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ABSTRACT
Interactive High Performance Computing (HPC) workloads
take advantage of the elasticity of clouds to scale their com-
putation based on user demand by dynamically provision-
ing virtual machines during their runtime. As in this case
users require the results of their computation in a short time,
the time to start the provisioned virtual instances becomes
crucial. In this paper we study the deployment scalability
of OpenNebula, an open-source cloud stack, with respect
to these workloads. We describe our efforts for tuning the
infrastructure’s and OpenNebula’s configuration as well as
solving scalability issues in its implementation. After tun-
ing both infrastructure and cloud stack, the simultaneous
deployment of 512 VMs improved by 5.9× on average, from
615 to 104 seconds, and after optimizing the implementa-
tion, the deployment time improved by 12× on average, to
53.54 seconds. These results suggest two possible improve-
ment opportunities that can be useful for both cloud devel-
opers and scientific users deploying a cloud stack to avoid
such scalability issues in the future. First, the tuning process
of a cloud stack can be improved through automatic tools
that adapt the configuration to the workload and infrastruc-
ture characteristics. Second, the code scalability issues can
be avoided through a testing infrastructure that supports
large scale emulation.
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1. INTRODUCTION
Interactive HPC workloads become more common, espe-

cially with the advent of cloud infrastructures. These work-
loads involve large amounts of computation that need to be
completed in a short amount of time. Observing the results
of the computation, scientists submit new batches of com-
putation. Bags of parameter sweep tasks [18], many task
computing applications [22], or web portals that process in-
teractive user requests requiring complex data analysis [28]
are examples of these workloads. Infrastructure-as-a-Service
clouds are a key platform in running these workloads, due
to their elastic provisioning model, which can guarantee fast
and stable response times.
The promise of elastic computing is instantaneous cre-

ation of virtual machines (VMs), according to the needs of
an application or web service. In practice, however, VM
startup times are in the range of several minutes, along with
high variability, depending on the actual system load. Two
major factors contribute to the VM startup times: the scal-
ability of the cloud middleware (Amazon EC2, OpenNebula,
OpenStack, etc.) and the actual VM boot time, including
the transfer of the VM image to the selected compute node.
State-of-the-art solutions tackle both problems through a va-
riety of architectural and algorithmic approaches [4, 20, 24].
In this paper, we focus on the first problem, with a different
approach from the state of the art. Instead of improving on
the design of cloud stacks, we study their existing scalabil-
ity. As a representative example, we chose OpenNebula [12],
a widely-used open source stack. Our choice was motivated
by the simplicity of its design and configuration.
Our contribution is a study of potential bottlenecks in the

VM deployment time, which can come from the configura-
tion of the infrastructure, of the cloud stack, or its imple-
mentation. During our experiments, we focused on under-
standing and optimizing the problematic steps taken by the
cloud stack. Our process was iterative, as some optimiza-
tions led us to identify other issues in the infrastructure or
other components of the cloud stack. Our results show that
major improvements can be obtained in the VM deployment
time. By tuning the infrastructure’s and OpenNebula’s con-
figuration, we improved the VM deployment time by 5.9×
on average, from 615 to 104 seconds, and through code op-
timizations, we could further improve the deployment time
by 12× on average, to 53.54 seconds.
We draw two opportunities for improvement that can be

useful for both cloud developers and users. We learned that
an infrastructure administrator has to follow a long iterative
process when tuning the infrastructure and the cloud stack.



Moreover, it is desirable to perform such tuning based on
workload characteristics. For example, in our case, to re-
duce the VM deployment time, we tuned the VM scheduling
interval, the VM image storage and the number of paral-
lel commands executed by OpenNebula. This outlines the
need for tools to provide an automatic tuning process, with
limited involvement from the administrator side. However,
even when the infrastructure and the cloud stack configura-
tions are optimized, bottlenecks can appear in the different
software components. We learned about such bottlenecks
only when performing large-scale deployments of the cloud
stack. Nevertheless, this is mostly the case of using the cloud
stack in production, and not during its early development.
Thus, we argue that better testing tools, which emulate
large-scale deployments, could potentially avoid such bot-
tlenecks. These tools could improve the experience of both
developers and administrators deploying the cloud stack.
This paper is organized as follows. Section 2 motivates

our work and describes the process of deploying VMs in
OpenNebula. Section 3 details our experiments, and Sec-
tion 4 describes the improvement opportunities. We discuss
related work in Section 5, and we conclude in Section 6.

