against such attacks
in the browser.

We show that the answer is unfortunately negative and
an advanced attacker can bypass these mitigations using a
number of new techniques. We study timer amplification
techniques, which have previously been discussed [29] and
demonstrated [19]. However, contrary to existing amplification
efforts that solely focused on controlled repetitions [19], [29],
[30], we present a new technique to further amplify the signal
by queuing up multiple speculative memory loads in each
round of a transient execution attack. Our approach is capable
of bypassing all existing browser-based timer mitigations in
a generic way, without relying on low-level details of cache
replacement policies as done in previous work [19].

Besides timer mitigations, masking techniques aim to pre-
vent unauthorized Out-of-Bounds (OoB) memory accesses
during speculative execution. Whereas previous work on older
Intel Haswell microarchitectures shows that masking can
be bypassed through return-based speculation attacks from
JavaScript [18], newer microarchitectures use a different return
speculation mechanism and it is unclear whether similar
attacks can still be applied. We reverse engineer previously
undisclosed properties of the Return Stack Buffer (RSB) in
more recent Intel CPUs and demonstrate that attackers can
bypass pointer and index masking using carefully crafted (and
amplified) return-based speculation attacks to enable Spectre-
RSB attacks on more recent systems.

Even if we can hijack speculation through the RSB, it
is still unclear where the secret is stored in memory. Ad-
dress space layout randomization (ASLR) is a key mitigation
against memory errors deployed in all software, including web
browsers. Because transient execution attacks typically have
a low bandwidth, especially in the browsers where precise
timing information is lacking, a practical exploit needs to
reduce the entropy of the secret’s memory address. To build
a complete exploit using only Spectre, we show how an
attacker can trick the memory allocators in the browser and the
operating system such that the target secret is always allocated
at a predictable memory offset.

To show the practicality of these techniques, we present
Spring, an end-to-end exploit that leaks data at the rate of
around 3 bits per second with 90% success rate on Firefox
running on a Kaby Lake Intel processor, and use it to leak

an access token from the WebAssembly heap of a Microsoft
Blazor [31] app in 8 minutes with 96% success rate. The
exploit operates entirely inside an unmodified browser without
any assumptions. In summary, our analysis shows that state-of-
the-art mitigations are insufficient against transient execution
attacks from JavaScript.

Contributions. We make the following contributions:
• We show that controlled repetitions and multiple specu-

lative memory loads per repetition can amplify the signal
beyond the timer granularity—demonstrating that timer
crippling is fundamentally broken, even if the attacker
does not know the low-level details of cache replacement
policies of the CPUs (contrary to [19]).

• We reverse engineer the new RSB in recent Intel CPUs
to revive Spectre-RSB attacks (e.g., ret2spec) on recent
Intel CPUs. We use this new vector to enable speculative
execution over architecturally impossible execution paths
that result in bypassing masking mitigations.

• Using these insights, we build Spring, an end-to-end
Spectre-RSB exploit that bypasses ASLR using memory
massaging techniques to leak access tokens from apps in
the Microsoft Blazor framework running on Firefox on a
Kaby Lake CPU.

• We analyze potential mitigations. One of our proposed
mitigations was picked up by the Mozilla security team
and is currently deployed in Firefox.

Outline. In Section II we provide background on microarchi-
tectural and speculative execution attacks as well as deployed
browser mitigations. Section III outlines our threat model and
Section IV gives an overview of our proposed techniques and
challenges. In Section V, we discuss our timer primitive and
in Section VI, we describe our efforts to reverse engineer
the RSB behavior of modern microarchitectures. We present
our end-to-end attack in Section VII, discuss countermeasures
in Section VIII, and give an overview of related work in
Section IX before concluding the paper.

II. BACKGROUND

We discuss the background of microarchitectural attacks and
defenses with a special focus on the browser.

A. Cache attacks

Cache attacks such as EVICT+TIME, PRIME+PROBE [32]
or FLUSH+RELOAD [33] can spy on a victim process, for
instance to leak cryptographic keys, by measuring the state of
shared CPU caches after secret-dependent memory operations.
EVICT+TIME and PRIME+PROBE work at the granularity of
cache sets, and involves an attacker who first primes a number
of sets in the n-way set associative cache by accessing an
eviction set (a set of at least n addresses that map to the
same cache set) for each cache set and then waits for the
victim to access the cache in a secret-dependent manner and
thereby evict cache lines belonging to the attacker. By probing
the eviction sets again and timing the accesses, the attacker
determines which cache set(s) the victim has accessed. Oren

et al. [34] show that it is possible to perform PRIME+PROBE
attacks from JavaScript in the browser. PRIME+PROBE attacks
are generally applicable, but coarse-grained—operating at the
granularity of cache sets. In contrast, FLUSH+RELOAD works
at the granularity of cache lines, but only if the attacker and
victim share memory. In that case, the attacker flushes specific
cache lines that contain shared data or code, waits for the
victim to access memory, and then identifies the access by
checking which cache line is now in the cache.

B. Transient execution attacks

Out-of-Order (OoO) execution is a microarchitectural op-
timization that lets instructions execute ahead of time to
maximize the usage of the on-core execution units and thereby
the overall instruction throughput of modern CPUs. Moreover,
in case of long-running instructions, such as memory loads
that dictate the subsequent execution path (e.g., due to a
branch), the CPU will predict the most likely outcome and
continue execution there transiently. In case the prediction was
wrong, the CPU discards the transiently executed instructions
and continues execution at the correct location. Transient
execution attacks leak sensitive information, typically from
the CPU caches, as a result of wrongly transiently-executed
instructions [35].

1 if (x < array.length) {
2 secret = array[x] & 0xff;
3 array2[secret * 1024];
4 }

Listing 1: Spectre Bounds-Check Bypass (BCB).

Spectre. The original Spectre attacks [1] show that speculative
execution can leak bytes from a victim process’ address space
via cache side channels. They are especially dangerous for
end users since they can operate from JavaScript, exposing
sensitive personal data, such as passwords and access tokens.
These attacks use instructions, either in the sandbox imple-
mentation itself [36], [20] or in Just-in-Time (JIT) compiled
code [1], [18], [30], to perform out of bound memory accesses.
They speculatively execute these instructions as a result of a
mispredicted conditional branch direction [1], [36], [30], [20]
or a mispredicted return target [18].

Results of speculatively executed instructions are not ex-
posed to the architectural state (visible to software) upon a
misprediction. However, they do leave traces in the microarchi-
tectural state. Spectre abuses such traces to allow attackers to
leak arbitrary memory contents. For instance, mispredictions
by the branch predictor may result in a Bounds-Check Bypass
(BCB), as illustrated in Listing II-B. The attacker controls x
and first trains the branch predictor to predict that the condition
in Line 1 is true. When they later provide an out-of-bound
x, the CPU will still speculate said condition to be true and
read an attacker-chosen byte (Line 2). In Line 3, the victim
uses this secret byte to access an element in the attacker-
controlled array2. Using a cache attack, the attacker can
determine the index of the element the victim accessed and,

2

hence, determine the secret byte. Speculative side channel
attacks usually leverage FLUSH+RELOAD to deduce cache
state. However, since flushing cache lines explicitly is not
possible in constrained browser environments, attackers use
eviction sets instead.

