
Rubicon: Precise Microarchitectural Attacks with Page-Granular Massaging

Matej Bölcskei
ETH Zurich

mboelcskei@ethz.ch

Patrick Jattke
ETH Zurich

pjattke@ethz.ch

Johannes Wikner
ETH Zurich

kwikner@ethz.ch

Kaveh Razavi
ETH Zurich

kaveh@ethz.ch

Abstract—Microarchitectural attacks like Rowhammer and
Spectre rely on precisely targeting specific memory page
frames despite the inherent unpredictability of memory
allocation. Due to the lack of a generic mechanism to
accurately place the target data in the pages of interest,
these attacks resort to spraying their target or scanning the
entire physical memory for it. These approaches, however,
suffer from unreliability and inefficiency. In contrast, the
deterministic behavior of page allocators presents an oppor-
tunity to enhance existing attacks and enable new ones.

This paper introduces Rubicon, a novel technique for
page-granular physical memory massaging within the Linux
kernel’s Zoned Buddy Allocator (ZBA). Rubicon leverages
three new primitives that enable placing a page frame
at the head of any chosen ZBA free list, ensuring it is
prioritized for allocation regardless of its initial state or
per-CPU freelist association. Using Rubicon, we build the
first deterministic privilege escalation Rowhammer exploit
on x86 with a success rate of 100%. Our integration of
Rubicon into a recent Spectre attack shows that the root hash
of /etc/shadow can now be leaked in 27.8 and 9.5 seconds
on AMD and Intel systems — a 6.8× and 284× speedup
over the original attack, respectively. We also propose and
evaluate practical mitigations for Rubicon, which limit page
movement between ZBA lists with negligible performance
and fragmentation impact.

1. Introduction

In many cases, the seemingly random page frame as-
signment of victim data makes microarchitectural attacks
slow and unreliable. In attacks like Rowhammer [1]–
[4], this can lead to corruptions that crash the system.
In Spectre attacks on the kernel [5]–[7], this leads to
searching vast amounts of physical memory with a slow
and noisy side channel. What if the attacker could place
the victim data on any desired free page in the system?
This paper provides this generic capability on top of Linux
for the first time and shows the significant advantage that
it provides for microarchitectural exploitation, including
possibilities for new Rowhammer and Spectre-like attacks.

Physical memory massaging. One of the original memory
massaging concepts was described by SkyLined with heap
spraying [8]. Broadly speaking, memory massaging is
about interacting with a memory allocator until it creates
a desired layout in memory to prepare for reliable ex-
ploitation. Razavi et al. [9] extended the scope of memory
massaging beyond virtual memory, such as the heap, to

physical page frames to exploit Rowhammer bit flips in
DRAM [10], [11]. With physical memory massaging, the
attacker aims to interact with low-level memory allocators,
to force some victim data to be placed in a specific
location in physical memory. This has been achieved
by abusing page deduplication [9], user-accessible Direct
Memory Access (DMA) APIs in Android [3], or thread-
local and purpose-bound reuse of physical pages [12].
These massaging techniques are either limited or rely
on specific features that have been disabled. Therefore,
a universal page-granular physical memory massaging
capability is currently missing.

Microarchitectural attacks. Reliable Rowhammer at-
tacks make use of physical memory massaging to land
security-sensitive data on a target page of interest before
corrupting or leaking it [3], [9], [12]. In the absence of
physical memory massaging, the alternative is spraying
the security-sensitive data [1], which is unreliable for
large memory spaces. Another class of microarchitec-
tural attacks that could potentially benefit from physical
memory massaging is Spectre-like attacks on privileged
memory [5]–[7], [13]. These attacks look for secret data
in physical memory by first forcing the secret data to
be allocated at an unknown location. They then scan the
physical memory to look for the secret data. Due to noisy
and low-bandwidth channels, it can take a very long time
to find the secret. Furthermore, the duration of the attack
increases with the amount of physical memory installed
in the system. We make a key observation that physical
memory massaging can also significantly improve this
class of attacks if the attacker can control the exact page
frame to which the secret data is assigned.

Rubicon. This paper presents Rubicon, a new physical
memory massaging technique that enables an attacker to
allocate victim data in any desired page in the Linux
Zoned Buddy Allocator (ZBA). Rubicon achieves this
objective by pushing the desired page onto the head of
any allocator free list that the victim data can use. Three
new mechanisms make Rubicon possible:

(1) moving blocks of pages across different ZBA free
lists of different orders,

(2) evicting a given page from its respective per-CPU
pages (PCP) free list so that the victim’s allocator
can claim it, and finally,

(3) repurposing a given page, since Linux avoids reusing
pages with a different purpose (e.g., anonymous
memory) than the requested one (e.g., page table).

Rubicon uses the first mechanism to push the desired
page to the correct free list, the second mechanism to
make sure the next allocation is served from that free list,
and the last mechanism to associate the desired page with
the correct purpose (i.e., migratetype) of interest.

We demonstrate the benefits of the Rubicon primitive
using two different microarchitectural attacks: we build
the first reliable Rowhammer-based privilege escalation
exploit on x86 without relying on special memory man-
agement features. Rubicon enables the exploit to trigger a
page table allocation on a previously attacker-owned page,
regardless of its previous purpose, i.e., its associated mi-
gratetype. We also integrate Rubicon into RETBLEED [7],
a recent Spectre-style attack on the Linux kernel. In this
case, Rubicon enables RETBLEED to land /etc/shadow
on an attacker-provided page. Without the need for scan-
ning physical memory, Rubicon-armed RETBLEED is, on
average, 6.8× and 284× faster on AMD and Intel systems.

Lastly, we design and implement three different miti-
gations against Rubicon, targeting each of the mechanisms
Rubicon relies on. These mitigations are based on random-
ization, better isolation of PCP lists, and more restricted
type migration. Our evaluation of these mitigations shows
that they have a minimal impact on performance and
fragmentation.

Contributions. We make the following contributions:
• We present Rubicon, a novel technique for massaging

arbitrary data into arbitrary physical memory locations
from an unprivileged process in Linux using three
mechanisms: PCP Evict, Block Merge, and Migratetype
Escalation.

• We use Rubicon to build the first deterministic x86
Rowhammer exploit and to significantly speed up the
leakage of /etc/shadow with the RETBLEED attack.

• We propose mitigations with low impact on perfor-
mance and fragmentation that directly address the low-
level ZBA features that enable Rubicon.

Open sourcing. Rubicon is fully open source, with a focus
on ensuring easy integration into diverse attack scenarios.
Further details are available on the project webpage:
https://comsec.ethz.ch/rubicon.

2. Background

We introduce Rowhammer (Section 2.1) and Spectre
attacks (Section 2.2) before providing some background
on virtual memory management (Section 2.3) and physical
memory massaging (Section 2.4).

2.1. Rowhammer Attacks

Dynamic random-access memory (DRAM) is a mem-
ory technology commonly used as main memory. It stores
bits of information in memory cells consisting of a capaci-
tor and access transistor, organized in a matrix structure of
rows and columns. Before a read or write request, the en-
tire row is brought into a row buffer by the ACT command.
From there, data can be accessed at a smaller granularity.
Since capacitors leak charge over time, each DRAM cell
has to be refreshed (at least) once per refresh window (e.g.,
every 64 ms for DDR4), achieved by periodically sending

a REF command to the DRAM chip, which refreshes the
cells’ charge to ensure data integrity.

As the density of DRAM cells approaches physi-
cal limits, their ability to reliably retain charges dimin-
ishes [14]. In 2014, it was shown that attackers can
reliably induce disturbance errors in victim rows by re-
peatedly activating, or hammering, neighboring aggressor
rows [10]. This poses a significant threat as it allows
attackers to leak data [12], [15] or corrupt security-
sensitive structures like page tables [3], [16]–[18], SSH
keys [9], or object references [19], [20], assuming they
can reliably be placed into physical memory locations
vulnerable to Rowhammer. In response, vendors have
deployed in-DRAM mitigations referred to as Target Row
Refresh (TRR). However, these mitigations were proven
to be vulnerable and can be bypassed with special access
patterns [11], [21]–[23].

2.2. Spectre Attacks

Modern CPUs rely on a performance optimization
technique called speculative execution to reduce stalls
due to unresolved branch instruction dependencies. Rather
than waiting for the dependencies to resolve, branch pre-
dictors serve predictions of the upcoming control flow
based on the recorded control flow history. The execution
then speculatively continues along the predicted instruc-
tion path. When the branch instruction dependencies are
finally resolved, the speculative results are committed
to the architectural state if the prediction was correct.
Otherwise, the results are squashed, and the execution
restarts at the correct instruction instead.

Although incorrect computations are squashed, they
leave microarchitectural traces behind (e.g., in caches)
that can be leaked with side channels [24]–[26], as shown
by Meltdown [27] and Spectre [28]. In Spectre attacks,
an attacker manipulates branch predictors to speculatively
execute code to reveal secrets such as passwords or en-
cryption keys through a microarchitectural side channel.
A recent example is RETBLEED which bypasses the orig-
inally proposed retpoline mitigation [29]–[31]. As many
speculative execution attacks, RETBLEED achieves a low
leakage rate (219B/s on Intel Coffee Lake). Even worse,
and typical in such attacks, the location of the secret
information is unknown, which forces the attacker to scan
the entire physical memory for a known part of the secret.

2.3. Virtual Memory Management

On modern CPUs, software operates on virtual mem-
ory, which is an abstraction layer on top of physical mem-
ory. The memory management unit (MMU) transparently
translates virtual to physical addresses by traversing page
tables. Page tables consist of page-table entries (PTEs)
that reference page frames, which are fixed-sized blocks
of contiguous physical memory (usually 4KiB). The x86-
64 architecture typically uses a 4-level page table struc-
ture, where the last-level PTE stores the physical address
corresponding to the virtual address.

The virtual address space is orders of magnitude larger
than the available physical memory and is exclusive to
a single process. Demand-paging enables processes to
physically back only those virtual pages that are accessed.

https://comsec.ethz.ch/rubicon

alloc_page_table()

A

alloc_page(UNMOVABLE)

A

e.g. page tables

UNMOVABLE

alloc_stack_page()

A

alloc_file_page()

A

alloc_page(MOVABLE)

A

e.g. file pages

MOVABLE
Allocate A

Allocator Pools

Figure 1: Allocator pools. Allocators partition memory into several
pools tailored to serve allocations with specific requirements. In this
example, one pool allows the underlying physical pages to be migrated
(i.e., MOVABLE) while the other does not (i.e., UNMOVABLE).