2. BACKGROUND
We detail in this section the motivation of our work and

give an overview of our investigated cloud stack. We then
describe the steps that we followed in our experiments.

2.1 Motivation
Due to their promised elasticity, cloud computing plat-

forms are appealing for scientists wanting to run interactive
HPC workloads, which require large amounts of compute
resources. These workloads are representative for different
scientific computing areas, e.g., bioinformatics, astronomy,
or geographic information sciences. Let’s take for exam-
ple, a scientist who wants to simulate small angle scattering
(SANS) techniques [7] to classify the shape of a molecule.
The normal process in this case involves different runs of
the simulation, with the scientist checking the simulation
results and changing the input parameters after each run.
The choices of parameter ranges with the resolutions of the
parameters is commonly referred to as a parameter sweep.
A parameter sweep is hence composed of a large number
(up to tens of thousands) of tasks, which, if run on the
proper number of resources, will produce the results in a
small amount of time, e.g., 5 minutes. To run these tasks
as fast as possible, the scientists can benefit from a cloud
infrastructure, on which a large number of VMs can be “in-
stantly” deployed. A more general example is the case of
scientific web portals [28], which receive bursts of requests
from users who need interactive response times to under-
stand the effects of their simulation parameters and change
them in real time. To cope with the burst in demand, such
applications use auto-scaling mechanisms provided by the
cloud infrastructure.
Needless to say, in these cases the time to deploy the VMs

on the cloud infrastructure has an important role as it can
lead to variable and large response time for users. However,
in reality, cloud providers overlook the importance of the
VM deployment time, which can be in the order of minutes,
or even tens of minutes, with a high variability. To show
how much time it actually takes to start a batch of VMs, we
installed OpenNebula [11], an open source cloud stack, on
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Figure 1: VM deployment performance with the “out-of-the-box”
OpenNebula configuration and the tuned one.

our private infrastructure using an “out-of-the-box” config-
uration, i.e., we used the default configuration and we only
configured the network and the VM image storage so that it
can run successfully on our cluster. We chose OpenNebula
due to its simple and flexible design, and also because it is
widely used both in industry and in academic research. We
considered the scenario of the scientist who runs the SANS
parameter sweep; thus, in this case, running the applica-
tion on a large number of VMs should considerably speed
up its execution time. Figure 1 (left) shows the deployment
times of 512 VMs, for which the requests were submitted si-
multaneously to OpenNebula. We noticed that the average
deployment time per VM was approximately 10 minutes,
while the maximum deployment time (the 100th percentile)
was approximately 22 minutes. Thus, in reality the time
the user has to wait for the VMs to start running on the
infrastructure would be much higher than the makespan of
her application.
This issue motivated us to investigate the real causes of

overhead by analyzing the VM deployment workflow in Open-
Nebula. Our findings consist of multiple optimization rounds
over the configuration and implementation of the cloud stack.
The results of our improvements can be seen in Figure 1
(right). Although none of our improvements fundamentally
change the design of OpenNebula, the VM deployment times
reduced with an order of magnitude: the maximum deploy-
ment time dropped from 22 minutes to 90 seconds. We
describe in more detail the issues we found and the opti-
mizations that we performed in the following sections.
To give a better understanding of our results, we describe

next the design of the analyzed cloud stack and our em-
ployed methodology.

2.2 OpenNebula
To understand what are the potential scalability over-

heads when deploying VMs, we analyzed the process per-
formed by OpenNebula. Although other open source cloud
stacks exist, like OpenStack [6], Eucalyptus [14], or Cloud-
Stack [2], OpenNebula’s simple design made it the most suit-
able for our purposes. The architecture of OpenNebula is
modular and extensible. A daemon, which resides on the
infrastructure’s head node, keeps infrastructure bookkeep-
ing information and manages all operations regarding VMs,
users, network, and storage. The daemon uses an XML-
RPC server to receive the commands related to infrastruc-
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Figure 2: VM deployment process in OpenNebula. The states of a
VM are depicted in red and the actions taken by various components
in blue.

ture and VM management. Users submit requests to deploy
and manage VMs to OpenNebula through either standard-
ized interfaces, like Amazon EC2’s API, or through provided
CLI and web clients. On the infrastructure’s hosts, Open-
Nebula requires deploying a set of scripts, called remotely by
the head node through a set of components named drivers.
Each driver has a specific function, e.g., to monitor the VMs,
to transfer the VM image, or to start and manage the VM
on the designated host. The placement of VMs on the hosts
is decided by a scheduler, started by default on the head
node.

