
RETBLEED: Arbitrary Speculative Code Execution with Return Instructions

Johannes Wikner
ETH Zurich

Kaveh Razavi
ETH Zurich

Abstract
Modern operating systems rely on software defenses
against hardware attacks. These defenses are, however,
as good as the assumptions they make on the underlying
hardware. In this paper, we invalidate some of the key
assumptions behind retpoline, a widely deployed mitigation
against Spectre Branch Target Injection (BTI) that converts
vulnerable indirect branches to protected returns. We present
RETBLEED, a new Spectre-BTI attack that leaks arbitrary
kernel memory on fully patched Intel and AMD systems.
Two insights make RETBLEED possible: first, we show that
return instructions behave like indirect branches under certain
microarchitecture-dependent conditions, which we reverse
engineer. Our dynamic analysis framework discovers many
exploitable return instructions inside the Linux kernel, reach-
able through unprivileged system calls. Second, we show how
an unprivileged attacker can arbitrarily control the predicted
target of such return instructions by branching into kernel
memory. RETBLEED leaks privileged memory at the rate of
219 bytes/s on Intel Coffee Lake and 3.9 kB/s on AMD Zen 2.

1 Introduction

The patches do things like add the garbage MSR
writes to the kernel entry/exit points. That’s insane.
That says “we’re trying to protect the kernel”. We
already have retpoline there, with less overhead. So
somebody isn’t telling the truth here.
– Linus Torvalds on IBRS patches [59].

In the absence of hardware mitigations, widespread and
particularly dangerous transient execution vulnerabilities [9,
11, 36, 39, 40, 49, 50, 54, 61, 62] are mitigated in software [46,
60, 63, 68]. Given proprietary hardware, software developers
must sometimes rely on the information provided by hardware
vendors for the most efficient implementation of their defense.
In this paper, we show this lack of transparency can result
in vulnerable systems despite deployed software mitigations.
In particular, we present a new transient execution attack

that can leak kernel memory from an unprivileged user on
a variety of microarchitectures despite the deployed retpoline
mitigations against Spectre Branch Target Injection (BTI).

Spectre-BTI. Also referred to as Spectre Variant 2 [36],
Spectre-BTI forces the speculative execution of an arbitrary
target for a victim indirect branch. For exploitation, the
attacker must inject the desired branch target inside the
Branch Target Buffer (BTB) for speculative execution (i.e.,
branch poisoning). To poison the BTB, the attacker must find
collisions with the victim branch inside the correct BTB set.
On a successful collision, upon observing the victim indirect
branch, the branch predictor serves the poisoned target for
speculative execution. The hijacked speculative execution
can then leak sensitive information by encoding it inside the
cache, which can then be leaked via a timing attack.

Spectre-BTI mitigations. Indirect Branch Restricted
Speculation (IBRS) was originally proposed by Intel to
mitigate Spectre-BTI against privileged software. IBRS
enables the processor to ignore (potentially poisoned)
BTB entries created from lower-privileged software, but
requires expensive Model-Specific Register (MSR) writes on
user–kernel transitions. A competing proposal, retpoline [60]
outperformed IBRS by replacing indirect branch instructions
with return instructions. Return instructions use a different
prediction scheme that is cheaper to flush on user–kernel
transitions. Despite concerns about the behavior of return
prediction in deep call stacks on Intel Skylake [15, 20, 69],
the risk was considered low [15, 58] and ultimately retpoline
became the de facto mitigation against Spectre-BTI in
privileged software. Retpoline is supported by modern
compilers [8, 13], and even recommended by AMD [5].

RETBLEED. Previous work has reverse engineered the
behavior of the Branch Prediction Unit (BPU) for indirect
branches [18, 32, 36]. In this paper, we try to understand
the BPU’s behavior on return instructions. Our reverse
engineering results show that all return instructions that
follow sufficiently-deep call stacks can be hijacked using a
precise branch history on Intel CPUs. On AMD CPUs, we

find that any return instruction can be hijacked, regardless
of the previous call stack, as long as the previous branch
destination is correctly chosen during branch poisoning.
Furthermore, in many microarchitectures, it is possible to
create collisions on kernel return instructions from user mode.