However, the typical BCB variants of Spectre, shown List-
ing II-B and used in the original Spectre attack [1] and
leaky.page [19], are limited to the maximum allowed array
index offset of 4 GiB that is allowed by JavaScript. Hence,
such speculation primitives cannot access memory outside
the attacker’s local memory area. Instead, effective Spectre
attacks in the web browsers typically exploit a type confusion
to achieve access to full 64-bit address space [9], [20], [18]
but oftentimes lack other primitives necessary for an end-to-
end attack: they patch the browser to access high precision
timestamps (e.g., [18]) or assume ASLR is broken (e.g., [20]).

A different variant of Spectre attacks exploits return target
speculation through Return Stack Buffers (RSBs) of Intel
CPUs to trigger mispredictions [18], [37]. The ret2spec [18]
attack abuses the fact that RSBs, used for return speculation,
are circular buffers of limited size, resulting in overwrites
if the call stack depth exceeds its capacity, leading to an
underflow condition where stale return targets are re-used
as the call stack depth decreases beyond the RSB capacity.
This way, ret2spec triggers a speculative execution path that
is architecturally impossible allowing for type confusion that
gives speculative access to the entire address space. However,
ret2spec is known to affect older Intel microarchitectures such
as Haswell. It is commonly thought [37], [18], [38] that
the more recent microarchitectures use the other prediction
schemes for serving return targets when the RSB is empty,
making ret2spec exploitation impractical.

Browser-based mitigations. In response to speculative exe-
cution attacks, browser vendors developed several mitigations
to 1 prevent unauthorized speculative accesses, 2 remove
sensitive data from the address space and 3 remove the means
to measure the side channel [39].

1 To prevent unauthorized speculative accesses, Firefox
uses index and pointer masking, where the former makes sure
that upper bits of array indices that would go speculatively go
out of bound are always zero, and the latter applies an XOR
pattern on JSValues so that JavaScript value types cannot
be confused with one another (e.g., speculatively treating an
array as an object). While such mitigations stop the original
Spectre BCB attack, attacks through RSB speculation can still
bypass them (e.g., ret2spec), but as discussed these attacks are
assumed to be impractical on recent microarchitectures.

2 In addition, to remove the sensitive data from the
address space, the Firefox team has been working on strict
site isolation, but it is still not shipped in the latest version of
Firefox since several years in development [28]. In contrast,
Chrome uses strict site isolation as a primary defense against
speculation attacks [40]. The sandboxed process is only re-
sponsible for JavaScript runtime and rendering content. Firefox
hence refer to it as the content process.

3 Major browsers try to prevent the measurement of
side channels by crippling the timers. After the emergence
of cache attacks in the browser, the HTML5 standard was
updated to reduce the precision of timestamps to a min-
imum of 5 µs [41]. In addition, further web-based cache
attacks [42], [43] have prompted browser vendors to reduce
the timer precision further. For example, Chrome and Firefox
reduced the timer resolutions to 0.1 ms [24] and 1 ms [44]
respectively, and added random jitter to these timers to combat
techniques for increasing timer precision [42], [45] For cross-
origin isolated [46] websites, Chrome however removes timer
mitigations because of their observation that timer mitigations
can not stop Spectre attacks [29]. Furthermore, there is also
a limitation as to how much timer precision can be reduced
without potentially harming the end user experience [47].

Summary. Chrome removed their timer restrictions and fully
rely on site isolation for websites that are considered cross-
origin isolated. For Firefox, the assumption is that Spectre
attacks are defeated with timer and pointer and index masking
mitigations, and that ret2spec is prevented by modern microar-
chitectures.

III. THREAT MODEL

We consider a common browser information disclosure
threat model, with attacker-controlled JavaScript code loaded
in the browser by a victim user on a modern Intel processor
with all mitigations against transient execution attacks present.
The victim is assumed to access a malicious website that
covertly embeds the website that the victim is logged in
to. This means that their (secret) access token will be used
whenever they open that website. We assume that no further
interaction is necessary from the user, but that the browser tab
remains active throughout the attack. The goal of the attacker
is to leak some sensitive information from the browser such
as an access token, all without relying on any software bugs.
We further assume that the secret information is placed in
the same address space as the malicious website. While this
is the case for browsers such as Firefox by default, which
is the focus of this paper, other browsers that enable site
isolation (e.g., Chrome) will require the exploitation of the
consolidation policy to achieve address space co-location [20].
We perform the experiments on the latest version of Firefox
at the time of this research (version 73) deploying all default
mitigations such low-precision timers as well as array and
pointer masking. Firefox patched the issue on version 79 as a
result of our responsible disclosure and backported the fix to
earlier versions as part of CVE-2020-15659.

IV. OVERVIEW AND CHALLENGES

We now formulate the high-level fundamental challenges
addressed in this paper, as well our approach to overcoming
them. In later sections, we introduce sub-challenges for each.

A. Crippled timers

Firefox counters cache side-channel attacks by reducing
timer precision and adding random jitter to measurements.

3

Thus, it is impossible to distinguish a single cache hit from a
miss with a single measurement, giving us our first challenge:

Challenge C1 Amplify the signal of existing
attacks so that the signal can be measured with
a low-resolution timer with random jitter.

In Section V, we overcome this challenge by introducing
existing transient execution attacks in their amplified forms
to measure a chain of sequential cache hits vs. misses. Our
approach is similar, in spirit, to the batching strategy used by
recent website fingerprinting approaches [48], the theoretical
framework by McIlroy et al. [29], and the recent Leaky.page
attack [19]. Leaky.page [19] relies on the insight that signal
amplification can be achieved if the attacker knows of the
cache replacement policy of the L1 cache. However, as we
will show, such low-level microarchitectural knowledge is not
needed. To amplify the signal, we exploit two observations.
The first is that transient execution attacks can directly control
the execution of the victim and are thus amenable to controlled
repetition. The second is that we can issue multiple speculative
loads in a single speculative execution window. Using these
observations, we show in Section V that we can schedule
several secret-dependent memory accesses and amplify the
signal.

B. Spectre mitigations

Firefox mitigates Spectre Bounds Check Bypass and Branch
Target Injection (Spectre-BCB and Spectre-BTI) [1] using
pointer masking, whereas the other known browser-based
Spectre variant (RSB) is assumed to no longer be amenable to
practical exploitation on modern microarchitectures (i.e., Intel
Skylake–onwards) [18]. But without a proper understanding of
RSB’s behavior in these microarchitectures, it remains unclear
whether Spectre-RSB exploitation is a still a possibility.