2.2.1 VM deployment process
Figure 2 gives an overview of the process required to de-

ploy a VM. The main stages and components involved in
this process are summarized in Table 1. With the CLI client,
the user has to submit a template to the OpenNebula head
node, containing the desired configuration of the VM, e.g.,
VM disk image, resource and network configuration, scripts
to run at boot time, etc. The OpenNebula’s scheduler sets
the VM in a PENDING state and puts it in a queue.
The scheduler periodically applies an algorithm to select the
hosts on which the pending VMs are placed. The scheduler
places multiple VMs on the same host, if enough resources
are available. If the scheduler cannot find any suitable host,
the VMs are kept in the pending queue.
After a suitable host is selected, the OpenNebula daemon

handles the VM’s deployment. First, the VM is set in a
PROLOG state and the VM’s disk image is copied or con-
figured on the host. The disk image transfer is managed
by a component of the head node daemon, called Transfer
Manager (TM). To allow its users to customize the Transfer
Manager with different transfer and data storage mecha-
nisms, the design of OpenNebula delegates the execution of
the transfer commands to a Transfer Manager driver, which
can execute user-defined scripts.
The last part of the boot process happens on the host.

The VM is set in a BOOT state, network interfaces are
set up and the VM is booted by the host’s hypervisor. The
network setup and VM boot commands are invoked on the
hosts by the Virtual Machine Manager (VMM), which is also

Table 1: OpenNebula’s components involved in VM deployment.

VM state OpenNebula Component
Pending Scheduler
Prolog TM, TM driver
Boot VMM, VMM driver

a part of the head node daemon. Like the Transfer Manager,
this component is also higly customizable; a Virtual Machine
Manager driver can be configured to execute scripts specific
to the hypervisor type installed on the hosts. When the VM
is started, OpenNebula sets the VM’s state to RUNNING.

2.2.2 OpenNebula drivers
We used two specific drivers of OpenNebula: the QCOW2

driver [10] for the TM, and the KVM driver for the VMM.
For a faster deployment, we store the VM disk images in
a QCOW2 format accessed through a remote file system.
When the user starts a VM, a new copy of the original disk
image, initially empty, is created. For read operations, this
new image acts as a bypass for the original one: when a data
block is read by the application running in the VM, if the
block does not already exist in the image, it is fetched from
the original image over the network. Write operations are
written to the new image, leaving the original remote image
unmodified. When a VM disk image needs to be deployed,
the TM driver simply invokes the command to create the
QCOW2 image on the corresponding host.

2.3 Methodology
We split the deployment in multiple stages to analyze their

execution time. We define these stages and measure the time
interval for each of them as follows:

• START-PENDING: the time interval between the
user’s submission of the VM and the time at which
OpenNebula registers it in the scheduler queue.

• PENDING-PROLOG: the time interval required
by the scheduler to decide the placement of the VM
and send the deployment commands to the head node.

• PROLOG-BOOT: the time interval needed by the
TM to set up the VM’s disk image at the host.

• BOOT-RUNNING: the time required by the VMM
to start the VM on the host.

• RUNNING-NET-MSG: we define this last inteval
as the time required by the operating system running
in the VM to finish its initialization. We note here
that OpenNebula sets the VM in a RUNNING state
when the operating system of the VM is still initializ-
ing. However, the user cannot connect to the VM and
start her application at this point. Thus, to measure
the exact time when a VM finishes its boot process,
we configure each VM to send a network message to
the head node once its operating system is initialized.
When this message is received, the VM is set in a spe-
cial state, called NET-MSG in Figure 2.