2.4. Physical Memory Massaging

Physical memory allocators inside an operating system
are responsible for managing physical memory. Their
main goal is to allocate memory efficiently to different
processes or kernel components with specific require-
ments, such as specific physical memory ranges, physi-
cally contiguous memory, or physical memory that should
not be moved (e.g., due to swapping). A common strategy
of allocators is to partition memory into distinct pools
tailored to allocation requirements, as shown in Figure 1:
a general pool for user allocations and a specialized pool
for kernel-level allocations.

Memory massaging is the process of manipulating
memory allocation mechanisms so that allocations fall into
predictable memory locations. As such, it is a common
preliminary stage of many exploitation techniques [2]–
[4], [9], [12], [19], [20], [32]–[39]. To achieve predictable
memory allocations, the attacker may, for example, allo-
cate and free large ranges of memory to defragment it,
causing the memory allocator to return memory locations
following predictable patterns. Once the memory allocator
has been manipulated to issue predictable memory loca-
tions, the attacker can exploit this predictability to place
the victim data at the targeted memory location.

Existing Rowhammer attacks rely on memory mas-
saging for reliably placing the target data structure on a
vulnerable location in physical memory, but they often
rely on special memory management features. As an ex-
ample, Drammer [3] relies on the ION allocator and Flip
Feng Shui [9] on memory deduplication. Therefore, these
attacks can (and have been) mitigated by simply disabling
these special features. Instead of memory massaging, it is
also possible for a Rowhammer attack to rely on spraying
the target data structure in the hope that it lands on the
desired physical memory location [16], [17]. Spraying re-
sults in attacks that are not always successful and requires
creating multiple copies of the target data structure, which
limits it to certain targets, such as page tables. Conse-
quently, we currently lack a precise massaging technique
using basic operations of the physical memory allocator
that works on a variety of victims and systems.

3. Threat Model

We assume an attacker who is in control of an un-
privileged process running on an up-to-date Linux kernel.

D A

UNMOVABLE

D A

MOVABLE

page_to_pool page_from_pool

pool_to_pool
Allocate A Deallocate D

Figure 2: Primitives for page-granular massaging. page to pool
places a target page inside a pool, pool to pool moves it between
pools, and page from pool gets it back from a desired pool.

The attacker intends to place a victim data structure in
a specific block under their control. They can trigger the
creation of at least one copy of the victim into memory at
will. We do not assume any special memory management
feature to be present such as page deduplication [9], user-
level I/O allocators [3], or certain procfs files to help with
physical memory massaging [12]. The additional attack-
specific requirements of our examples are outlined below.

Rowhammer. We assume DRAM devices to be vulnera-
ble to Rowhammer bit flips. Recent work shows that most
DDR4 devices are vulnerable. We use a fuzzer to find
effective patterns [21].

Spectre. We assume a CPU that employs speculative exe-
cution. Such attack on the kernel often provide a primitive
for scanning kernel memory to look for a secret [6], [7],
[13], [28]. As an example, we use RETBLEED [7] to show
the benefit of precise memory massaging for Spectre-
like attacks. We assume all mitigations against speculative
execution attacks that were available at the time of the
original study to be enabled, i.e., KPTI, retpoline, user
pointer sanitization, and disabling unprivileged eBPFs.

4. Overview

Section 4.1 introduces a set of primitives that are
needed to build our page-granular massaging technique
Rubicon. Section 4.2 discusses how these primitives en-
able precise microarchitectural attacks, and Section 4.3
gives an overview of the challenges of implementing them
using the operating principles of the pool allocator.

4.1. Page-Granular Massaging Primitives

We assume that the attacker is in control of a physical
page P. The goal is to construct a massaging technique
that enables an attacker to place the victim data on P.
Assuming a generic pool-based allocator, we require three
primitives to achieve this page-granular massaging tech-
nique shown in Figure 2: (i) a page to pool primitive to
put the previously allocated page P back on a pool; (ii) a
pool to pool primitive to move P between pools, if the
attack requires victim data allocations from a different
pool; and (iii) a page from pool primitive that enables
the attacker to store the victim data on P.

4.2. Precise Microarchitectural Attacks

Microarchitectural attacks such as Rowhammer or
Spectre, albeit quite different, would both benefit from
our new page-granular massaging technique.

Rowhammer. To perform a privilege escalation Rowham-
mer attack, the attacker needs to find a page with a
suitable bit flip that can corrupt a PTE. Once such a
page P has been found, it is returned to the allocator with
the page to pool primitive. Since page table pages are
allocated from a different pool, the attacker invokes the
pool to pool primitive to move P to the pool where
page table pages are allocated from. Finally, the attacker
invokes the page from pool primitive to store a page
table page on P, achieving the desired objective.

Spectre. In a typical Spectre attack on the kernel, a
sensitive file page (e.g., /etc/shadow) is leaked. Since
the attacker does not know where this page is allocated,
they need to scan the entire physical memory looking for
it. Due to their low leakage rate, these attacks can take a
long time before they can find the target page. An attacker
equipped with our primitives releases any desired page P
with the page to pool primitive. Since file pages are
often allocated from the same pool, the attacker uses the
page from pool primitive to land the desired file page
onto P. Assuming that the physical address of P can be
leaked, the attacker uses the side channel to directly leak
from P instead of scanning the memory.

4.3. Challenges

Building page-granular massaging primitives on a real
target, such as the Linux kernel, is complex. It requires
effective methods to construct and implement these prim-
itives within the constraints of a real-world operating
system. This poses our first challenge:

Challenge (C1). Exploit the memory (de)allocation
operations in the Linux kernel to instantiate page-
granular massaging primitives.

To tackle this challenge, we first provide in Section 5 a
summary of the complex interactions in the ZBA, the heart
of the Linux’ kernel’s memory management. Section 6
introduces three new massaging mechanisms to enable the
primitives discussed in Section 4.1. We refer to this new
page-granular massaging technique as Rubicon. Each of
Rubicon’s mechanisms has a specific goal and consists of
multiple carefully designed massaging steps that together
allow precise control over the page(s) to be allocated next.

To showcase that these primitives are powerful and
widely applicable, we must prove their usefulness on real-
world, end-to-end attacks. This is our second challenge:

Challenge (C2). Prove the universality and power
of Rubicon in real-world, end-to-end attacks.

In Section 7, we demonstrate Rubicon’s potential in
two real-world end-to-end attacks. First, we show how we
build the first reliable and fully deterministic Rowhammer

NUMA Nodes

Zones

Migratetypes

Free Lists

PCP Lists

DMA

Reclaim.

0 1 2 3 5 6 7 8 9 104

0 1 2 3 9

Movable Unmovbl.

DMA32 Normal ...

Node 0

Figure 3: Structure of the zoned buddy allocator. The structure for
managing physical memory in the Linux kernel, as an example for
the NUMA node 0. Zones divide memory for different addressability
requirements. Migratetypes describe a memory block’s mobility. Free
lists contain blocks with specific combinations of properties to satisfy
allocation requests quicker. PCP (per-cpu) lists are blocks reserved for a
certain CPU to avoid system-wide allocator locks. The highlighted path
illustrates a list with properties matching a specific allocation request.

attack targeting PTEs on common x86 systems with-
out requiring any special memory management features.
Second, we explain how existing attacks can seamlessly
integrate Rubicon, for which we take RETBLEED, a recent
transient execution attack, as an example. We assess the
performance and reliability of these attacks in Section 8.

The last challenge is mitigating Rubicon without in-
trusive changes in the way ZBA works while keeping the
performance overhead negligible:

Challenge (C3). Design, implement, and evaluate a
lightweight mitigation against Rubicon.

We discuss in Section 9 why fully mitigating Rubicon
in the ZBA or any deterministic pool allocator without
reducing memory utilization is difficult. Nonetheless, we
show that constraining Rubicon’s three mechanisms with
small and lightweight changes to the ZBA provides a good
trade-off between security and memory utilization.

5. Zoned Buddy Allocator

The Linux kernel subsystem for managing and allocat-
ing memory at the page level is the Zoned Buddy Allocator
(ZBA). In addition to directly serving memory to user
processes and the kernel itself, it also feeds secondary
allocators such as SLAB, SLOB, and SLUB, which handle
allocations smaller than a single page. Therefore, the ZBA
is a critical component of the kernel with significant
implications for overall system security.

In this section, we provide an overview of the basic
functionality of the ZBA. First, we discuss how the kernel
organizes physical memory into a multi-level structure, de-
signed to fulfill the requirements of various data structures
(Section 5.1). Then, we explain how the ZBA enables
efficient allocation of memory through the use of free
lists, each designed to serve allocations with a specific
combination of these requirements (Section 5.2). Finally,
we outline how the system moves memory between these
lists along a deterministic allocation path (Section 5.3).

Table 1: Memory zones. Overview of the Linux memory zones.

Zone Usage

DMA 16-bit addressable memory.
DMA32 32-bit addressable memory.
NORMAL Normally addressable memory.
HIGHMEM Not directly addressable (high) memory.
MOVABLE Limits UNMOVABLE allocations.

Table 2: Migratetypes. Overview of the migratetypes available in Linux.

Migratetype Description

UNMOVABLE Memory that cannot be moved, e.g., kernel mem.
MOVABLE Memory that can be moved.
RECLAIMABLE Memory that can be moved and reclaimed.
HIGHATOMIC Reserved for high-order allocations.
CMA Reserved for the Contiguous Memory Allocator.
ISOLATE Non-allocatable memory.

5.1. Physical Memory Organization in the ZBA

The Linux kernel relies on various data structures
that make specific assumptions about the properties of
underlying physical memory. When these assumptions are
violated, the data structures may break, potentially lead-
ing to a system crash. The kernel must therefore ensure
that the allocated memory meets the requirements of the
requesting data structure. To achieve this, it organizes
physical memory into a multi-level structure, designed to
maintain access to suitable memory at all times. Each
level of the structure partitions the memory based on
certain properties as depicted in Figure 3. At the highest
level, there are Non-Uniform Memory Access (NUMA)
nodes, dividing memory according to access latency for
different CPUs in multiprocessor systems. Nodes are fur-
ther divided into several zones, which are fixed ranges in
memory separated by their addressability. ZONE DMA, for
example, contains memory addressable by DMA devices
capable of using 16-bit addresses only. In Table 1, we
provide an overview of all available zones.