Challenge C2 Reverse engineer the RSB behavior
and determine whether its new variants hinder
practical Spectre-RSB exploitation in the browser.

In Section VI, we overcome this challenge by conducting
experiments to reverse engineer the behavior of RSB in
different microarchitectures. Our results show a tag-based
RSB implementation after the Haswell microarchitecture. This
insight allows us to re-enable Spectre-RSB attacks by intro-
ducing deeper call stacks to match with the attacker-controlled
RSB entry with the correct tag. Our new Spectre-RSB variant,
called Spring, can leak information from the browser’s address
space by creating a type confusion through a stale RSB entry
controlled by the attacker.

C. Software mitigations

To defend against memory error vulnerabilities, Firefox, like
many other software systems deploys certain mitigations that
can complicate exploitation with transient execution attacks.

A prime example is ASLR which randomizes the addresses
of objects inside the address space. It appears that bypassing
ASLR is trivialized next to Spectre, hence completely omitted
in recent end-to-end attacks [20]. Given that leakage is usually
slower in the browser due to timer mitigations, a practical
Spectre exploit should also bypass ASLR.

Challenge C3 Bypass ASLR and other mecha-
nisms that might hinder practical Spring exploita-
tion.

In Section VII, we show how we can leverage the pre-
dictable behavior of memory allocators to ensure that our
target secret is placed at a predictable location in the browser’s
address space, effectively bypassing ASLR. Our end-to-end
Spring exploit can hijack authentication tokens from a victim
Microsoft Blazer app.

In Section VI, we overcome this challenge by conducting
experiments showing how to again trigger RSB underflow con-
ditions to enable Spring. With these experiments, we uncover
previously undisclosed behavior of modern RSBs and show
that attacker-controlled RSB mispredictions are still feasible
in the browser.

V. ACCURATE MEASUREMENTS WITH INACCURATE
TIMERS

In this Section, we explain the signal amplification that
breaks all timer mitigations in a fundamental way, and describe
how we use it to re-enable Spectre attacks from JavaScript.

A. The Firefox timer mitigation

Firefox versions 60 and later have reduced the timer reso-
lution to 1 ms, with random jitter on the timer ticks [44]. As
shown in Figure 1, the timer ticks exactly once every interval
of tres = 1ms, at a randomly chosen tmid midpoint time. tmid

remains fixed during the interval, but will be selected afresh
for the next interval. The timer jitter may generate a tick at any
given time within the interval, effectively stopping all previous
methods to bypass low-resolution timers that measure time by
counting the number of loop iterations they can perform until
the timer ticks [49], [42], [50].

t t+t
res

t
mid

t
real

in the red area, the
timer reports ticks=t

in the blue area, the
timer reports ticks=t+tres

Fig. 1. The timer reports time = t in the red area, until the actual time treal,
passes the randomly picked tmid, after which it reports time = t + tres.

B. Bypassing timer mitigations

Following the theoretical model by McIlroy et al. [29], we
bypass the timer mitigation by prolonging the measurements
to cover a sequence of cached or uncached memory per
measurement, rather than a single cache hit or miss. Our

4

0 10 20 30 40 50 60 70 80
amplification factor

0

2

4

6

8

10

tim
e

av
er

ag
e

[u
s]

cached_firefox
uncached_firefox
cached_chrome
uncached_chrome

Fig. 2. The average (N=1000) access time (using browser’s perfor-
mance.now()) for cached and uncached memory on Firefox and Chrome. The
regression lines shows that the difference increases with amplification factor
until about 64, where the number of accesses in the sequence causes eviction
of itself.

hypothesis is that, with a sufficiently long sequence of cache
misses, the timer is more likely to tick than in the case of cache
hits—despite jitter. An important practical question concerns
the length of the sequence—the amplification factor. Make it
too long, and parts of sequence may be evicted as it is being
added to the cache, but if it is too short, the timer is less likely
to tick for misses.

We show the validity of the theoretical model by means
of an experiment that also provides an indication of the
appropriate amplification factor for reliably distinguishing
cache hits from misses. For this experiment, we modified
Chrome and Firefox with additional functionality to allow
JavaScript code to explicitly retrieve a data pointer of an
ArrayBuffer object and then explicitly flush addresses
from it via a clflush instruction, rather than by means of
cache eviction, which would introduce additional noise. We
conduct the experiment on both browsers to verify that it is
browser agnostic. This allows us to isolate our experiment to
timing only, but as we show in Section VII, cache evictions
work as well, and for the rest of our experiments and our
end to end attacks, we use an unmodified browser. To prevent
OoO execution from loading several memory locations at once,
we let the next cache line in the sequence depend on the
previously-loaded cache line, a technique known as pointer
chasing. Finally, to avoid prefetching, we use a random starting
point of the sequence for every round.

In the experiment, we 1 start the timer, 2 access a
sequence of uncached memory addresses, and 3 stop the
timer. We repeat the same procedure but this time with cached
memory addresses. We then flush the accessed memory to
repeat both procedures for 1000 rounds and compute the
average access time, as reported by the browser, for each
sequence length. Figure 2 shows that with a few tens of

Fig. 3. Histogram of the fraction of runs with cache activity at multiple
locations.

reads, the cached and uncached accesses already form distinct
clusters, allowing for low-noise measurements. In fact, even
with just a single memory access (i.e., amplification factor
of 1), there’s already a slight difference. For instance, for
an amplification factor of 50, cached and uncached accesses
experience on average roughly 1 and 8 µs, respectively on
Firefox and 1 and 5 µs on Chrome. The experiment not only
confirms the hypothesis that we can deduce the cache state
with the crippled timers in Chrome and Firefox, but implies
in general for attacks that can encode a secret using a sequence
of memory accesses that reducing the resolution of the timer is
fundamentally unable to eliminate the side channel (although
it may reduce its covert channel’s bandwidth). We show next
that Spectre has exactly this property.

C. Signal amplification with Spectre

Now that we can bypass the timer mitigations, we discuss
two distinct methods for amplifying Spectre’s signal from the
browser and overcome Challenge C1 of Section IV. First,
because the attacker controls code execution, they can trigger
mispredictions to leak the same secret many times over—
accessing different secret-dependent locations in every invo-
cation. However, this is not as effective as it may seem, since
the increased number of operations consequentially increases
the chance of evicting recently accessed secret-dependent loca-
tions, which introduces additional noise in the measurements.