We measured these time intervals in a scenario in which
we submit a request to deploy 512 VMs simultaneously to
OpenNebula. We used the same VM disk image for all of the
VMs, which fits the scenario of the scientist running an in-
teractive HPC workload. In this case, the VMs running the
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(a) Default OpenNebula installation’s deployment
time decomposed to stages
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(b) Optimized scheduling parameters
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(c) Scheduling time increases with the number of VMs
per host
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(d) Deployment time of a single host after fixing the
scheduling issue
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(e) Concurrent VM startups per host
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(f) Enabling page-cache reuse for KVM

 0

 50

 100

 150

 200

 250

 300

Average Maximum

ti
m

e
 (

s)

Deployment time 512 VMs on 16 hosts

START-PEND
PEND-PROL
PROL-BOOT
BOOT-RUNN

RUNN-NET_MSG

(g) Increasing the size of the drivers’ thread pool
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(h) Optimized code

Figure 3: The process of tuning OpenNebula for large-scale deployments. Note the different scale of the vertical axis on figures a, c, and d.

application often have the same application code installed.
During our experiments, we focused on understanding and
optimizing the most problematic VM deployment stages.
We noticed that different changes in the system’s and cloud
stack’s configuration lead to reducing the time interval of a
particular stage, but at the cost of increasing the time of
other stages. Thus, we repeated this process iteratively un-
til we eliminated all the potential problems, while avoiding
modifications to the architecture of OpenNebula.

3. EXPERIMENTS
We describe the process that we undertook for tuning

VM deployment in OpenNebula 4.4.1 (released on 4 Feb,
2014 [16]). Initially, we tried to reduce the VM deployment
time by changing the configuration, but after a number of
iterations, it was clear that we also need to resolve some of
the scalability issues in the OpenNebula’s code.
For our experiments, we used 16 compute nodes from

DAS4/LU cluster [3] as VM hosts, and the cluster’s head
node for running the OpenNebula daemons. The nodes are
equipped with dual quad-core Intel E5620 CPUs, running at
2.4GHz, with 24GB of memory. The nodes are connected
using a commodity 1Gb/s Ethernet switch and a QDR In-
finiBand providing a theoretical peak of 32Gb/s. We used
the InfiniBand network for our experiments to avoid the net-

work bottlenecks. In situations where premium networks are
not available, low-overhead caching techniques [24, 23] avoid
the network bottlenecks associated with VM deployment.
The head node runs an off-the-shelf NFS server optimized
for read and write requests at QCOW2’s cluster size [10],
which stores the VM disk images. The guest VMs run De-
bian 7.4 as their operating system.

3.1 Scheduler’s configuration
Figure 3-a shows the time decomposition of the 512 VM

deployments that we showed earlier in Section 2.1 in the
stages that we discussed in Section 2.2. We notice that the
longest stage is scheduling the VMs. Hence, our first step
was to change the configuration parameters of the Open-
Nebula scheduler. We reduced the scheduling interval from
30 seconds to the minimum possible value of 1 second, and
we increased the number of VMs dispatched in each interval
to 1024, both per host and in total.
Figure 3-b shows the effects of changing these parameters

on the deployment time. While this simple modification
improves the scheduling time considerably, still a significant
portion of the deployment time is spent in the scheduling
stage.
To investigate the issue, we removed all the hosts except

one from our OpenNebula setup. Figure 3-c shows that



the deployment time increases linearly with the number of
VMs per host. This turned out to be due to the fact that
the OpenNebula scheduler ignored the configuration vari-
able that specifies the number of VMs dispatched per host
in each scheduling interval. Fixing the problem, Figure 3-d
now shows improved scheduling times compared to Figure 3-
c. Scaling back to 16 hosts, as shown in Figure 3-e, 512 VMs
now start on average in 145.6 seconds (4.4× improvement),
and the slowest one starts in 229 seconds (5.5× improve-
ment).

3.2 Host-side caching
After improving the scheduler, we notice that most of the

deployment time belongs to the actual VM starting time
which involves the booting of the guest operating system.
Note that the operating system reads data blocks on demand
from its VM image hosted on the head node. In our scenario
of an interactive HPC user, the VM image is the same for
all the deployed VMs, and hence it should be cached and
reused by all the VMs that are co-running on their host.
Unfortunately, we noticed that the default OpenNebula

template for VM deployment uses DIRECT IO, which pro-
hibits the NFS clients to cache the VM image data. As a
result, although started from the same disk image, each VM
was reading its entire boot reading set rather than reusing
that of others. To remedy this, we enabled the default
caching policy for KVM disks. This reduced the NFS traf-
fic at the head node (storage site) to the expected amount.
Figure 3-f shows the effects of caching. We can make two
interesting observations: 1) The average deployment is now
74.3 seconds and has improved by almost a factor of two, but
the maximum deployment time is now 241 seconds and has
degraded by 12 seconds. 2) The stage that takes the longest
is now the PROLOG-BOOT followed by BOOT-RUNNING,
suggesting that the scalability bottleneck has now shifted to
a different location.