Data structures residing in memory exhibit varying
mobility properties due to their interactions with each
other. For instance, files are mapped into the virtual mem-
ory space and can be conveniently relocated in physical
memory by the kernel via a simple alteration of their PTE.
However, relocating the page tables themselves would
require modifying a higher-level page directory, rendering
them unmovable to simplify page table management. As
a result, the ZBA uses migratetypes to provide memory
allocation for data structures with comparable mobility
properties, as listed in Table 2. Unlike zones or nodes,
which are fixed physical memory ranges, migratetypes
are defined over blocks, i.e., groups of 2order contiguous
physical memory pages, where order ranges from 0 to
10. These blocks are created and managed by the buddy
system. Whenever a block is released back to the allocator,
it checks if any neighboring blocks of the same order are
available, and if so, merges them into a larger block. If
there are no more blocks of a requested order and mi-
gratetype available to satisfy an allocation request, larger
blocks are repeatedly split in half to produce a block of
the requested order. The Linux kernel therefore manages
physical memory using a multi-level, tree-like structure to
always keep suitable memory at hand.

order
n

Virtual
Mem.

order
n-1 C B..

GH

E CR H R

PCP Lists Free Lists

A

A B

HEAD

phy.contiguous

TAIL

G EH G

BATCH_2

BATCH_1 2

3

4

1

Figure 4: Block deallocation. Releasing a block pushes it to the head
of its corresponding PCP list (1). If the PCP list set exceeds its
capacity, a batch (BATCH 1) is moved (order-preserving) to the head of
the corresponding free list (2), and the batch size is doubled (BATCH 2)
s.t. the next time twice as many blocks are moved (3). If any of the
blocks pushed onto the free list has a free buddy, the ZBA merges them
and pushes them onto a higher-order free list (4 ; blocks G,H).

5.2. Allocator Lists

When receiving an allocation request, the ZBA is
provided with a set of flags representing the purpose of the
requested memory, from which the following properties
are derived:
(a) the preferred node with suitable access time,
(b) limitations on the addressability that are used to

choose the zone,
(c) information on the block’s mobility that may affect

the migratetype, and
(d) the requested block’s (contiguous) size which deter-

mines the order.
Instead of searching for a block with specific properties
upon an allocation request, the ZBA maintains a free list
for each combination of properties, from which blocks can
be allocated directly. The allocator uses the flags provided
to traverse the tree-like structure (red in Figure 3) until it
reaches the list matching the request’s properties.

To minimize contention on the free lists, the ZBA also
maintains per-CPU pages (PCP) lists for frequently used
combinations of properties (depending on kernel version
and configuration, e.g., Transparent Huge Pages). These
lists serve as small, CPU-local caches populated with
blocks drawn from the corresponding global free lists.
Allocations are first attempted from these PCP lists, and
only if they are empty, the system falls back to the global
free lists. We will refer to the collection of all PCP lists
associated with a single CPU within a given zone as a PCP
list set, irrespective of the migratetype. To manage each
PCP list set, the system maintains lightweight statistics,
such as the set’s capacity and the current number of cached
blocks. When a PCP list is depleted, or the number of
cached blocks exceeds the list’s capacity, a batch of blocks
is transferred between the PCP and the corresponding free
list to keep the number of blocks within a desired range.

5.3. Block Allocation Pipeline

Putting these concepts together, we now explain how
the ZBA handles block deallocations and allocations.

Block deallocation. Upon receiving a deallocation re-
quest, the ZBA pushes the block onto a list selected
according to the block’s properties (Figure 4- 1). This

order
n

Virtual
Mem.

order
n-1

HEAD TAIL

A A

A

B B

BC DE

C CD DE E

PCP Lists Free Lists

BATCH

2

3

1

Figure 5: Block allocation. The allocator first tries fulfilling an allocation
request using the block at the head of the list selected according to the
request’s properties (1). In case the selected list is a PCP list and it
is empty, it is filled by moving a batch of blocks from the free list
of matching properties (2). Empty free lists, are filled by splitting up
blocks from the next higher order corresponding free list (3).

could be either a PCP list or a free list, with slightly
different behaviors. For PCP lists, the ZBA must ensure
they stay within a certain capacity to avoid unnecessarily
committing memory to a specific CPU. If freeing the block
causes the PCP list set to exceed its capacity, a batch
of blocks is moved from the tail of the PCP list onto
the head of the corresponding free list (Figure 4- 2). The
batch size is calculated based on the following formula:
b · 2F , where b is a base size and F is a free factor
that is incremented each time the set is overfilled. This
means that the next time the PCP list set is overfilled,
twice as many blocks are moved (Figure 4- 3). During
periods of frequent deallocations, this exponential growth
in batch size reduces the frequency of accesses to the free
list, thereby improving scalability. If the batch exceeds
the number of blocks on the selected list, the ZBA starts
emptying other lists in the same PCP list set, one at a time,
in a round-robin fashion. Finally, as blocks are released
onto a free list, the ZBA searches for their buddies and
merges them if they are available (Figure 4- 4). In the
absence of a PCP list, the pages are pushed onto the free
list directly and merging is performed immediately.

Block allocation. Upon receiving an allocation request,
the ZBA attempts to allocate a block from a list selected
based on the required properties. If the selected list is
non-empty, the allocation is straightforward: the block is
simply taken from the head of the list (Figure 5- 1).
However, if the list is empty, the allocator’s behavior
depends on whether it is a PCP list or a free list. Empty
PCP lists are refilled in batches from the corresponding
free lists (Figure 5- 2). When the free list itself is empty,
the ZBA refills it by splitting blocks from higher-order free
lists, following the textbook buddy algorithm (Figure 5-
3). For properties with no PCP list, the ZBA allocates
blocks directly from the free list, splitting higher-order
blocks as needed.

Block stealing. As a last resort, when there are no blocks
of the desired migratetype available, the ZBA attempts
to steal blocks from the free lists of other migratetypes
(Figure 6). However, since blocks of different migrate-
types cannot be merged, stealing small blocks can lead to
severe fragmentation. The ZBA, therefore, prefers stealing
the largest available blocks, as this helps keep neighboring
pages of the same migratetype. To further reduce fragmen-
tation, physical memory is divided into 2MiB segments,

order
MAX-1

order
MAX

order
MAX-2

Free Lists Free Lists

HEAD

Phys.
Mem.

PAGE BLOCK

MIGRATETYPE A MIGRATETYPE B

3

2

1

Figure 6: Block stealing. When all pages of a certain migratetype
run out, the ZBA steals a block of the highest available order from
another migratetype (1). Thereafter, the ZBA performs a heuristic check
(Listing 1) to determine whether to steal the whole page block. If
successful, all other free blocks in that page block are stolen as well
(2 and 3).

i f (order >= pageblock_order / 2
|| start_mt == MIGRATE_RECLAIMABLE
|| start_mt == MIGRATE_UNMOVABLE
|| page_group_by_mobility_disabled)

return true;

Listing 1: Page block stealing condition [40]. The heuristic condition
used in can steal fallback of mm/page alloc.c of the Linux
kernel to decide whether to steal a whole page block.

Table 3: Victim data structures. Examples of victim data structures,
attacks they were used in, their migratetype, and their order. The varia-
tions in migratetypes and orders highlight the importance of a universally
applicable massaging technique.

Data Structure Existing Attacks Migratetype Order

Page Tables Seaborn et al. [16], UNMOVABLE 0
Drammer [3],
Half-Double [17]

Page Cache RETBLEED [7], MOVABLE 0
Flip Feng Shui [9],
BlindSide [5]

Kernel Stack SpecHammer [38] UNMOVABLE 1 (x86)

referred to as page blocks (not to be confused with buddy
blocks described in Section 5.1). The ZBA tries to keep
all pages within a given page block assigned to the same
migratetype. Hence, all stolen (buddy) blocks revert to the
migratetype of their page block upon deallocation.

To accommodate dynamic workload changes, the sys-
tem uses a heuristic condition (Listing 1) to reassign
page block migratetypes. This check is triggered during
block stealing, which serves as a signal of pressure on
the desired migratetype (Figure 6- 1). If the condition is
met, the system reassigns the surrounding page block’s
migratetype and steals all other free blocks within it (Fig-
ure 6- 2 and 3). This ensures that even if a large block
cannot be allocated, blocks of different migratetypes do
not spread throughout memory.

6. Rubicon

In this section, we introduce Rubicon, a novel memory
massaging technique that implements the high-level prim-
itives presented in Section 4.1 for the ZBA in the Linux
kernel. Rubicon exploits the deterministic behavior of the

Virtual
Mem.

order
0

order
n...

...

MIGRATETYPE A

order
0

order
n...

...

MIGRATETYPE B
Free ListsPCP Lists

HEAD TAIL

2

3

3

1

Figure 7: PCP Evict. We evict a PCP list set by overfilling it with a
large amount of memory through one of its lists (1). The ZBA starts
releasing batches of blocks from the set to limit their total, initially
taking blocks from the list we used to overfill the set (2). Subsequent
batches grow in size, eventually outgrowing that list and even the whole
list set, thus releasing all blocks from their respective lists (3).

ZBA, which always allocates memory from the head of a
specific list selected based on the properties (e.g., order,
migratetype) required by the recipient data structure. By
positioning blocks at the heads of these lists, Rubicon en-
sures that subsequent allocations, such as those for victim
objects, land at attacker-controlled locations. As potential
victim data structures can have an arbitrary combination
of properties (Table 3), Rubicon must be able to massage
blocks onto any list in the ZBA. Rubicon achieves this
through three mechanisms:

• PCP Evict (Section 6.1) clears all blocks from the
PCP lists, forcing the allocator to fetch attacker-
controlled blocks from shared free lists. This imple-
ments the page from pool primitive.

• Block Merge (Section 6.2) places a target block
at the head of a desired free list within the same
migratetype, positioning it to be allocated. This im-
plements the page to pool primitive.