Second, the attacker may queue up several speculative
loads to different secret-dependent locations from a single
misprediction. Pipelined OoO CPUs can queue up multiple
memory loads at once. We conduct an experiment to un-
derstand how many of such loads we can queue up in a
single speculation window. To do this, we perform accesses
to 100 different memory locations in random order in the
speculative path. After triggering the misprediction, we check
the corresponding locations to see how many of them are in the
cache. To avoid OoO execution and prefetching from affecting

5

1. fun B(i32 n) -> i32
2. if n == 0
3. return 0
4. i32 x = B(n-1)
5. i32 leak = i32.load(x) && 0xff
6. return i32.load(

 PROBE_BASE + (leak<< 12))

1. fun A(i32 n, i64 leak_off) -> i64
2. if n > 0
3. A(n-1)
4. B(N)
5. return leak_off

Fig. 4. Return target misprediction triggers a type confusion, where function
B assumes that the returned value, x on line 4 of B is 32 bit and
consequentially omits bounds checking when used in a subsequent load from
the WebAssembly heap. Due to RSB underflow the control flow speculatively
returns an attacker controlled 64 bit value on line 5 of A to B.

our measurements, we again use pointer chasing and a random
starting point in the sequence. Additionally, we ensure that
each access is to a different page since prefetchers typically
operate only within memory pages [51].

The histogram in Figure 3 shows a distribution of the
number of cache hits from 1000 runs, each consisting of a
warm-up round, to populate instruction caches, and a real
round for which we measure the results. The figure shows that
we can queue up a substantial number (e.g., 12) of memory
accesses in a single misprediction, enabling us to increase
the amplification factor without the need for many rounds of
speculative misprediction. We use this technique to improve
the performance of Spring discussed in Section VI.

VI. BYPASSING MASKING WITH SPRING

In this section, we show that RSB underflows that result
in return target misprediction still occurs in recent microar-
chitectures. We conduct reverse engineering experiments to
understand the behavior of return-based speculation and ad-
dress Challenge C2 of Section IV. Using the knowledge gained
from our reverse engineering, we demonstrate that with some
modification the ret2spec attack [18], presumed dead in recent
microarchitectures, it can be resurrected to leak information
from arbitrary virtual memory addresses.

A. No underflow in new RSBs

The RSB is a LIFO (i.e., a stack) buffer of limited size
N̂ , usually 16 entires, on Haswell microarchitecture and
earlier [18], [52]. It is cyclic in nature: it overflows and
evicts older entries after N̂ + 1 call instructions without
intermediate ret instructions. It may similarly underflow, and
reuse stale return targets, after N̂+1 ret instructions without
intermediate call instructions.

ret2spec abuses this behavior to trigger a speculative type
confusion in WebAssembly, enabling speculative out of bound
reads of the WebAssembly heap as shown in Figure 4. Specif-
ically, the attacker creates a call stack by calling a function A,
that makes N recursive calls to itself and then calls function
B, which in turn also makes N recursive calls to itself. At
this point the RSB only contains return targets to B, causing
mispredictions starting after N return instructions, where B
returns to A, and continues to mispredict when A returns.
The predicted return target from A becomes B, whereas in
reality, B never called A. As shown in Figure 4, the attacker
can arbitrarily manipulate input values to the speculatively
hijacked instruction stream in B. Because these input values
are unsanitized, they are bypassing pointer masking, hence
enabling type confusion.

Unfortunately for the attacker, the type of RSB underflows
that enable ret2spec no longer occur on Skylake and later
processors [18]. We empirically verified that we could not
trigger misprediction with ret2spec on an Intel CPU with a
Kaby Lake microarchitecture. The question arises if Spectre
attacks through RSB underflows are indeed no longer practical.

B. RSB underflow post-Haswell

We repeat a similar experiment as the one in Section VI-A,
but this time we increase the number of recursive calls in both
A and B. We prepare the last return in A in such a way that,
in case of a potential misprediction, we execute an instruction
in B that loads a target memory location mem, as shown in
Figure 4, as result.

Figures 5a and 5b show the results on a Haswell CPU on
the left, which is known to be vulnerable, and Kaby Lake on
the right. Surprisingly, after 64 subsequent returns in both A
and B, we observe a signal from mem on Kaby Lake as we
do for 16 on Haswell, suggesting that the Kaby Lake return
prediction scheme under given circumstance, re-enables RSB-
based prediction even if the RSB is underflowed. Moreover,
by increasing the number of recursions in A or B by 16, the
signal disappears, and reappears after 48 additional recursions.

These results suggest that we are observing mispredictions
from a new RSB structure. A possible implementation that
exhibits similar behavior to what we observe is one that uses
a 6 bit counter that increments on calls and decrements on
returns [53]. The lower 4 bits determine the current top of
the RSB stack and the upper 2 bits determine the current
tag, which increments or decrements for every 16 calls or
returns, respectively. Besides the return target address, each
RSB entry stores also the tag, so that, upon a return, the CPU
can compare the entry’s tag to the current tag and use its return
target address only on tag match.

C. Leaking arbitrary data with Spring

Our results show that it is again possible to force the
CPU into address-independent misprediction through ret
instructions on recent microarchitectures. We call this new
variant of transient execution attacks Spring which requires
additional returns and show how it can be used to leak arbitrary

6

0 8 16 24 32 40 48 56 64 72 80 88 96
recursions in B

0

8

16

24

32

40

48

56

64

72

80

88

96

re
cu

rs
io

ns
 in

 A

0.0

0.2

0.4

0.6

0.8

1.0

signal strength

(a) Haswell

0 8 16 24 32 40 48 56 64 72 80 88 96
recursions in B

0

8

16

24

32

40

48

56

64

72

80

88

96

re
cu

rs
io

ns
 in

 A

0.0

0.2

0.4

0.6

0.8

1.0

signal strength

(b) Kaby Lake

Fig. 5. Observing signals through additional returns in A and B. The dark color indicates a misprediction from A to B when returning from the first recursion
in A. Haswell (a) exhibits a saw-tooth pattern because, for example, with 16 recursions in A and 0 in B, the deepest recursion in A, places A at the RSB
entry that is re-used when returning from the first recursion, thus mispredicting A instead of B, which we don’t measure here.

information in the browser. We evaluate the effectiveness and
accuracy of Spring in Firefox version 73 (latest when we
reported Spring to Mozilla) running on Linux 4.19. We first
briefly discuss how we deploy the previously-discussed signal
amplification techniques to Spring and how we set up our
evaluation.

We select an amplification factor a = 32, meaning that our
reload buffer, which we speculatively access secret-dependent
memory in, must have a entries for every possible secret that
can be leaked. Given that our configuration leaks a nibble (i.e.,
4 bits) at a time, the number of possible secrets is Nv = 16
and the total entries of the reload buffee is thus a×Nv = 512.

6.0k 8.0k 10.0k 12.0k 14.0k
rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

bi
ts

 p
er

 se
co

nd

channel bit rate
bit error rate

Fig. 6. Spring bandwidth (blue plot) and error rate (red plot) over rounds. One
round includes 16 mispredictions with totally 32 secret-dependent memory
loads meaning an amplification factor of 32. With 7000 rounds, Firefox has
a bandwidth of 3 bit/s and 2% error rate.