3.3 Execution parallelism
According to Table 1, during the BOOT-RUNNING phase

the TM driver is active, and during the PROLOG-BOOT
phase the VMM driver is active. To improve the perfor-
mance of these stages, we boosted their concurrency by in-
creasing their number of active threads, from 15 to 128 for
the TM driver and from 10 to 32 for the VMM driver re-
spectively. Curiously, increasing the number of VMM driver
threads to more than 32 does not improve the performance
further. This turned out to be due to a locking issue in the
VMM driver which we discuss in Section 3.4.1.
Figure 3-g shows the improvements due to this change.

We can see that with a simple modification of the configu-
ration by fixing a simple scheduling issue, the deployment
time of 512 VMs is reduced on average from 74.3 to 63.2
seconds, and for the last VM from 241 to 133 seconds.

3.4 OpenNebula’s code tuning
Exhausting all the options for optimizing the configura-

tion of OpenNebula, we looked for possible sources of over-
head in its source code. Here, we give a brief overview of
them before showing the results of our optimizations.

3.4.1 Unnecessary locks in the VMM driver
The VMM driver is the entity that handles VM operations

on the target host. For the actual commands, executed with

SSH, it uses one of its configured threads. We noticed that
there is a lock per host that needs to be acquired before
processing a new VM. This lock essentially serializes the
VM commands assigned to the same host.
This serialization is not protecting any critical state in

the OpenNebula core, and is most likely implemented to
protect against concurrency problems in the virtualization
toolkit that runs on the hosts. In our setting, i.e. libvirt [9]
and KVM, this is not an issue, so we can safely remove this
lock allowing VMs to be concurrently deployed on each host.
Note that libvirt on top of KVM (or Xen) is a commonly
used virtualization stack.

3.4.2 Slow vertical parallelism
OpenNebula follows a simple producer/consumer design

pattern for communication between each of its components.
We roughly describe it here: each component (e.g., VMM
driver, transfer manager driver, etc.) has a single thread
that takes an action object (i.e., a deployment request) from
a queue (i.e., taking a consumer role), does the necessary
work on the object, and passes the object on to the next
queue (i.e., taking a producer role).
This vertical design synchronizes the actions at the queues

between each component, and hence, the action throughput
of the system is determined by the slowest component. To
remedy this, and given that the actions do not share state
between each other, we decided to follow a horizontal thread-
ing pattern in which each action is handled by one thread
throughout its lifetime. This avoids queueing of the action
objects at the cost of extra threading, which we offset by
using a thread-pool.

3.4.3 Expensive SSH connections
OpenNebula uses SSH connections for executing actions

on the VM hosts. For each deployment, there are two actions
executed on the host: preparing the VM image (TM driver),
and starting the VM (VMM driver). This means that for
the deployment of 512 VMs, the head node needs to create
1024 processes that create SSH connections to the hosts in
a relatively short amount of time.
This is too expensive and slows down the head node. In-

stead, we use persistent TCP sockets for communicating the
commands to the VM hosts. The security of these connec-
tions can easily be ensured using SSL, which we have left
for future work.

3.4.4 Serial deployments
For our experiments, we use the onevm [17] command

provided by the CLI client of OpenNebula. The command
receives as arguments a VM deployment template as well as
the number of VMs to instantiate from the template. We
noticed that onevm sends the deployment requests serially
using the RPC multicall API of OpenNebula daemon. To
avoid slow RPC requests/responses that execute serially, we
changed the interface to allow for multiple deployment re-
quests to be sent with a single RPC call.

3.4.5 The effects of OpenNebula’s code tuning
Figure 3-h shows the difference in deployment time of 512

VMs after our detailed code optimizations. The deployment
time of the VMs has improved on average from 63.2 seconds
to 53.54 seconds, and the last VM now starts in 87.8 seconds
instead of 133 seconds. At this point, the largest part of the
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Figure 4: An overview of changes in VM deployment time after tuning
the OpenNebula’s configuration and fixing bottlenecks in its code.
Note how the VM deployment time reduced from an average of 615
seconds to 53.54.

total VM deployment time is the booting of the guest OS
that can be further improved as suggested in [24, 26].