• Migratetype Escalation (Section 6.3) moves blocks
across different migratetypes by exploiting the page
block stealing condition (Listing 1). This implements
the pool to pool primitive.

6.1. Mechanism #1: PCP Evict

Rubicon moves blocks to the head of free lists to
place them in line for the next victim allocation. However,
the ZBA prioritizes allocations from PCP lists instead
(Figure 5- 1). It only falls back to a free list when the
corresponding PCP list is empty (Figure 5- 2). To this
end, we present PCP Evict, a mechanism that evicts all
blocks from the PCP lists, forcing the allocator to fetch
blocks from the shared free lists.

PCP Evict exploits the dynamic batch size scaling
described in Section 5.3 to evict all blocks from the PCP
lists. We begin by releasing a large number of pages
to deliberately overfill the PCP list set (Figure 7- 1).
This triggers a batch release of blocks from the overfilled
PCP list to the corresponding free list. The batch size
is initially small, so all released blocks originate from a

Virtual
Mem.

....

order
0

order
n

MIGRATETYPE A

order
0

order
n...

...

MIGRATETYPE B
Free ListsPCP Lists

HEAD TAIL

non-contiguous baittarget

2

3 4

1

Figure 8: Block Merge. We release the target block, initially split into
pages (1) and push it onto the free lists by releasing additional memory
(2). When the pages reach the free list (3), they are merged into a
single block and moved to the head of the higher-order free list (4).

single list (Figure 7- 2), but with each subsequent batch,
the size doubles. After several iterations, the batch size
exceeds the total capacity of all PCP lists in the set,
causing all remaining blocks to be released (Figure 7-
3). At this point, the PCP lists are empty1, so the
next allocation will be drawn from the free list, thus
implementing our page from pool primitive. Releasing
more memory than strictly necessary simply repeats this
cycle multiple times, with no adverse side effects. This
makes the mechanism highly robust, as it tolerates wide
overestimation while still ensuring that the PCP lists are
reliably emptied.

6.2. Mechanism #2: Block Merge

With PCP Evict, we ensure that the next allocation
will be drawn from a free list. To complement this, we
introduce Block Merge, a mechanism that moves the target
block to the head of that list (within the same migrate-
type), thus ensuring it is used for the next allocation.

Block Merge exploits a key property of the ZBA:
blocks that are merged during deallocation are always
inserted at the head of a free list (Figure 4- 4). We
begin by releasing the target block, which initially exists
as a collection of individual pages in virtual memory.
Upon release, these pages are moved to the order-0 PCP
list (Figure 8- 1). To push them onto a free list, we
continue releasing additional memory (Figure 8- 2). As
the PCP list reaches capacity, it begins to evict pages
from its tail, moving them to the corresponding free list
(Figure 8- 3). Eventually, the target pages are evicted as
well, at which point they are merged into a contiguous
block and moved to the head of the appropriate higher-
order free list (Figure 8- 4). This puts the target block
in line for the next allocation, thus implementing our
page to pool primitive. The amount of memory used

1. Since PCP lists are per-CPU, PCP Evict must either be performed
on all CPUs or on the same CPU used for the victim allocation. This is
not a major limitation, as most existing attacks target data structures
allocated via system calls or standard library functions, which are
colocated with the attacker’s process (Section B).

Free Lists
order 10
(4 MiB)

order 0

order 1
...

...

...

...

...

1

3

N

2

Figure 9: Contiguous memory allocation. We begin by allocating a
large amount of memory, nearly exhausting the system’s capacity, which
initiates a deterministic sequence of operations within the ZBA. To
minimize fragmentation, the allocator first serves the smallest available
order-0 blocks (1). As these are depleted, larger blocks are recursively
split to fulfill the allocation request (2 → 3), progressively consuming
all available orders. Eventually, the allocator must split order-10 4MiB
blocks (N), making the final portion of the allocated memory area
consist of contiguous blocks. By selectively drawing memory from the
end of the area and releasing the rest, we can reliably obtain contiguous
blocks from userspace without relying on transparent huge pages (THPs)
or procfs.

to push the target onto the free list does not have to be
precise, it is sufficient if it exceeds the capacity of the
PCP list set. This allows us to overestimate it by a wide
margin, which makes this mechanism very reliable.

Importantly, none of the additionally released pages
can be merged into a block of the same order as our
victim. If such a merge were to occur, the resulting block
would be placed ahead of the target in the free list. To pre-
vent this, we utilize the method illustrated in Figure 9 to
allocate physically contiguous blocks. By releasing every
other page from these blocks, we ensure that their buddies
remain unavailable, effectively preventing any merging.

6.3. Mechanism #3: Migratetype Escalation

Until now, our focus has been solely on massaging
victims within a single migratetype. However, many vic-
tim data structures targeted in real-world attacks (Table 3),
do not match the migratetype returned by user-accessible
allocators (e.g., MOVABLE for mmap). To overcome this
limitation, we introduce Migratetype Escalation, a new
massaging mechanism that enables deterministically mov-
ing blocks between different migratetypes.

Migratetype Escalation exploits the page block steal-
ing condition described in Listing 1, specifically the fact
that stealing a sufficiently large block causes the entire
surrounding page block, and thus all smaller blocks within
it, to be stolen. We begin by taking control of an entire
page block, which can be achieved as shown in Figure 9.
We then split this page block into two halves, one of
which we use as bait to trigger the stealing condition,
while the other half can be used to place the target block
as needed. To ensure that our bait block becomes the
largest available candidate, we eliminate all larger free
blocks either through fragmentation or allocation. Using
Block Merge, we move the target and bait block onto
their respective free lists. With the blocks in place, we
can start to repeatedly trigger allocations of the desired

Virtual
Mem.

...

...
order
0

order
n

MIGRATETYPE A

order
0

order
n...

...

MIGRATETYPE B
Free ListsPCP Lists

HEAD TAIL

1

2

3

Figure 10: Migratetype Escalation. Building upon Figure 8, where we
placed the target and bait block onto correct free list, we depict here the
rest of migratetype escalation. After repeatedly triggering allocations of
the desired migratetype (1), the desired migratetype runs out of blocks
and steals our bait block (2). Since our bait block satisfies the page
block stealing condition, our target page is also stolen (3).

migratetype (Figure 10- 1). Importantly, we do not need
to allocate the actual victim; any allocation that con-
sumes memory of the same migratetype suffices. For
instance, to target the UNMOVABLE migratetype, we can
spray page tables by mapping pages at 2MiB intervals, as
demonstrated in Drammer [3]. As we continue triggering
allocations, the desired migratetype eventually runs out of
blocks, forcing the ZBA to resort to stealing. Since we
have removed all larger blocks, it steals the provided bait
block (Figure 10- 2) and checks the page block stealing
condition (Listing 1). Our bait block was formed from
half of a page block, so it always satisfies the condition
order >= pageblock order/2. Consequently, the entire
page block and all free blocks within it, including the
released target block, will also be stolen and assigned the
desired migratetype (Figure 10- 3), which implements our
pool to pool primitive.

7. Rubicon in Practical Attacks

We use Rubicon to build the first deterministic x86-64
privilege escalation Rowhammer attack (Section 7.1) and
significantly speed up a Spectre attack (Section 7.2).

7.1. Deterministic Rowhammer on x86-64

Similar to previous work [3], [9], [12], we divide the
attack into three steps: 1 memory templating, 2 memory
massaging, and 3 exploitation. We discuss these steps
more in detail next.

1 Memory templating. If a Rowhammer access pat-
tern triggers a bit flip in a vulnerable memory location,
repeating the access pattern likely causes the same bit
flip(s) again. We template the memory using the Black-
smith Rowhammer fuzzer to generate TRR-evading access
patterns and find repeatable bit flips [21]. The original
fuzzer uses 1GiB superpages as backing memory. As we
do not want to rely on any special memory features, we

VA Space

Mapping M1

Page Table Page
PTM1

PTM2

PTM3

Mapping M2

Mapping M3

...
File

File

Phy. Memory

Page Table Entry

reverse
bit flips

target address

bitflips

massaging

attacker-controllable

page table address (20b)

2 MiB
contig.

0 00 0

0

0 0

1

0

0

01 1

1

11 1

1

11 1 0

0

1

0

Figure 11: File remapping. We remap a file multiple times (Mapping
M1-M3) with 2MiB offsets to spray page table pages (PTM1-3). We
then check if any of the templated bit flips are useful, i.e., fall into the
attacker-controllable address part of the PTE belonging to the mapping.
If so, we reverse the bit flips and combine the resulting address with the
file mapping’s address to determine the target address for massaging the
file. Hammering the file at this address with the previously determined
pattern will give us access to the page table’s page.

modify the fuzzer to use virtual memory backed by 4MiB
contiguous blocks, obtained as described in Figure 9.

2 Memory massaging. The attack’s goal is corrupting
a page table entry such that it maps its own page table,
as depicted in Figure 11 [3]. Once we find a vulnerable
memory location in one of the 4MiB blocks, we apply the
inverse of the bit flip(s) to the known part of the vulnerable
page’s physical address. If the bit flip direction allows the
resulting address to become the vulnerable page again,
we can massage it into a PTE at the vulnerable location.
Using Block Merge, we first free and reallocate the order-
0 page of the resulting address with a file, as described in
Section 6.2. Using a file, we can spray page tables that all
reference this file. We control the location of the victim
PTE within the victim page table by controlling the virtual
address of the new mappings to the file.

Because the migratetype of page tables is different
(UNMOVABLE), we use Migratetype Escalation so that the
victim page (MOVABLE) can become a page table. We then
spray page tables through 2MiB-offsetted file mappings
until the victim page gets recycled as a page table.

3 Exploitation. As our file resides in a carefully chosen
location, retriggering the bit flip(s) makes the victim PTE
point to its own page table. We identify the corrupted
mapping as it is the file mapping that no longer contains
the file contents. This gives us access to a page table
through the file mapping, resulting in arbitrary read and
write access to the entire system memory.

7.2. Accelerating Spectre with Rubicon

We discuss how Rubicon can accelerate Spectre at-
tacks against the operating system. Such attacks demon-
strate their capability by leaking the /etc/shadow file as
an unprivileged user [5]–[7], [13]. Our key observation
is that the majority of time is spent on scanning for this
file in physical memory. Given the limited and inaccurate
side channel of Spectre attacks, being able to use Rubicon
to massage the secret file into a predetermined memory
location could accelerate such attacks substantially.