Armed with these insights, we build a dynamic analysis
framework on top of the standard testing and tracing facilities
in the Linux kernel to look for microarchitecture-dependent
exploitable return instructions that provide the attacker
sufficient control over registers or memory. On AMD, without
the need for deep call stacks, return instructions right after
the transition to the kernel via unprivileged system calls
are readily exploitable. Even on Intel, we could find many
instances of exploitable return instructions that come after
deep call stacks. These exploitable returns form the first part
of our end-to-end exploit called RETBLEED. Unlike previous
return-based Spectre attacks [37, 40, 67], RETBLEED exploits
return instructions to gain arbitrary kernel-level speculative
code execution by targeting the BTB instead of the RSB. It
is, however, not possible for an attacker to direct speculative
execution from a hijacked kernel return to user space due
to Supervisor Mode Execution Prevention (SMEP). To
circumvent SMEP, the attacker can instead use a destination
in kernel space. We make a key observation that branch
resolution feedback is recorded in the BTB across privilege
domains, independently of the correct execution of the branch
target. This allows an attacker to inject a poisoned BTB entry
with a kernel target from user space. Our evaluation shows
that with suitable disclosure gadgets, RETBLEED can leak
arbitrary kernel data from an unprivileged process with all
the mitigations up on various Intel and AMD systems.

Contributions. We make the following contributions.

1. We provide a detailed reverse engineering of the behav-
ior of return instructions on Intel and AMD processors.

2. Using the insights from our reverse engineering, we
build a framework using standard Linux testing and
tracing facilities that allows us to identify vulnerable
return instructions for different microarchitectures.

3. We show that the destination of BTB entries can be
poisoned to a kernel address by an unprivileged process.

4. Building on vulnerable returns and poisoned BTB
entries, RETBLEED achieves arbitrary kernel-level
speculative execution, leaking arbitrary kernel data at
the rate of 219 bytes/s (98 % accuracy) on Intel Coffee
Lake and 3.9 kB/s (>99 % accuracy) on AMD Zen 2.

Responsible disclosure. We disclosed RETBLEED to the
affected parties in February 2022. RETBLEED was under
embargo until July 12, 2022 to provide adequate time for the
development and testing of new mitigations, which we discuss
in Section 9. RETBLEED is tracked under CVE-2022-29900

(AMD) and CVE-2022-29901 (Intel). Further information
can be found at: https://comsec.ethz.ch/retbleed

2 Background

We provide some necessary background on caches and cache
attacks, branch prediction and speculative execution attacks,
and the deployed mitigations.

2.1 CPU caches
Commodity CPU caches are organized in multiple levels,
where lower levels are faster and smaller than their higher
level counterparts. Assuming a common three-level cache hi-
erarchy, lower level caches, L1 and L2, reside in each physical
core, and the Last Level Cache (LLC or L3) is shared across
all cores. Caches are managed in the granularity of a cache
line which is a contiguous block of physical memory. Depend-
ing on its physical address, each cache line is mapped to a
specific set inside a cache. Each set can store N entries, known
as the wayness of the cache. With this organization, any given
memory location can be translated into a cache line for a
specific cache set, and a tag that identifies it within the set.

Because of their limited size, caches must also implement
a set-level replacement policy, such that rarely used cache
lines can be evicted and replaced. Moreover, each level has
a cache inclusion policy that determines whether cache lines
present in one level must also exist in higher levels, thus
called inclusive, or non-inclusive if it is not required. A cache
can furthermore be exclusive from some other cache level
if they may not share cache lines. Whereas commodity CPUs
typically implement inclusive caches, non-inclusive and
exclusive inclusion policies are common for higher levels
caches. By the nature of caches, cache misses are significantly
slower than hits, which is exploited in cache attacks.

2.2 Cache attacks
There are many methods to leak information from CPU
caches [17, 24, 44, 47, 70]. We discuss the two most
popular ones that are also used in this paper, namely
PRIME+PROBE [44] and FLUSH+RELOAD [70]. With
PRIME+PROBE the spy first fills up an entire cache set with
their own memory. They then trigger, or wait for, some victim
activity to occur that might be significant for the given cache
set. In the last step, the spy then reloads their own memory
while measuring the access time. If the access time is above a
computed threshold, the spy infers that the cache set was popu-
lated with the victim’s memory, which consequentially evicted
some of the spy’s memory from the cache. A PRIME+PROBE
attack only requires shared caches between spy and victim,
but it requires deeper knowledge of the cache implementation
(i.e., indexing, replacement and inclusion policy), and it has
higher error rate and lower bandwidth than FLUSH+RELOAD.

https://comsec.ethz.ch/retbleed

Prediction logic

RSB
Ret.tgt.a

....

Ret.tgt.b

BTB

Dest.b
....