A round consists of a warm-up invocation to improve the
chances that the code resides in the instruction caches, and an
actual run where we do 16 recursions in A and 64 in B. This

leads to a series of 16 mispredictions from A to B, where we
try to leak the secret to a secret-dependent locations. Since
we repeatedly access the sequence, it is likely that its entirety
eventually gets cached. We reload the corresponding sequence
of locations of the Nv possible secrets and record how many
times (if any) the timer ticks. By repeating this procedure
thousands of times we are able to deduce which sequence
is the overall fastest to access, which most likely corresponds
to the secret.

Results. In the experiment, we try to leak a value that we
have access to for measuring the quality of the signal. In
Section VII, we instead leak secret values in our end-to-end
exploits. Figure 6 shows the performance of our Spring attack.
The error rate decreases as we increase the number of rounds
that we attempt to leak the same secret. Consequentially,
having more rounds also reduces the bandwidth of the covert
channel. Since we control the address from which Spring
leaks, these results show that we can leak information despite
the crippled timer and masking mitigations in the latest version
of Firefox. We confirm Kaby Lake and Coffee Lake Refresh
microarchitectures running the latest microcode update as of
this writing (0xd6) are affected by Spring.

VII. EXPLOITATION WITH Spring

In this section, we show how Spring can be used to
mount real-world browser exploitation. Again, we face several
challenges to achieve reliable exploitation with Spectre and
we discuss those first. We then present our primary end-to-
end exploit that leaks a victim user’s JSON Web Token [54]
(JWT) from a Microsoft Blazor web application to hijack
their session, compromising their account, using Firefox as
our browser.

A. Challenges for Reliable Exploitation

Using Spectre in a practical attack scenario poses two
challenges in addition to those discussed in previous sections.

7

Header page

0x0

0x1000

0x8001000

0x180011000

0x180012000

Header page

WASM heap base

Expandable memory

Guard page

0x180001000

WASM heap base

0x86d208

-0x17f793df8

Sp
y

Vi
ct
im

eyJhbGciOiJIUzI1Ni
IsInR5cCI6IkpXVCJ9
.eyJpZCI6OTQwNjYsI
nVzZXJuYW1lIjoiam5
lcyIsImV4cCI6MTU5N
TMzMzYyN30.aKCMaBA
M9c3FiQipHaCeg8RIL
gsW4P2l5HAztpSbyR4

Fig. 7. The attacker (red) and victim (blue) heaps are allocated consecutively.
The attacker speculatively reads memory from their own heap with an OoB
offset (-0x17f793df8) that accesses the secret (JWT) in the victim heap.

First, the victim website needs to reside in the same address
space as the attacker-controlled website. Second, even though
Spring allows us to leak arbitrary memory, its throughput
is limited, making extensive memory scanning for secrets
impractical. Hence, we need to bypass ALSR so that our target
secret is allocated at a predictable memory address.

Process co-residency on Firefox. We address the first chal-
lenge using iframes. Firefox distributes websites over sev-
eral content processes. To ensure that the attacker and victim
websites reside in the same content process, the attacker
website renders the victim website in an iframe HTML
element. Because iframes are in the same content process as
the originating website, the attacker achieves address space co-
residency with the victim website. This lets the attacker create
a speculation gadget in their own address space to read OoB
memory that resides in the victim’s address space as seen in
Figure 7.

Bypassing ASLR. The next challenge is to bypass ASLR.
Spring leaks from addresses relative to its WebAssembly
(WASM) heap. Instead of leaking the secret by first identifying
its absolute address, we wish to allocate the secret at a
predictable distance from the victim’s WASM heap. On x64,
WASM heaps spans a region of 6 GB that is split into an
accessible and extensible area, with an additional 4 KB header
page and a 64 KB guard page, as shown in Figure 7. There
is a risk that memory regions have a gap in-between, but
spraying a number memory allocations makes this unlikely.
We found that spraying (c.f. Listing 2) 4096 ArrayBuffer
objects of 64 KiB each, which we free after allocation, resulted
in no gap between our attacker and victim memory regions.
Larger memory regions are allocated without any address hint,
allowing the OS kernel to select an appropriate address, which

tends to be adjacent for larger allocations on Linux. Moreover,
because memory is not randomized within the WASM heap,
a cross-WASM heap leak is a promising target for our end-to-
end exploit.

const o = {}
o.b = []
for(let i = 0 ; i < 0x1000; ++i) {
o.b.push(new ArrayBuffer(0x10000))

}
delete o.b

Listing 2: Initially spraying ArrayBuffer objects allows at-
tacker and victim WASM heaps to be consecutively allocated.

B. Attacking Microsoft Blazor

Microsoft Blazor [31] is the company’s new web application
framework where programmers write ASP.NET C# code that
compiles into WASM to efficiently execute in the browser.
Because application state is managed with C#, substantial parts
of it resides on the WASM heap, which is not randomized.
Different Blazor apps have different memory layouts, and
some may not be susceptible to our exploit if they, e.g., do
not store the secret in the WASM heap. We target a standard
Blazor example app [55] for our attack.

First, the malicious website sprays ArrayBuffer objects
as shown in Listing 2, then allocates the victim Blazor and spy
WASM heaps consecutively using iframes that are hidden
outside of the viewport. Because the victim is logged in on
the Blazor app, the initial rendering results in several memory
locations populated with the user’s authentication details.

The Blazor app that we are targeting uses token-based
authentication, a common method used in modern web ap-
plications as a CSRF-resilient alternative to standard HTTP
cookies. As shown in Figure 7, the token follows the JWT
specification and consists of three parts: a header, a payload
and a signature, which are base64 encoded and concatenated as
in Figure 8. The header specifies the cryptographic parameters
employed for signing and verifying the token. The payload
usually contains the issuing date and the authentication info.
The signature is a computed hash over the header, the payload,
and a server-side secret value. The token that we try to leak
is 108 characters long.

To optimize the time to leak the entire token we observe that
the header part is constant for all issued tokens and that the
payload must resemble valid JSON. Thus, parts of the header
can either be guessed or retrieved if the attacker can generate
an access token of their own. Secondly, we can tolerate certain
errors given that the leaked token must be a valid JSON object.
For the signature, we can furthermore rely on that it must be
valid base64.

With 24 k rounds, we can leak the token in less than
17 minutes without any errors and in 8 minutes with 96%
accuracy. As we reduce the number of rounds, we can leak
the token much faster with some errors. These errors can be
detected due to invalid JSON or base64 and retried, or the
attacker can instead bruteforce the remaining entropy.