Prerequisites. To allocate /etc/shadow in memory, we
trigger a SUID binary to open and read /etc/shadow. The

Table 4: Microbenchmark results. We report the success rate (Succ.
Rate) for each of our mechanisms for a number of repetitions (#Reps.)
that is chosen based on the average execution time (Avg. Duration).

Primitive #Reps. Succ. Rate Avg. Duration

PCP Evict (§ 6.1) 1 000 100% 736.805 µs
Block Merge (§ 6.2) 100 000 100% 10.046 µs
Migratetype Escal. (§ 6.3) 100 100% 5976.37ms

SUID binary we use for this is expiry of the shadow-
utils project, available in most Linux distributions. We
also confirmed that the attack works with other SUID
binaries that read /etc/shadow, such as passwd. Because
files remain allocated in the page cache of Linux after they
are closed, we first evict all pages in the page cache. By
causing memory pressure on the system, we ensure that
/etc/shadow is evicted from the page cache. To make
as few allocations as possible when invoking expiry,
we read all the shared objects that expiry depends on
(thereby caching them in the page cache) before invok-
ing expiry. This way, only a few page allocations are
necessary before expiry allocates /etc/shadow, which
remains in page cache after expiry exits.

To determine the physical address that /etc/shadow
will be allocated to, we leak a physical address before re-
leasing it in such a way that it gets assigned /etc/shadow.
Obtaining a physical address of a given memory page is
possible using Spectre itself [7].

Massaging. Using the allocation method in Figure 9, and
by knowing a single physical address inside a contigu-
ous memory block, we can infer the beginning of the
block and, thereby, all physical page addresses within
it. Using Block Merge from Section 6.2, we release
pages from the contiguous block to the PCP list that
will be used to allocate /etc/shadow when we execute
expiry. Releasing pages from the contiguous block en-
sures that /etc/shadow lands within. The actual page of
/etc/shadow, however, may be a few pages off from the
expected one. In our experiments, the allocation can occur
up to 16 pages away from the expected page, primarily
due to ASLR and stack randomization.

8. Evaluation

In this section, we assess the performance of our
massaging mechanisms (Section 8.1), our end-to-end
Rowhammer attack (Section 8.2), and how Rubicon im-
proves the RETBLEED attack (Section 8.3).

8.1. Massaging Mechanisms

We first perform three microbenchmarks, each specif-
ically designed to test one of the massaging mechanisms
introduced in Sections 6.1 to 6.3. The results for all three
mechanisms are summarized in Table 4.

PCP Evict. In this test, we measure the speed and suc-
cess rate of the PCP eviction mechanism. To evict, we
allocate and release a sufficiently large number of pages
as described in Section 6.1. We establish a baseline by
checking the total number of all pages on the PCP list.
We then instantiate a single page table. If the total number

Table 5: DDR4 DIMMs. We report the SPD data of the DDR4 DIMMs
used in the evaluation of the Rowhammer attack. Devices indicating a
n/a as manufacturing Date (Mf. Date) did not report any date. We report
the DIMM’s frequency (Freq.), size, and geometry (Geom.), i.e., the
number of ranks (RK), bank groups (BG), banks per bank group (BA),
and rows (R). All DIMMs are from vendor Samsung.

ID Mf. Date
[MM-YYYY]

Freq.
[MHz]

Size
[MiB]

DIMM Geom.
(RK,BG,BA,R)

1 03-2020 2666 8192 (1, 4, 4, 216)
2 n/a 2132 8192 (1, 4, 4, 216)
3 n/a 2132 8192 (1, 4, 4, 216)
4 n/a 2132 8192 (1, 4, 4, 216)
5 n/a 2666 8192 (1, 4, 4, 216)

increased, it means that the system had to move a batch
onto the PCP lists to fulfill the allocation request. This
confirms we have successfully evicted the PCP list. On
the other hand, if the count decreased, it indicates there
were still unmovable pages of order 0 on the PCP list and
eviction failed. We achieve a success rate of 100% over
1 000 repetitions with an average duration of 736.805 µs.

Block Merge. In this test, we measure the reliability
of our block merging mechanism (see Section 6.2) by
repeatedly massaging a temporary file. The test follows
the procedure for massaging /etc/shadow as outlined in
Section 7.2, except that we now read the massaged file
directly instead of through an SUID binary. This allows
us to test Block Merge in a noise-free environment. To
perform the test, we release a single target page onto the
PCP list using Block Merge and populate it with our file
by mapping it immediately afterwards. We confirm the
success of each test repetition by comparing the physical
addresses (obtained via pagemap) of the target page and
the file after massaging. We achieve a success rate of
100% over 100 000 repetitions with an average duration of
10.046 µs, thus proving deterministic memory massaging.

Migratetype Escalation. In this test, we evaluate the
reliability of the migratetype escalation mechanism by
massaging a page table into a specific page frame. We
have chosen a setup similar to the one used in the
Rowhammer attack, namely:
(a) we allocate a single page block as described,
(b) we exhaust memory to remove blocks that are larger

than 1MiB,
(c) we push both the bait block and the target page frame

onto their free lists, and finally,
(d) we instantiate a sufficient number of page tables such

that the bait block is stolen.
We check whether a repetition has been successful by
directly reading physical memory through /dev/mem and
comparing the returned value with an expected page table
entry. To ensure our mechanism is tested in a worst-case
scenario, we lock the page frames adjacent to the target.
We achieve a success rate of 100% over 100 repetitions
with an average duration of 5976.37ms.

Portability. We tested our massaging mechanisms on a
newer kernel version (6.8.0-51) and found no significant
differences regarding performance and reliability.

Stability under load. We evaluated the performance of
our memory massaging mechanisms under parallel mem-

Table 6: Blacksmith results on 4 MiB blocks. For each of the tested
devices (ID), we report in both cases the number of patterns found during
fuzzing (PF), the number of bit flips found during fuzzing (FF) and
during the best pattern’s sweep (FS). For the latter we additionally report
the number of one-to-zero bit flips (FS,1)0).

Contiguous Memory 4 MiB Memory BlocksID
PF FF FS FS,1)0 PF FF FS FS,1)0

1 47 1 061 82 183 41 471 117 7 002 87 607 44 589
2 42 7 771 113 190 57 665 111 14 524 95 958 48 479
3 102 17 790 98 425 49 296 73 6 696 81 127 40 181
4 66 3 415 32 090 15 988 86 6 267 50 860 25 207
5 126 12 689 80 601 40 876 169 3 269 56 584 28 969

ory allocations using stress-ng in its vm stressor mode.
The system was stressed with four threads and memory
allocations of up to 128 MiB. Despite the increased load,
the results were consistent with those from the single-
threaded tests.

8.2. Rowhammer Attack

We evaluate our end-to-end Rowhammer attack on
the five DDR4 DIMMs listed in Table 5 on a system
equipped with an Intel Core i7-8700K, running Ubuntu
18.04 (kernel 5.4.0-125). Before evaluating our attack, we
compare the original Blacksmith using 1GiB contiguous
memory to our modified version using 4MiB memory
blocks only. The results in Table 6 show a comparable
performance for our modified version. On 4 out of 5
DIMMs, we find a higher number of patterns during the
fuzzing run. The number of bit flips is comparable but
expectedly, on average slightly lower (8.45%) than the
original version. These results demonstrate that Rowham-
mer remains effective on smaller 4MiB memory blocks.

Load levels. In order to thoroughly assess the attack’s reli-
ability, we repeatedly run it under various load conditions.
We employ stress-ng’s default CPU workers (which cycle
through all of the available CPU tests) to synthetically
generate three varying levels of system load:
(a) idle: stress-ng is turned off;
(b) medium: we use 8 workers to load two-thirds of the

available CPU threads; and finally,
(c) high: all of the available threads are fully loaded by

12 workers.
We perform 20 repetitions per stress level on a test
pool consisting of five DDR4 DIMMs with in-DRAM
Rowhammer mitigations.

Results. The results of the evaluation can be found in
Figure 12. On an idle system, we achieve an average
success rate of 87%. As we increase the system load to
medium and high levels, Blacksmith was unable to trigger
any bit flips on DIMMs 4 and 5, respectively. Since our
main focus is the reliability of our massaging primitive,
we can conclude that it is at least equally robust against
interference as Rowhammer on the affected DIMMs. For
the rest of the test pool, the success rate remained stable
at medium load (83.75%) and even increased at high load
(91.7%). Excluding the runs where Blacksmith could not
trigger any bit flips due to increased load on the system,
we achieve an overall success rate of 87.3% over 240 runs.

1 2 3
DIMM ID

4 5
0%

50%

100%
Su

cc
es

s
Ra

te
Idle Medium High

Figure 12: Impact of system load on success rate. For each DIMM, we
report the success rate under three stress levels: idle (), medium (),
and high (). The results show that the reliability of our massaging
primitive remains constant under increased system load. Missing bars
indicate the inability to trigger any bit flips.

Discussion. It is important to note that our massaging
primitive was always successful in placing the victim page
table into the vulnerable page frame. The failed attempts
were caused solely by failing to reproduce the templated
bit flips on the victim due to the additional load. Hence,
we did not record any crashes due to bit flips on data
structures other than page tables during our evaluation.
Additionally, we ran the attack alongside stress-ng’s de-
fault memory stressors and the WebKit regression test
suite, which served as a realistic workload. Nevertheless,
the attack remained fully functional.

8.3. RETBLEED Attack

We evaluate the total duration of RETBLEED to leak
/etc/shadow on an AMD EPYC 7252 (Zen 2, microcode
0x8301038) and an Intel Core i7-8700K (Coffee Lake,
microcode 0xea). Both systems run Ubuntu 20.04 with
Linux kernel 5.8.0-63, allowing us to reuse the disclo-
sure gadgets presented in the original paper [7]. Rubicon
improves RETBLEED by providing contiguous physical
memory on systems where THPs are unavailable and by
massaging the secret (i.e., /etc/shadow) into a known
location. We evaluate the following scenarios:

(a) the baseline configuration with THPs, the same as in
the original RETBLEED work;

(b) the baseline configuration without THPs, which
makes use of contiguous memory; and finally,

(c) Rubicon, which makes use of both contiguous mem-
ory and /etc/shadow massaging.