3.5 Summary
We described the tuning of OpenNebula for large-scale de-

ployment of VMs. We started first by tuning the configura-
tion parameters, and then looked at the scalability issues of
the code. Figure 4 shows the improvements that we achieved
by tuning the configuration parameters, and the results of
optimizing OpenNebula’s code. To summarize, compared
to the default installation, optimizing only the configura-
tion improves the average by 5.9× and the maximum case
by 4.8×. Optimizing the code, the average improves by 12×
and the maximum case by 14.4×.

4. IMPROVEMENT OPPORTUNITIES
We previously discussed our efforts to overcome the scal-

ability issues faced when deploying a large number of VMs
on top of a default OpenNebula installation. These efforts
revolved around tuning OpenNebula’s configuration param-
eters, tuning the compute hosts, as well as relaxing the lock-
ing semantics and parallelizing parts of OpenNebula’s code.
From these efforts we outline two opportunities for improve-
ment, which can improve the practices of cloud stack devel-
opment and management. We describe them next.

4.1 Auto-tuning for cloud software stacks
The centralized design of OpenNebula leads to a fairly

simple configuration, compared to other existing cloud soft-
ware stacks, composed of multiple services, each with its own
configuration to tune. But even then, we learned from our
experience that manual tuning of the configuration param-
eters, and the infrastructure itself, for large-scale VM de-
ployment is a tedious and time-consuming process. Worse,
some of the optimizations can only be applied after scala-
bility bottlenecks show up in production. Although popular
cloud stacks have their well-established communities and a
large amount of information can be found regarding their
configurations, one still needs to spend a large amount of
time to deal with all their intricacies.
We argue here that the tuning of open source cloud soft-

ware stacks can be automated to a certain degree through
the design of tools that have the in-depth knowledge of con-
figuration parameters and can set these parameters accord-
ing to the properties of the infrastructure and the intended

workload. The administrator involvement in this case would
be to pass information to such tools regarding the infras-
tructure and the workload. For example, the administrator
could have some estimates regarding the average number of
VM deployments that happen simultaneously, or how many
VMs are active on average in the infrastructure. Using this
high-level information, the auto-tuning tools would config-
ure the parameters of the cloud software stack to their op-
timal values. The scheduling period could be decreased, or
the maximum number of requests processed in parallel by
the cloud stack could be increased. If the number of users
of VM images is not expected to grow then the VM images
can be fully cached on the hosts reducing network traffic.
If VM migration is common then some network bandwidth
should be reserved, and so on.
Some tools already exist for tuning the configuration of

some cloud stacks [5], but they only focus on user and host
management and provide simple parameter configuration,
like asking the administrator in what folder the VM images
should be stored. These automated management tools can
be a basis for developing the more elaborate auto-tuning
mechanisms that consider both the details of the infrastruc-
ture and the workload.

4.2 Scalability testing suites
Although tuning the cloud software stack and the infras-

tructure had a large impact on the VM deployment time,
in our experiments we also noticed possible improvements
in the implementation. These improvements are not fun-
damental, as they do not change the architecture of the
cloud stack, but they are incremental improvements on the
scalability of the code. Nevertheless, we showed that these
changes improved the performance of VM deployment in our
scenario on average by 2× and for the last VM by 3×.
The need for such changes stresses the importance of thor-

ough testing infrastructures, designed to stress each compo-
nent of the cloud stack at large scale. Because existing open
source cloud stacks were developed and tested on small scale
testbeds, some issues were overlooked. These issues only ap-
pear at scale during large deployments that generate bursts
of requests. For example, in our case, we did not notice
the poorly designed locking and communication between the
components until we deployed a large number of VMs simul-
taneously and fixed all the configuration issues that delayed
the processing of the requests by OpenNebula.
Therefore, we recommend that the cloud stack developers

employ scalability testing suites that run, e.g., nightly, to
avoid introducing changes that may have adverse effects on
scalability. Unfortunately, testing large-scale deployments
requires a large infrastructure that may not be available to
open source developers. If that is the case, dummy adapters
that emulate a cloud infrastructure can be used for running
the scalability testing suites.

5. RELATED WORK
We classify the research work related to scalable VM de-

ployment in three main categories, which we discuss next.