8

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9 .eyJpZCI6OTQwNjYsInVzZXJuYW1lIjoiam5lcyIsImV4cCI6MTU5NTMzMzYyN30 .aKCMaBAM9c3FiQipHaCeg8RILgsW4P2l5HAztpSbyR4

"{"alg":"HS256","typ":"JWT"}" "{"id":94066,"username":"jnes","exp":1595333627}" HS256(header+payload+secret)

HEADER PAYLOAD SIGNATURE

Fig. 8. The JSON Web Token consists of a header, a payload and a signature component. Each component is base64 encoded, reducing the entropy of the
secret to characters representing valid base64 and the decoded payload be valid JSON.

VIII. MITIGATIONS

Optimizing performance through speculative execution stip-
ulates for occasional mispredictions. Unfortunately, com-
pletely removing speculative execution imposes tremendous
performance penalties due to execution stalling. Practical
mitigations instead focus on preventing only those speculative
execution paths that can be used maliciously. The types of
defenses we discuss target browsers, compilers and operating
systems. We refer to Section IX for related work.

Site isolation. Since Spring leaks within the address space, site
isolation effectively defeats its impact by isolating sensitive
information in separate processes. Evidently, site isolation is
hard to achieve in practice, not in the least for out-of-process
iframe implementations, and it imposes grave performance
costs. Despite years of development of site isolation for Fire-
fox, even the latest shipped ESR (Extended Support Release)
versions that most Linux users have still do not enable it. Site
isolation has limitations, however: cross-origin resources are,
by design, allowed to be brought into an attacker website’s
address space [46], and to potentially distrusting websites may
be consolidated to improve performance [20].

Timer throttling with anomaly detection. We have already
seen that imprecise timers slows down timing attacks, but do
not stop them. However, they may result in less stealthy attacks
as they limit the covert channel’s bandwidth, making extensive
scanning for sensitive data more difficult. In addition, at least
for our example attack the execution patterns are sufficiently
repetitive and to be detectable via performance counters. As
always, anomaly detection is not without drawbacks, as it re-
quires a careful trade-off between security and false positives.

Index masking. Existing compiler mitigations fail to address
Spring as it triggers speculative execution paths that are impos-
sible architecturally. Since functions returning 32 bit or smaller
values will not set the upper bits of the result, it is therefore
assumed safe to omit bounds checking. The assumption fails
to consider that mispredicted return operations, from functions
with 64-bit return values, may lead to control flows where the
upper bits are set, enabling the leak. A possible mitigation is
therefore to mask the upper bits of return values before they
are used in memory operations. This way, all such speculative
loads will reside within the guard pages of the WASM heap.
The Firefox team opted for this approach as a short-term
mitigation against Spring. We are however unsure whether
there could be other architecturally impossible execution paths
that can be exploited with RSB underflow attacks, resulting in

type confusion, that are not covered by this mitigation. We
leave that exploration for future work.

Hardened memory randomization. The Spring exploit relies
on predictable allocation mechanisms of mmap, which allows
us to leak the secret without breaking ASLR and without time-
consuming scanning or pointer traversal procedures. We can
therefore defend against this particular attack with hardened
memory randomization of the operating system. Again, while
doing so slows down the attack, it is unclear whether this is
sufficient to make it impractical.

IX. RELATED WORK

In this section, we review related work on microarchitectural
attacks and defenses in web browsers.

CPU cache timing attacks from the browser. CPU cache
attacks have been discussed since the early 90s by Hu et
al. [56] and Kocher [57] among others. Practical attacks,
including PRIME+PROBE and EVICT+TIME, were introduced
over a decade later concurrently by Osvik et al. [32] and Bern-
stein [58]. Yet another decade later, Oren et al. [34] demon-
strated practical fingerprinting attacks using PRIME+PROBE in
the browser. To resist such timing attacks, browser vendors
have gradually lowered timer precision [23], [24], [25], [26],
and JavaScript timers today are vastly less accurate than they
were even five years ago. However, on certain conditions,
browsers may increase the timer precision [46]. Prototype
browsers such as FuzzyFox and DeterFox attempt to stop
the attackers from using timers by further introducing random
jitter [49] or making timing measurements deterministic [59].
A Chrome Zero enables a permission system to prevent
side-channels in JavaScript [60]. Low-precision, fuzzy timers
have since been adopted by all major browsers. Even so,
Shusterman et al. [48] showed that attackers can still conduct
cache attacks at a coarser granularity by sampling access times
to a dataset that spans the entire LLC, and more recently even
without JavaScript [61].

Moreover, it has been shown in multiple instances that, in
JavaScript, it may be possible to reconstruct high-precision
timers from low-resolution ones or indirectly [42], [50], [62].
In particular, these timers can acquire accurate timing informa-
tion from caches to break ASLR [42] and to construct minimal
cache eviction sets for Rowhammer [63], [64], [43], [65], and
for transient execution attacks [20], [9], [19]. As mentioned,
browser vendors responded by removing the features required
to build such timers and by adding jitter [49], [59].

This work shows in practice that attackers do not need a
high-precision timer at all, neither do they need knowledge

9

of cache replacement policies [19]. Even the fuzzy, low-
resolution timers are good enough if signal amplification is
possible.

Variable instruction timing attacks. Andrysco et al. [66]
demonstrate pixel stealing attacks that leak pixel values from
cross-origin websites by applying filter effects iframe ele-
ments, a technique refined in follow-up work by Kohlbrenner
et al. [67]. Rather than relying on the code-path timing of the
original pixel stealing attacks [68], [69], [70], they rely on the
variable instruction execution time of floating point operations.
Instruction timing attacks appear to be a relatively unexplored
area and potentially an interesting field for future research
on amplification techniques. In contrast, in this paper we use
different timing side channels and leak information accessed
by the CPU under speculative execution.

Spectre and other transient execution attacks. Where the
original Spectre attacks [1] use CPU caches as a side channel,
later work showed that contention-based side channels can
also be used [71]. Spectre attacks rely on a conditional branch
or an indirect branch target to trigger incorrect speculations.
In principle, Spectre could be operated from different se-
curity domains, including the browser. Horn described how
speculative store bypass [72] could lead to an overwritten
pointer being speculatively dereferenced to its previous value.
Similarly, Maisuradze and Rossow [18] showed that return
target mispredictions were also susceptible to unauthorized
speculative accesses via RSB underflow conditions. Spectre
and transient execution attacks using type confusion [18],
[9], [20] allows for full address space access. In particular,
SpookJs [20] combines type confusion with a weakness in
Chrome’s site isolation that consolidates distrusting websites
into the same address space. In this paper, we show in addition
that current, in-process mitigations in modern browsers are not
sufficient to stop Spectre attacks. Recently proposed academic
solutions such as SafeSpec, ConTExt, or SPECCFI do not help
with existing systems as they require hardware changes [73],
[74], [75] and annotations in software [74].