Results. The results in Table 7 show the median time to
leak /etc/shadow over 10 invocations. The Intel baseline
only depends on THPs to leak a physical address, which
turned out to be faster with 4 KiB pages in the baseline
configuration without THPs. The AMD variant became
slower in this configuration because of the overhead
caused by the contiguous memory allocation. Both Intel
and AMD variants show a significant improvement with
Rubicon, indicating a 6.8× and 284× speedup on AMD
and Intel, respectively.

As we have shown, precise control over physical mem-
ory allocations provided by Rubicon leads to significant
performance improvements on Spectre-like attacks and
enables new reliable Rowhammer attacks. It is, therefore,
important to design mitigations that prevent Rubicon’s
mechanisms, which we will present in the next section.

Table 7: Leaking /etc/shadow using RETBLEED. Median execu-
tion time of all three test configurations. As shown, disabling THPs
(Baseline, No THPs) does not have a significant impact on the results.
The Rubicon-accelerated attack with massaging /etc/shadow shows a
dramatic speedup of 6.8× and 284× on AMD and Intel, respectively.

CPU Model
Baseline Rubicon

THPs No THPs No THPs

Intel Core i7-8700K 45 m 2 s 41 m 52 s 9.5 s
AMD EPYC 7252 3 m 10 s 5 m 40 s 27.9 s

9. Mitigation

We discuss, implement, and evaluate possible strate-
gies for mitigating Rubicon. Since the ZBA is a core
component of the kernel, we focus on achieving se-
curity guarantees with minimal performance overhead.
We examine the design flaws that enable the massaging
mechanisms introduced in Section 6 and propose suitable
mitigations. First, we prevent PCP list eviction by keeping
an individual block count for every PCP list (Section 9.1).
Next, we fully mitigate migratetype escalation, and thus
the attack introduced in Section 7.1, by replacing the
insecure page block stealing condition (Section 9.2). After
that, we discuss randomization as a possible mitigation
of deterministic memory massaging (Section 9.3). Finally,
we demonstrate the viability of these mitigations by eval-
uating their impact on system performance with several
benchmarks (Section 9.4).

9.1. Individual List Counters

When a PCP list set reaches its capacity, the batch of
blocks released onto the free lists is capped to prevent re-
leasing more blocks than are currently in the set. However,
due to the lack of individual list counters, the cap cannot
be restricted to the number of blocks on the specific list
that caused the set to overflow. As a result, all PCP lists
within a set are emptied once the batch grows sufficiently
large. We exploited this to create PCP Evict, as described
in Section 6.1.

To mitigate this, we propose maintaining a separate
block counter for each PCP list. This ensures that when
memory is released onto a PCP list and the set becomes
overwhelmed, only the blocks from the specific list that
caused the overflow are released, leaving the others un-
touched. By enforcing this restriction, we prevent the
inadvertent eviction of blocks from other lists within the
set and effectively eliminate the possibility of PCP Evict.

9.2. Secure Stealing Condition

Migratetype escalation is enabled by the page block
stealing condition (Listing 1). The condition is always
evaluated when a block is stolen across migratetypes.
If the condition is met, the page block’s migratetype is
changed, and all free blocks within that page block are
stolen. This is done so that the block’s migratetype can
become homogeneous again as soon as all blocks still
in use (and with the original migratetype) are released.
As demonstrated in Section 6.3, this mechanism can be

PCP Lists Free Lists

HEADrelease

merge

overfull PCP list

empty
PCP

split/empty
lower-order

alloc.

RANDOM
BATCH SIZE

order

n

n-1

Figure 13: Reordered allocation pipeline in our mitigation. We fully
randomize the position by reordering the allocation pipeline to eliminate
the determinism of allocations and stop our attack mechanisms. We show
for all supported events (e.g., merge) the flow of blocks between the
different lists.

exploited to deterministically move blocks between mi-
gratetypes that would otherwise be unlikely to be stolen,
such as individual pages.

To address this issue, we propose removing the heuris-
tic condition and instead only stealing page blocks as a
whole. Since the condition is exclusively used in case
of severe fragmentation or lack of memory, its removal
has no effect on performance under normal operation.
Furthermore, eliminating this condition does not explicitly
prevent small blocks from being stolen. Instead, it ensures
blocks are stolen individually, preventing multiple blocks
within a page block from being stolen together in a ma-
nipulable way, which completely eliminates Migratetype
Escalation.

9.3. Batch Randomization

In contrast to the two other mitigation mechanisms
(Sections 9.2 and 9.3), mitigating Block Merge requires
addressing a deep-rooted vulnerability of deterministic
memory allocators. In short, deterministic memory allo-
cators are finite state machines operating on a state shared
across processes and privilege domains. Given their deter-
ministic nature, each operation has a predictable effect on
the state. An attacker can, therefore, perform a sequence of
memory operations that bring the allocator to a state where
it is certain to use a desired target block for a specific
victim allocation. They can then trigger the allocation in
another process or a higher privilege domain, e.g., through
a syscall. The allocator, being deterministic, predictably
acts on the state and allocates the desired target block.

This vulnerability can be mitigated using randomiza-
tion [41], provided there is enough entropy to sufficiently
slow down attackers. Our goal is to randomize the position
of the released block within its PCP list to prevent deter-
ministic reuse. Since PCP lists are implemented as linked
lists, randomizing the position of a released block would
involve traversing a list, which is linear in complexity
and thus unacceptable for performance-critical operations
such as memory (de)allocations. Instead, we can closely
emulate a fully randomized position by reordering the
allocation pipeline as shown in Figure 13. By placing the
released block at the tail of the PCP list, we force the
attacker to remove an unknown number of blocks from the
PCP list before reaching the target block. Under normal
operation, the randomness comes from the system itself

as the initial state of the PCP list is unknown. However, to
stop attackers from trying to remove the randomness by
either exhausting or overflowing the PCP list, we random-
ize the batch size of blocks transferred between the PCP
lists and free lists. The batch size B is sampled from a
discrete uniform distribution B ∼ U{Bmin, Bmax} where
Bmin and Bmax denote the minimum and maximum batch
sizes, respectively. Consequently, the probability of an
attacker correctly guessing the batch size is given by
1/(Bmax −Bmin + 1).

9.4. Evaluation

We implemented these three mitigations in the Linux
kernel version 5.15.0 (the latest version at the time of im-
plementation), running on Ubuntu 20.04. To demonstrate
their effectiveness, we started our evaluation by rerunning
the testers introduced in Section 8.1. All testers were run
for the same number of repetitions, yielding a success
rate of 0% and confirming that our mitigations indeed
prevent Rubicon. Afterwards, we measured their perfor-
mance overhead by running the following benchmarks in
the Phoronix test suite [42]:
(a) Pmbench (1.0.2) to evaluate the system’s paging per-

formance,
(b) UnixBench (byte-1.2.2) to evaluate general system

performance, and finally,
(c) TensorFlow Lite (1.1.0 mobilenet v1 1.0 224.tflite)

as a real-world memory-heavy workload.
The performance of our mitigated kernel was within 0.1%
of the stock kernel for all three benchmarks. This falls well
within the margin of error, demonstrating the low cost of
our mitigations.

10. Discussion

We discuss observations made throughout our work on
Rubicon and suggest possible future directions.

Security implications of procfs. System interfaces like
/proc/zoneinfo and /proc/buddyinfo provided by the
process filesystem (procfs) offer valuable insights into
how different workloads affects memory usage and frag-
mentation. While such details can be useful for software
optimization, they also expose the internal state of the
ZBA to unprivileged users. Rubicon does not rely on these
interfaces for its massaging primitives, but these interfaces
could be used to squash any attempt at using random-
ization techniques to prevent memory manipulation. As
we believe that benign applications do not require access
to such information, we strongly recommend restricting
access to users with elevated privileges.

Investigating possible further use cases. One of the core
contributions of this paper is the generality and adapt-
ability of the presented massaging primitives. They can
be used as building blocks of more complex massaging
procedures. As such, they facilitate experimentation with
massaging where researchers can implement and test a
specific procedure in a matter of hours. Therefore, we
feel this paper opens up the opportunity of finding unex-
pected ways of using memory massaging. This includes,

assessing their applicability outside of hardware attacks,
for example, in traditional software attacks.

Rubicon in the cloud. The cloud represents a high-
value target for Rubicon, as it hosts critical data and
services. While the primitives outlined in Section 6 remain
applicable in the cloud scenario, they require alterna-
tive implementations. Such implementations, however, are
challenging as hypervisors employ specialized resource-
sharing mechanisms to manage physical memory, which
influence how memory is allocated and deallocated. Large
contiguous memory blocks cannot be easily exhausted due
to resource limit enforcement, and memory management
techniques such as balloon drivers complicate deallocation
for guest machines [43].

11. Related Work

In this section, we discuss work related to Rowham-
mer (Section 11.1), Spectre (Section 11.2), and physical
memory massaging (Section 11.3).

11.1. Rowhammer

The Rowhammer vulnerability [10] in DRAM devices
attracted strong interest due to its serious impact on system
security. Over the years various studies showed the prac-
tical feasibility of Rowhammer attacks in diverse settings.
For example, across VMs in the cloud [9], [44], over the
network [20], [45], on mobile phones [3], [36], in the
browser via JavaScript [4], [34], using memory dedupli-
cation [9], [19], and even on ECC-protected DRAM [46].

DRAM manufacturers started deploying in-DRAM
mitigations on DDR4 devices based on supplemental re-
freshes to predicted victim rows, known as TRR [11].
Since then, Rowhammer access patterns became more
complex but attacks have not been stopped [11], [21],
[47]. More recently, novel effects [17], [48], [49] were
discovered that demonstrate the large number of variables
involved in Rowhammer [50].