Dest.a
Predict
branch
target

PC
BHB a→b,c→d,e→f,x→y...

Machine State

PC 0x00141200c820

TOS; Underflowed?RSB

Figure 1: Simplified BPU overview. BHB is a fingerprint of the
last control flow edges (i.e., taken branches). Using Machine State,
such as BHB and PC at a branch instruction, BPU predicts the branch
target via the BTB. For returns, unless underflow condition, it uses
the current RSB Top Of Stack (TOS) pointer to predict return target.

FLUSH+RELOAD assumes not only that the target cache
level is shared between spy and victim, but that they also
share some memory. Here, the spy first flushes some shared
memory from the cache and then waits for, or triggers, the
victim’s activity. The spy then reloads the shared memory
and measures the access time. If the access time is below a
computed threshold, the spy infers that the victim accessed
the shared memory since it was flushed. As we will soon
discuss, Spectre attacks [36] often provide an attacker with
the possibility of sharing memory with speculatively-executed
code, enabling the use of FLUSH+RELOAD. In this paper, we
refer to this shared memory as the reload buffer.

2.3 Branch prediction
Modern CPUs rely on speculative execution of code to
improve the overall performance by reducing stalling. The
BPU, located early in the execution pipeline, uses a set of
branch predictors to predict the next instruction address
when it encounters direct or indirect branches. In the x86_64
ISA, direct branches are either conditional or unconditional,
whereas indirect branches are always unconditional.

Figure 1 shows an overview of a simplified BPU. Direct
and indirect branch targets are predicted using the Branch
Target Buffer (BTB), which stores possible targets for a given
branch. Indexing of the BTB is microarchitecture-dependent,
and it uses machine state, such as the current Program
Counter (PC) and previous branches recorded in Branch
History Buffer (BHB) to accurately predict the next branch
target. Jann Horn reverse engineered the BTB indexing
for the Haswell microarchitecture as part of his work
on Spectre [32]. This information, however, is currently
missing for newer Intel microarchitectures and recent AMD
microarchitectures that use different prediction schemes [57].

On top of predicting direct and indirect branches, modern
microarchitectures use a dedicated scheme for return target
prediction. A Return Stack Buffer (RSB) records return
targets inside a microarchitectural stack to predict target
addresses of return instructions after multiple function calls.
However, given the limited capacity of the RSB, different
microarchitectures may resort to other branch prediction
schemes as needed. As an example, while this has never been

explicitly shown, the Skylake microarchitecture is known to
revert to BTB prediction on RSB underflows [15, 20, 69].

2.4 Spectre attacks
Speculative execution attacks exploit branch predictors
by influencing (i.e., “training”) them to execute incorrect
code paths. Given that branch prediction is imprecise,
speculative execution sometimes takes code paths that are
architecturally incorrect. In these cases, processors squash
incorrect computation and restart the execution from the
correct path. Although incorrect speculative execution is
not committed to the architectural state, speculative memory
reads affect the state of CPU caches and can thus be leaked
by measuring memory access times through cache attacks.

Attacks that are collectively referred to as Spectre
attacks [36] have different variants, with the first two variants
being the most prominent. Spectre Variant 1, known as
Spectre-BCB (Bounds Check Bypass), forces incorrect paths
of conditional branches to be taken. In many exploitable
cases, these conditions check for a valid bound before a
memory access. In essence, Spectre-BCB forces a specu-
lative out of bound memory access. Spectre Variant 2, or
Spectre-BTI (Branch Target Injection), exploits unconditional
indirect branches by forcing speculative execution of an
incorrect indirect branch target. Spectre-BTI achieves this
by poisoning the BTB with attacker-controlled targets. This
poisoning was shown to be possible across different address
spaces because the BPU records a branch target even if the
target is not accessible in the same address space [36]. We
show in this paper that this is also possible across privilege
boundaries to enable user to kernel exploitation.

Another variant of interest is Spectre-RSB [37, 40, 67] that
triggers speculation through RSB underflows, or by overwrit-
ing the return address on the stack. Because RSB predictions
are limited to previously-valid return targets, Spectre-RSB
is difficult to exploit in scenarios where the attacker cannot
generate code (e.g., inside the kernel), and when mitigations
are in place, which we will discuss in Section 2.5.

Exploitation. Spectre attacks require three components:

1. Speculation Primitive. This is a code path that forces a
desired branch prediction. The predicted branch target or
direction (e.g., taken or not taken) is attacker-controlled.