MDS-based attacks [4], [6], [5], [7], [8] take speculative
execution attacks beyond branch prediction, showing that an
assisting memory load (e.g., via a page fault) can result in
a speculative load of stale data from internal in-flight buffers
that may hold data from other execution contexts. While Intel
responded by releasing a set of mitigations [76], patching the
root cause has proven to be complicated; since their discovery
in the first half of 2019, many new MDS-based leaks have
surfaced [77], [78], [5], [7], [4]. Because of the high ab-
straction level of web programming languages (i.e., JavaScript
and WebAssembly), prototyping and assessing susceptibility
of MDS and other microarchitectural attacks in web browsers
under different microarchitectures is a difficult and tedious
process. To facilitate this, tooling for rapid prototyping is
currently ongoing research [21]. MDS attacks, in particular,
are relevant for future work, as they are capable of leaking
across process boundaries that site isolation relies on.

X. CONCLUSION

In this paper, we investigated the effectiveness of cur-
rent mitigations against speculative execution attacks from
JavaScript in the browser. Through experiments, we reverse
engineered the behavior of the return stack buffer (RSB)
on recent Intel microarchitectures. We found that RSBs can
be manipulated to still trigger return target mispredictions
through RSB underflows, enabling Spectre-RSB attacks on
recent systems. Bypassing browser-based mitigations, we then
implemented Spectre on Firefox on recent CPUs to prove that
timer mitigations and index masking are insufficient to stop
speculative execution attacks that allow amplification through
repetitions. We then used our new Spectre-RSB variant, called
Spring, to build an end-to-end exploit. To achieve this, we
leveraged memory massaging to place the target secret in a
predictable location. Using the Spring exploit, we were able
to hijack a victim’s session on Microsoft Blazor apps with
our Spring Spectre variant. We analyzed the possible courses
of action for mitigating Spring and collaborated with Firefox
developers on a patch against Spring that is currently deployed
on the latest version of Firefox.

RESPONSIBLE DISCLOSURE

We disclosed the issues discovered in this paper to Mozilla
in April of 2020. Since the disclosure, we have been col-
laborating with Mozilla engineers to develop a patch against
Spring by sanitizing registers used for array accesses. The
vulnerability was fixed in Firefox 79, ESR-68 and ESR-78
as part of CVE-2020-15659, and our internal tests shows that
Firefox is since immune against Spring.

REFERENCES

[1] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks:
Exploiting Speculative Execution,” arXiv preprint arXiv:1801.01203,
2018.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[3] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in SEC, 2018.

[4] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in S&P, May 2019.

[5] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary data
sampling,” in CCS, 2019.

[6] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on meltdown-resistant cpus,” in
Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). ACM, 2019.

[7] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “Lvi: Hijacking transient
execution through microarchitectural load value injection,” in 41th IEEE
Symposium on Security and Privacy (S&P’20), 2020, pp. 1399–1417.

[8] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, “CrossTalk:
Speculative Data Leaks Across Cores Are Real,” in S&P, May 2021.

10

[9] H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage against the
machine clear: A systematic analysis of machine clears and their
implications for transient execution attacks,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021, pp. 1451–1468.

[10] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
history injection: On the effectiveness of hardware mitigations against
cross-privilege spectre-v2 attacks,” in USENIX Security, 2022.

[11] D. Gruss, D. Hansen, and B. Gregg, “Kernel Isolation: From an
Academic Idea to an Efficient Patch for Every Computer,” in ; login:
the USENIX Magazine, 2019.

[12] P. Turner, “Retpoline: a software construct for preventing branch-
target-injection,” https:// support.google.com/ faqs/answer/7625886;
Retr. 2020-04-18, 2018.

[13] Linux, “kernel.org: L1TF - L1 Terminal Fault,” https://www.kernel.org/
doc/html/latest/admin-guide/hw-vuln/l1tf.html, accessed on 4.9.2020.

[14] ——, “kernel.org: MDS - Microarchitectural Data Sampling,”
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html,
accessed on 4.9.2020.

[15] Microsoft, “Protect your windows devices
against speculative execution side-channel at-
tacks,” https://support.microsoft.com/en-us/help/4073757/
protect-windows-devices-from-speculative-execution-side-channel-attack,
May 2018.

[16] ——, “Windows guidance to protect against
speculative execution side-channel vulnerabili-
ties,” https://support.microsoft.com/en-us/help/4457951/
windows-guidance-to-protect-against-speculative-execution-side-channel,
May 2019.

[17] Citrix, “Citrix Hypervisor Security Update,” https://support.citrix.com/
article/CTX251995, May 2018.

[18] G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, ser. CCS ’18, New
York, NY, USA, 2018.

[19] P. Röttger and A. Janc, “A Spectre proof-of-concept for a
Spectreproof web,” https://security.googleblog.com/2021/03/
a-spectre-proof-of-concept-for-spectre.html, 2021, accessed on
5.6.2021.

[20] A. Agarwal, S. O’Connell, J. Kim, S. Yehezkel, D. Genkin, E. Ronen,
and Y. Yarom, “Spook.js: Attacking chrome strict site isolation via spec-
ulative execution,” in 43rd IEEE Symposium on Security and Privacy
(S&P’22), 2022.

[21] C. Easdon, M. Schwarz, M. Schwarzl, and D. Gruss, “Rapid prototyping
for microarchitectural attacks,” in USENIX Security Symposium, 2022.

[22] “Re-enable sharedarraybuffer and atomics by default,” https://bugzilla.
mozilla.org/show bug.cgi?id=1477743, 2018.

[23] L. Wagner, “Mitigations landing for new class of tim-
ing attack,” https://blog.mozilla.org/security/2018/01/03/
mitigations-landing-new-class-timing-attack/, 2018.

[24] Chromium, “Mitigating side-channel attacks,” https://www.chromium.
org/Home/chromium-security/ssca, 2018.

[25] M. E. Team, “Mitigating speculative execution side-
channel attacks in microsoft edge and internet ex-
plorer,” https://blogs.windows.com/msedgedev/2018/01/03/
speculative-execution-mitigations-microsoft-edge-internet-explorer/,
Jan 2018.

[26] F. Pizlo, “What spectre and meltdown mean for webkit,” https://webkit.
org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/, Jan 2018.

[27] J. de Mooij, “[meta] spectre bounds check mitigations,” https://bugzilla.
mozilla.org/show bug.cgi?id=1430051; Retr. 2020-04-10, 2018.

[28] MozillaWiki, “Project fission,” https://wiki.mozilla.org/Project Fission,
2018.

[29] R. McIlroy, J. Sevcı́k, T. Tebbi, B. L. Titzer, and T. Verwaest,
“Spectre is here to stay: An analysis of side-channels and speculative
execution,” CoRR, vol. abs/1902.05178, 2019. [Online]. Available:
http://arxiv.org/abs/1902.05178

[30] N. Hadad and J. Afek, “Overcoming (some) spectre
browser mitigations,” https://alephsecurity.com/2018/06/26/
spectre-browser-query-cache/, Jun 2018.