11.2. Speculative Execution Attacks

Since the inception of Spectre in 2018 [28], [51],
a plethora of additional Spectre attacks have emerged
attacking indirect branch target predictors [6], [7], [28],
[51], [52], return target predictors [7], [33], [53], [54],
branch condition predictors [5], [28], [51], [55], and
the memory disambiguator [56]. Some of these attacks
consider physmap to leak arbitrary data [5]–[7], [51],
[54]. Göktas et al.’s Blindside [5] leaked the page cache
entry of /etc/shadow through physmap, and BHI [6],
RETBLEED [7], and Inception [13] followed this approach
to demonstrate end-to-end attacks. CPU vendors have
deployed mitigations against various variants of Spectre in
software [29]–[31] and hardware [57], [58]. A weakness in
the aforementioned attacks is the amount of time they take
to complete due to the vast search space in physmap. In
this work, we showed that Rubicon can reduce the search
space from millions of candidate pages (approx. 17 M with
64 GB of RAM) to at most 16 pages.

Table 8: Memory massaging techniques. We summarize existing mas-
saging techniques based on their determinism (Det.), their requirements
(Req.), i.e., if they need special memory management features or access
to procfs, and their ability to massage different migratetypes (mtypes).

Technique Det. Req. mtypes

Rubicon ✓ – ✓

SpecHammer [38] (2022) ✗ procfs ✓

SMASH [34] (2021) ✗ THP ✗

RAMBleed [12] (2020) ✗ – ✗

RAMpage [2] (2018) ✓ ION ✗

Drammer [3] (2016) ✓ ION ✗

Flip Feng Shui [9] (2016) ✓ KSM,THP ✗

Seaborn & Dullien [1] (2015) ✗ – ✓

11.3. Physical Memory Massaging

The physical memory massaging techniques proposed
by previous work can be divided into techniques exploit-
ing page spraying [1], [17], special DMA allocators [2],
[3], the buddy allocator’s inherent properties [12], [35],
[38], and techniques relying on memory management
or OS features [4], [9], [34]. Table 8 summarizes these
memory massaging techniques and their requirements.

Spraying. Seaborn and Dullien [1], and later Half-
Double [17], used a probabilistic page-spraying technique
by filling as much of the available memory as possible
with page tables in the hope that one of them would
fall into Rowhammer-vulnerable physical locations. In
comparison, Rubicon is fully deterministic, and as such,
more reliable without causing unwanted side effects like
system instability due to corrupted kernel data structures.

DMA allocators. Van der Veen et al. introduced Phys
Feng Shui [3] that deterministically forces allocation of a
victim data structure (page table) at a previously attacker-
controlled location, verified to be vulnerable to Rowham-
mer. This was done by performing a series of large, phys-
ically contiguous allocations via ION, android’s DMA
allocator. While Drammer originally proposed THPs as
a possible replacement for contiguous DMA allocators,
Van der Veen et al. [2] further clarifies that these al-
locations must be performed in the same migratetype
as the target, making THPs inadequate. RAMpage [2]
extended Phys Feng Shui by allowing massaging with
non-contiguous DMA allocators, but did so by exhausting
all available small blocks through the DMA allocator.
As such, both techniques rely on the ability to trigger
huge DMA allocations, and are thus easily mitigated by
limiting the amount of user-accessible DMA memory.
Besides that, these attacks are not applicable to x86-64
where user programs cannot allocate DMA memory. In
contrast, Migratetype Escalation of Rubicon allows us to
deterministically massage kernel data structures via the
default ZBA allocator, making our technique architecture-
agnostic and harder to mitigate.

Buddy allocator massaging. Kwong et al. presented
Frame Feng Shui [12] which massages victims to target
physical memory locations by exploiting the page frame
cache. Unlike Drammer [3], Frame Feng Shui targets x86-
64 and does not rely on DMA. However, it does not allow
massaging kernel data structures like page tables.

SpecHammer [38] extended Frame Feng Shui with
limited spraying to achieve cross-migratetype mas-
saging. As with Seaborn and Dullien [1], this re-
sulted in unreliable massaging with a success rate of
only 66% for massaging across migratetypes. More-
over, they relied on tracking the number of free UN-
MOVABLE blocks through /proc/buddyinfo to make
their spraying more effective. Contrary to these tech-
niques, our technique does not require access to procfs
(e.g., /proc/{pagetypeinfo,buddyinfo}) and achieves
a success rate of 100%.

Memory management and OS features. Instead of ac-
tively massaging memory, certain attacks rely on special
memory management features. For example, Flip Feng
Shui [9] targeted RSA keys and abused memory dedu-
plication. The attacker tricks the OS into mapping an
attacker-controlled page and a victim page with known
contents into the same Rowhammer-vulnerable physical
memory page. While this approach is fully deterministic,
it excludes many valuable victims with unknown contents,
such as /etc/shadow and page tables.

Memory waylaying [37] enables replacement-aware
page cache evictions to lure the OS into bringing the
victim page into the target physical location. Since it relies
on the page cache for bringing the victim into memory,
the group of potential victims is limited to files only. Our
Rubicon mechanisms, however, place no such restrictions
on the victim data structure.

Rowhammer.js [4] used THPs to show Rowhammer
on page tables from the browser. To do so, it relies on
severe memory pressure to force the system into landing
the page table page in templated THPs. Like spraying,
this approach is probabilistic and might even result in
crashes due to out-of-memory conditions. Other browser-
based attacks [19], [34], [36] rely on reusing of browser
objects for corrupting pointers inside JavaScript.

Mitigations. Clearly, physical memory massaging is
a critical component of many attacks, particularly for
Rowhammer. Hence, defenses preventing the aforemen-
tioned techniques have been proposed to isolate the area of
sensitive physical pages [59] or the victim data structures
with guard pages [2], [20], [60]. Further, techniques have
been proposed to harden page deduplication [61] and
memory allocations to increase the time needed for mas-
saging [41]. Our mitigation presented in Section 9 builds
upon the ZBA of the stock kernel and is lightweight,
making it easily deployable.

12. Conclusion

We presented Rubicon, a new page-granular physical
memory massaging technique built on the Linux Zoned
Buddy Allocator. Rubicon leverages three new mecha-
nisms that enable precise control over page reuse, allowing
an attacker-provided page to be deterministically allocated
for victim data. Rubicon enables creating exploits that
were previously impossible. For instance, we developed a
reliable Rowhammer-based privilege escalation exploit on
x86 systems without relying on specialized memory man-
agement features such as DMA allocations, huge pages,
or page deduplication. Additionally, we demonstrated that
Rubicon can significantly accelerate existing Spectre-like

attacks on the kernel. By integrating Rubicon with the
recent RETBLEED attack, we achieved a 6.8× speedup on
AMD systems and a 284× speedup on Intel systems for
leaking /etc/shadow, compared to the original method.
Our proposed mitigations for Rubicon introduce targeted
restrictions on page movement within the Zoned Buddy
Allocator, resulting in a minimal impact on system per-
formance and memory fragmentation.

Ethical considerations. This paper introduces a new
exploitation technique for existing vulnerabilities like
Rowhammer and Spectre, which are regularly mitigated
in modern systems. We are nevertheless in contact with
Linux kernel maintainers about Rubicon and our proposed
mitigations.

Acknowledgment

We thank the anonymous reviewers for their valu-
able feedback. This work was supported in part by the
Swiss State Secretariat for Education, Research and In-
novation under contract number MB22.00057 (ERC-StG
PROMISE).

References

[1] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer
Bug to Gain Kernel Privileges,” 2015, https://googleprojectzero.
blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.
html.

[2] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. Padmanabha Pil-
lai, G. Vigna, C. Kruegel, H. Bos, and K. Razavi, “GuardION:
Practical Mitigation of DMA-Based Rowhammer Attacks on
ARM,” in DIMVA, 2018.

[3] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Mau-
rice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer:
Deterministic Rowhammer Attacks on Mobile Platforms,” in CCS,
2016.

[4] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.Js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[5] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
“Speculative probing: Hacking blind in the Spectre era,” in CCS,
2020.

[6] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida,
“Branch History Injection: On the Effectiveness of Hardware Mit-
igations Against Cross-Privilege Spectre-v2 Attacks,” in USENIX
Security, 2022.

[7] J. Wikner and K. Razavi, “RETBLEED: Arbitrary speculative code
execution with return instructions,” in USENIX Security, 2022.

[8] SkyLined, “Internet explorer IFRAME parameter BoF remote com-
promise,” 2005, https://web.archive.org/web/20070716023801/http:
//www.edup.tudelft.nl/∼bjwever/advisory iframe.html.php.

[9] K. Razavi, B. Gras, C. Giuffrida, E. Bosman, B. Preneel, and
H. Bos, “Flip Feng Shui: Hammering a Needle in the Software
Stack,” in USENIX Security, 2016.

[10] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits In Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors,” in
ISCA, 2014.

[11] P. Frigo, E. Vannacc, H. Hassan, V. v. der Veen, O. Mutlu,
C. Giuffrida, H. Bos, and K. Razavi, “TRRespass: Exploiting the
many sides of target row refresh,” in S&P, 2020.

[12] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed:
Reading bits in memory without accessing them,” in S&P, 2020.

[13] D. Trujillo, J. Wikner, and K. Razavi, “Inception: Exposing new
attack surfaces with training in transient execution,” in USENIX
Security, 2023.

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://web.archive.org/web/20070716023801/http://www.edup.tudelft.nl/~bjwever/advisory_iframe.html.php
https://web.archive.org/web/20070716023801/http://www.edup.tudelft.nl/~bjwever/advisory_iframe.html.php

[14] J. S. Kim, M. Patel, A. G. Yaglikci, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting RowHammer: An Experimental Analysis
of Modern DRAM Devices and Mitigation Techniques,” in ISCA,
2020.

[15] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “Go
go gadget hammer: Flipping nested pointers for arbitrary data
leakage,” in USENIX Security, 2024.

[16] S. Mark and T. Dullien, “Exploiting the DRAM Rowhammer Bug
to Gain Kernel Privileges: How to cause and exploit single bit
errors,” Black Hat USA, 2015, https://www.youtube.com/watch?
v=0U7511Fb4to.

[17] A. Kogler, J. Juffinger, S. Qazi, Y. Kim, M. Lipp, N. Boichat,
E. Shiu, M. Nissler, and D. Gruss, “Half-Double: Hammering from
the next row over,” in USENIX Security, 2022.

[18] K. Yoshioka and S. Akiyama, “GbHammer: Malicious Inter-
process Page Sharing by Hammering Global Bits in Page Table
Entries,” in DRAMSec, 2024.