5.1 Scalable cloud architectures
Several works focused on the scalability of the cloud stack

architecture. Although in our study we chose OpenNeb-
ula, which has a centralized design, there are a number of
projects that improve the infrastructure services through hi-



erarchical or fully decentralized architectures. OpenStack [6]
has a loose component-based design. Different services man-
age different infrastructure components, e.g., data storage,
networking, user authentication, and communicate through
scalable message passing queues. The services can run on
different nodes to provide scalability and fault tolerance.
Eucalyptus [14] and Snooze [4] have a hierarchical design.
The hosts are organized in groups managed by local con-
trollers while a central controller monitors the local con-
trollers and delegates requests to them. DVMS [20] is com-
pletely decentralized as it relies on a peer to peer overlay for
large-scale VM management.
In this paper we do not focus on the architecture opti-

mizations. To the best of our knowledge, we show for the
first time how to tune an existing cloud stack for large-scale
VM deployment. Tuning a cloud stack, one with an already
simple centralized design such as OpenNebula, can be very
challenging. Decentralizing the architecture, while having
certain advantages, introduces additional complexity that
will make tuning more difficult. We are currently looking
into scalability problems of VM deployment in OpenStack.

5.2 Scalable transfer/caching of VM images
There is a large body of work that recognizes network

and/or storage as the main source of bottlenecks in deploy-
ing massive number of VMs due to the transfer of VM im-
ages. Techniques for scalable transfer or storage of the VM
images can help eliminating these bottlenecks.
Peer-to-peer networking is a common technique for trans-

ferring VM images to many compute nodes [1, 15, 27, 31].
In these systems, peers fetch most of the VM image blocks
from each other rather than from centralized storage servers,
relieving the network bottleneck.
IP multicasting uses the parallelism available in the switch,

and has been used previously for scalable delivery of VM im-
age contents to the hosts during VM deployment [29, 30].
To improve VM startup, other systems cache the VM im-

age contents, deduplicated or otherwise, on each host. Liq-
uid [33] and similar systems (e.g., [13, 19, 32]) are designed
for scalable VM image distribution. Squirrel’s cVolumes [23]
persistently cache all the blocks needed for starting different
VMs by capturing their boot working sets [24] in a com-
pressed ZFS file system. µVM/Squirrel [26] caches minimal
memory snapshots and employs fast VM resume, and re-
source hot-plugging for instant and scalable VM startup.
Opposed to these works, in this paper, we focus on the

scalability of the cloud stack. Our optimized cloud stack
can be used orthogonal to these approaches to improve the
deployment time of the VMs.

5.3 VM image consolidation
Reducing the VM image size results in faster deployment

time due to the reduction of network transfers.
VMPlant [8] is a service for generating custom VM images.

The user provides VMPlant with 1) machine requirements
(e.g. OS, size of memory and disk, etc.), and 2) a set of
configuration scripts and their dependencies in the form of
a directed acyclic graph (DAG). VMPlant then generates a
new VM image based on previously cached VMIs.
Quinton et al. [21] use package dependency information to

install the minimum number of packages for a given applica-
tion. To minimize the disk size, they estimate the installa-
tion size of each package. [25] follows a similar approach, but

it uses a fresh VM image for copying the packages, resulting
in clean VM images without a need for size estimations.

6. CONCLUSIONS
Infrastructure-as-a-Service clouds are a key platform in

running a growing number of interactive HPC applications,
which often need large amounts of compute and data storage
resources. Given that these workloads require fast access to
VMs, cloud providers often overlook the importance of VM
deployment time. An important factor in the scalability of
VM deployment is the design of the cloud software stack and
a correct infrastructure configuration.
In this paper, we described the process that we followed

for tuning a popular, open source cloud stack, tuning the
infrastructure, and resolving the scalability bottlenecks in
the implementation of the cloud stack. We showed that this
process plays an important role in improving the scalability
of VM deployment, leading to improvements in VM deploy-
ment times with an order of magnitude. Starting from a de-
fault OpenNebula installation, on which deploying 512 VMs
takes 615 seconds on average, our improvements lead to a
deployment time of 53.54 seconds. This process led us to
identify two main problems. First, the manual tuning of the
cloud software stack by an administrator is time-consuming
and error-prone. Second, cloud software stack development
often does not cover scalability corner cases.
These findings raise the need of automated tuning of the

cloud stack to the infrastructure and the workload deploy-
ment and management software, as well as testing suites tai-
lored for scalability. In the absence of a large-scale testing
infrastructure, large deployment emulation can help identify
the majority of the implementation scalability issues.
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