[31] “Microsoft blazor,” https://dotnet.microsoft.com/apps/aspnet/web-apps/
blazor, 2020.

[32] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of aes,” IACR Cryptology ePrint Archive, vol. 2005,
p. 271, 2005.

[33] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Symposium,
2014, pp. 719–732.

[34] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015, pp. 1406–1418.

[35] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of
Transient Execution Attacks and Defenses,” in 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, 2019.

[36] A. Mambretti, M. Neugschwandtner, A. Sorniotti, E. Kirda, W. Robert-
son, and A. Kurmus, “Let’s not speculate: Discovering and analyzing
speculative execution attacks,” IBM Research Library, 2018.

[37] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18).
Baltimore, MD: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/woot18/presentation/koruyeh

[38] “x86/retpoline: Avoid return buffer underflows on context switch,” https:
//lore.kernel.org/patchwork/patch/871060, 2018.

[39] M. Miller, A. Fogh, and C. Ertl, “Wrangling with the Ghost: An Inside
Story of Mitigating Speculative Execution Side Channel Vulnerabilities,”
ser. BlackHat, 2018.

[40] R. McIlroy, “Disable v8 untrusted code mitigations when site
isolation is enabled,” https://chromium.xieyaokun.com/chromium/+/
3ba9207178ac7303393cb74dba77509755dbc4e4, 2018.

[41] I. Grigorik, “High resolution time level 2,” W3C recommendation, 2019.
[42] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on the

Line: Practical Cache Attacks on the MMU,” in NDSS, vol. 17, 2017,
p. 13.

[43] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit:
Accelerating Microarchitectural Attacks with the GPU,” in 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018, pp. 195–210.

[44] T. Ritter, “Set timer resolution to 1ms with jitter,” https://bugzilla.
mozilla.org/show bug.cgi?id=1451790, 2018.

[45] D. Kohlbrenner and H. Shacham, “Trusted Browsers for
Uncertain Times,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, Aug. 2016,
pp. 463–480. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/kohlbrenner

[46] E. Kitamura, “Making your website ”cross-origin isolated” using COOP
and COEP,” https://web.dev/coop-coep/, accessed on 5.6.2021.

[47] M. Rejhon, “1440863 - unanticipated security/usability degradation
from precision-lowering of performance.now() to 2ms,” https://bugzilla.
mozilla.org/show bug.cgi?id=1440863, 2018.

[48] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in USENIX Security, 2019.

[49] D. Kohlbrenner and H. Shacham, “Trusted browsers for uncertain times,”
in 25th {USENIX} Security Symposium ({USENIX} Security 16), 2016,
pp. 463–480.

[50] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: high-resolution microarchitectural attacks in
javascript,” in International Conference on Financial Cryptography and
Data Security. Springer, 2017, pp. 247–267.

[51] R. Intel, “Intel 64 and ia-32 architectures optimization reference man-
ual,” Intel Corporation, Sept, 2019.

[52] A. Fog, “The microarchitecture of intel, amd and via cpus: An optimiza-
tion guide for assembly programmers and compiler makers,” Technical
University of Denmark, 2020.

[53] J. A. M. Stephan J. Jourdan and N. Jaisimha, “Us6898699b2 re-
turn address stack including speculative return address buffer with
back pointers,” https://patentimages.storage.googleapis.com/59/a3/6d/
ec8cca6fc3bc01/US6898699.pdf, 2005.

[54] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),” Internet
Engineering Task Force (IETF), 2015.

[55] “Blazor real-world example app,” https://github.com/torhovland/
blazor-realworld-example-app, 2018.

[56] W. Hu, “Lattice scheduling and covert channels,” in Proceedings
1992 IEEE Computer Society Symposium on Research in Security
and Privacy(SP), vol. 00, 05 1992, p. 52. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/RISP.1992.213271

11

[57] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[58] D. J. Bernstein, “Cache-timing attacks on AES,” The University of
Illinois at Chicago, Tech. Rep., 2005.

[59] Y. Cao, Z. Chen, S. Li, and S. Wu, “Deterministic browser,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 163–178.

[60] M. Schwarz, M. Lipp, and D. Gruss, “Javascript zero: Real javascript
and zero side-channel attacks.” in NDSS, vol. 18, 2018, p. 12.

[61] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and
Y. Yarom, “{Prime+ Probe} 1,{JavaScript} 0: Overcoming browser-
based {Side-Channel} defenses,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2863–2880.

[62] P. Vila and B. Köpf, “Loophole: Timing attacks on shared event loops
in chrome,” in USENIX Security Symposium, 2017.

[63] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2016, pp. 300–321.

[64] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina:
Memory deduplication as an advanced exploitation vector,” in 2016
IEEE symposium on security and privacy (SP). IEEE, 2016, pp. 987–
1004.

[65] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “{SMASH}: Synchronized many-sided rowhammer attacks
from {JavaScript},” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 1001–1018.

[66] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp.
623–639.

[67] D. Kohlbrenner and H. Shacham, “On the effectiveness of mitigations
against floating-point timing channels,” in USENIX Security, 2017.

[68] P. Stone, “Pixel perfect timing attacks with html5,” Context Information
Security (White Paper), 2013.

[69] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson, “Cross-origin pixel
stealing: timing attacks using css filters,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security.
ACM, 2013, pp. 1055–1062.

[70] J. Forshaw, “Webgl-a new dimension for browser exploitation,” Online:
http://www. contextis. com/resources/blog/webgl, 2011.

[71] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: Exploiting
speculative execution through port contention,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 785800. [Online]. Available: https:
//doi.org/10.1145/3319535.3363194

[72] J. Horn, “speculative execution, variant 4: speculative store bypass,”
2018.

[73] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre
of a meltdown with leakage-free speculation,” in Proceedings of the
56th Annual Design Automation Conference 2019, ser. DAC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3316781.3317903

[74] M. Schwarz, R. Schilling, F. Kargl, M. Lipp, C. Canella, and D. Gruss,
“Context: Leakage-free transient execution,” in Proc. of NDSS, San
Diego, CA, Feb 2020.

[75] SPECCFI: Mitigating Spectre Attacks using CFI Informed Speculation,
San Diego, CA, May 2020.

[76] Intel, “Microarchitectural data sampling / cve-2018-12126 , cve-2018-
12127,cve-2018-12130,cve-2019-11091 / intel-sa-00233,” Security soft-
ware guidance, 2019.

[77] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Addendum to RIDL: Rogue in-
flight data load,” in S&P, Oct. 2019.

[78] ——, “Addendum 2 to RIDL: Rogue in-flight data load,” in S&P, Mar.
2020.

12