[19] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est
Machina: Memory Deduplication as an Advanced Exploitation
Vector,” in S&P, 2016.

[20] A. Tatar, R. K. Konoth, C. Giuffrida, H. Bos, E. Athanasopoulos,
and K. Razavi, “Throwhammer: Rowhammer Attacks over the
Network and Defenses,” in USENIX ATC, 2018.

[21] P. Jattke, V. Van Der Veen, P. Frigo, S. Gunter, and K. Razavi,
“Blacksmith: Scalable Rowhammering in the Frequency Domain,”
in S&P, 2022.

[22] P. Jattke, M. Wipfli, F. Solt, M. Marazzi, M. Bölcskei, and
K. Razavi, “ZenHammer: Rowhammer Attacks on AMD Zen-
based Platforms,” in USENIX Security, 2024.

[23] M. Marazzi and K. Razavi, “Risc-h: Rowhammer attacks on risc-
v,” in DRAMSec, 2024.

[24] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in USENIX Security,
2014.

[25] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in S&P, 2015.

[26] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of AES,” in CT-RSA, 2006.

[27] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading kernel memory from user space,” in
USENIX Security, 2018.

[28] P. Kocher, J. Horn, A. Fogh, a. D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
S&P, 2019.

[29] P. Turner, “Retpoline: A software construct for prevent-
ing branch-target-injection,” 2018, https://support.google.com/faqs/
answer/7625886.

[30] Advanced Micro Devices, Inc., “AMD64 TECHNOLOGY
INDIRECT BRANCH CONTROL EXTENSION,” 2018,
https://developer.amd.com/wp-content/resources/Architecture
Guidelines Update Indirect Branch Control.pdf.

[31] Intel Corp., “Retpoline: A branch target injection mitigation,”
2018, https://www.intel.com/content/dam/develop/external/us/en/
documents/retpoline-a-branch-target-injection-mitigation.pdf.

[32] M. Fahr, H. Kippen, A. Kwong, T. Dang, J. Lichtinger,
D. Dachman-Soled, D. Genkin, A. Nelson, R. Perlner, A. Yerukhi-
movich, and D. Apon, “When frodo flips: End-to-end key recovery
on FrodoKEM via rowhammer,” in CCS, 2022.

[33] J. Wikner, C. Giuffrida, H. Bos, and K. Razavi, “Spring: Spectre
returning in the browser with speculative load queuing and deep
stacks,” in WOOT, 2022.

[34] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized Many-Sided Rowhammer At-
tacks From JavaScript,” in USENIX Security, 2021.

[35] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the
intelligence of deep neural networks through targeted chain of bit
flips,” in USENIX Security, 2020.

[36] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit:
Accelerating Microarchitectural Attacks with the GPU,” in S&P,
2018.

[37] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom, “Another Flip in the
Wall of Rowhammer Defenses,” in S&P ’18, 2018.

[38] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin,
“Spechammer: Combining spectre and rowhammer for new spec-
ulative attacks,” in S&P, 2022.

[39] I. Kang, W. Wang, J. Kim, S. van Schaik, Y. Tobah, D. Genkin,
A. Kwong, and Y. Yarom, “Sledgehammer: Amplifying rowham-
mer via bank-level parallelism,” in USENIX Security, 2024.

[40] L. Torvalds, “Linux Kernel: mm/page alloc.c,” 2023, https://github.
com/torvalds/linux/blob/v6.2/mm/page alloc.c.

[41] M. Wiesinger, D. Dorfmeister, and S. Brunthaler, “MAD: Memory
allocation meets software diversity,” in DRAMSec, 2021.

[42] Phoronix Test Suite Developers, “Phoronix test suite,” 2024, https:
//www.phoronix-test-suite.com.

[43] W. Chen, Z. Zhang, X. Zhang, Q. Shen, Y. Yarom, D. Genkin,
C. Yan, and Z. Wang, “Hyperhammer: Breaking free from kvm-
enforced isolation,” in ASPLOS, 2025.

[44] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips,
One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege
Escalation,” in USENIX Security, 2016.

[45] M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga, C. Maurice,
and D. Gruss, “Nethammer: Inducing Rowhammer Faults through
Network Requests,” in EuroS&P, 2020.

[46] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting
Correcting Codes: On the Effectiveness of ECC Memory Against
Rowhammer Attacks,” in S&P, 2019.

[47] H. Hassan, Y. C. Tugrul, J. S. Kim, V. van der Veen, K. Razavi,
and O. Mutlu, “Uncovering In-DRAM RowHammer Protection
Mechanisms:A New Methodology, Custom RowHammer Patterns,
and Implications,” in MICRO, 2021.

[48] Z. Lang, P. Jattke, M. Marazzi, and K. Razavi, “Blaster: Charac-
terizing the Blast Radius of Rowhammer,” in DRAMSec, 2023.

[49] H. Luo, A. Olgun, A. G. Yağlıkçı, Y. C. Tuğrul, S. Rhyner, M. B.
Cavlak, J. Lindegger, M. Sadrosadati, and O. Mutlu, “RowPress:
Amplifying Read Disturbance in Modern DRAM Chips,” in ISCA,
2023.

[50] O. Mutlu, A. Olgun, and A. G. Yağlıkcı, “Fundamentally Under-
standing and Solving RowHammer,” in DAC, 2023.

[51] J. Horn, “Reading privileged memory with a side-channel,”
2018, https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html.

[52] A. Milburn, K. Sun, and H. Kawakami, “You cannot always win
the race: Analyzing the lfence/jmp mitigation for branch target
injection,” arXiv preprint arXiv:2203.04277, 2022.

[53] G. Maisuradze and C. Rossow, “Ret2Spec: Speculative execution
using return stack buffers,” in CCS, 2018.

[54] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! Speculation attacks using the return stack buffer,”
in WOOT, 2018.

[55] O. Oleksenko, M. Guarnieri, B. Köpf, and M. Silberstein, “Hide
and seek with spectres: Efficient discovery of speculative informa-
tion leaks with random testing,” in S&P, 2023.

[56] J. Horn, “Issue 1528: Speculative execution, variant 4: Specula-
tive store bypass,” 2018, https://bugs.chromium.org/p/project-zerot/
issues/detail?id=1528.

[57] Intel Corp., “Indirect branch restricted speculation,” 2018,
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/technical-documentation/
indirect-branch-restricted-speculation.html.

[58] ——, “Speculative execution side channel mitigations,” 2018,
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/technical-documentation/
speculative-execution-side-channel-mitigations.html.

https://www.youtube.com/watch?v=0U7511Fb4to
https://www.youtube.com/watch?v=0U7511Fb4to
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://github.com/torvalds/linux/blob/v6.2/mm/page_alloc.c
https://github.com/torvalds/linux/blob/v6.2/mm/page_alloc.c
https://www.phoronix-test-suite.com
https://www.phoronix-test-suite.com
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://bugs.chromium.org/p/project-zerot/issues/detail?id=1528
https://bugs.chromium.org/p/project-zerot/issues/detail?id=1528
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html

[59] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi,
“CAn’t touch this: Software-only mitigation against Rowhammer
attacks targeting kernel memory,” in USENIX Security, 2017.

[60] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuf-
frida, and K. Razavi, “ZebRAM: Comprehensive and Compatible
Software Protection Against Rowhammer Attacks,” in USENIX
Security, 2018.

[61] M. Oliverio, K. Razavi, H. Bos, and C. Giuffrida, “Secure Page
Fusion with VUsion,” in SOSP, 2017.

Appendix A.
Data Availability

We make Rubicon publicly available at: https://github.
com/comsec-group/rubicon. The repository includes all
the files necessary to reproduce the results presented in
this paper, along with detailed instructions on how to build
and execute the code.

Appendix B.
Victim Allocation

One potential concern is that Rubicon’s effectiveness
may be constrained by the precision of triggering victim
allocations. In practice, however, this does not pose a sig-
nificant issue, as the majority of existing attacks target data
structures allocated via system calls or standard library

functions. Because these interfaces are often colocated
with the attacker’s process and rely on minimalist imple-
mentations, they follow deterministic allocation patterns,
which makes predicting victim allocations much easier.

In fact, the attack introduced in Section 7.2 represents
a worst-case scenario, where the victim allocation occurs
in a separate process that requires loading an entire bi-
nary along with multiple shared libraries into memory,
significantly increasing entropy. Yet, even under these
unfavorable conditions, Rubicon maintains a precision of
16 pages, demonstrating its robustness. A summary of al-
location precision and colocation for victim data structures
targeted by various attacks is provided in Table 9.

Table 9: Victim allocation. Examples of victim data structures, asso-
ciated attacks, allocation precision in pages, and colocation with the
attacker process.

Victim Existing Attacks Precision Colocated

Page Table Seaborn et al. [16] 1 ✓
Drammer [3]
Half-Double [17]

Password file RETBLEED [7] <16 ✓
Flip Feng Shui [9]
BlindSide [5]

Kernel Stack SpecHammer [38] 1 ✓

Userspace Binary Gruss et al. [37] 1 ✓

https://github.com/comsec-group/rubicon
https://github.com/comsec-group/rubicon

	Introduction
	Background
	Rowhammer Attacks
	Spectre Attacks
	Virtual Memory Management
	Physical Memory Massaging

	Threat Model
	Overview
	Page-Granular Massaging Primitives
	Precise Microarchitectural Attacks
	Challenges

	Zoned Buddy Allocator
	Physical Memory Organization in the ZBA
	Allocator Lists
	Block Allocation Pipeline

	Rubicon
	Mechanism #1: PCP Evict
	Mechanism #2: Block Merge
	Mechanism #3: Migratetype Escalation

	Rubicon in Practical Attacks
	Deterministic Rowhammer on x86-64
	Accelerating Spectre with Rubicon

	Evaluation
	Massaging Mechanisms
	Rowhammer Attack
	Retbleed Attack

	Mitigation
	Individual List Counters
	Secure Stealing Condition
	Batch Randomization
	Evaluation

	Discussion
	Related Work
	Rowhammer
	Speculative Execution Attacks
	Physical Memory Massaging

	Conclusion
	References
	Appendix A: Data Availability
	Appendix B: Victim Allocation