2. Disclosure Gadget. The target code gadget that is
speculatively executed due to misprediction at the
Speculation Primitive. Due to the nature of Spectre, the
Disclosure Gadget and Speculation Primitive reside in
the same address space [36].

3. Covert Channel. The disclosure gadget leaves a
microarchitectural trace that can be detected using a
covert channel, typically a cache attack.

To use the Speculation Primitive, the attacker executes code
that trains the BPU to make a misprediction. The most
trivial example is Spectre-BCB, where an attacker executes
a conditional branch a number of times with the same
input. They then execute the same conditional branch with a
different input to invert the conditional outcome. This causes
a misprediction, since the BPU assumes that the conditional
branch has the same outcome as before. While similar in-
place training is possible for Spectre-BTI, a less constrained
attack creates collision without the need to execute the victim
branch at all, referred to as out-of-place (OOP) training [10].

2.5 Spectre mitigations

The three directions of Spectre attack defenses are isolation,
prevention of speculation, and prevention the of covert
channel [41]. Whereas the latter category is popular among
web browsers [46, 63], it is unfeasible in native contexts.

To mitigate Spectre-BCB, one possibility is to make sure
that untrusted pointers are adequately sanitized right before
they are accessed. This is a mitigation that is commonly
adopted by the browser [46] and the kernel [2, 68]. Another
possibility is to remove secrets from a potentially-malicious
address space. This is done in the context of site isolation
for browsers by making sure that each origin runs in its own
address space [1]. It is, however, not trivial to isolate different
security domain inside a monolithic kernel.

To mitigate Spectre-RSB, it is common to fill the RSB
with harmless return targets on context switch to ensure to
stop RSB poisoning across user processes.

To mitigate Spectre-BTI, indirect branches should either
not make use of untrusted entries in the BTB or they should
be removed altogether. The former was proposed by Intel
through a microcode update that provide Indirect Branch
Restricted Speculation (IBRS) [14] enabling the temporary
restriction of branch resolution feedback gathered in a lower
privilege mode to be used in a higher privilege. IBRS requires
writing MSR values on every privilege mode transition
and causes significant performance overhead on many
microarchitectures. Recent Intel processors have simplified
the interface and improved the performance with enhanced
IBRS (eIBRS). Retpoline [60] is a mitigation based on
removing indirect branch prediction that was adopted instead
of IBRS due to its lower performance overhead. Retpoline
operates by converting all indirect branches into return
instructions. However, AMD recommends an alternative
retpoline implementation for their systems, which does not
convert indirect branches. Instead, it adds a synchronizing
instruction (i.e., lfence) between loading of the branch target
and the indirect branch itself, which prevents speculation by
making the speculative window too small to exploit [5].

In this paper, we try to understand the attack surface
of return instructions under Spectre-BTI on various
microarchitectures.

3 Threat Model

We consider a realistic threat model where an unprivileged
attacker process aims to leak privileged information from the
victim kernel. We assume the target processor to support spec-
ulative execution and the target kernel to be free of software
vulnerabilities. We further assume that the target kernel is
protected against known speculative execution attacks. More
specifically, in this paper, we assume the latest Linux kernel
that enables all available mitigations against transient execu-
tion attacks, such as KPTI [22], retpoline [5, 15], user pointer
sanitization [2] and disables unprivileged eBPF [42]. We show
how an attacker can leverage Spectre-BTI to hijack return
instructions on various Intel and AMD microarchitectures
to leak arbitrary kernel data despite these mitigations.

4 Overview

RETBLEED aims to hijack a return instruction in the kernel to
gain arbitrary speculative code execution in the kernel context.
With sufficient control over registers and/or memory at the
victim return instruction, the attacker can leak arbitrary kernel
data. To achieve this, however, the attacker must overcome a
number of challenges discussed next.

4.1 Challenges
First, it is unclear under which conditions the attacker can
hijack the return instruction. The BPUs in different microar-
chitectures exhibit different behavior when observing a return
instruction. We need to understand this behavior before we
can hijack a return instruction, which is our first challenge.

Challenge (C1). Understanding the behavior of the
BPU when observing a return instruction in different
microarchitectures.

Section 5 addresses this challenge by reverse engineering
the behavior of BPU when observing return instructions on
multiple microarchitectures and how they can be specula-
tively hijacked by creating collisions in the BTB. Our reverse
engineering provides us with the necessary microarchitecture-
dependent conditions for hijacking return instructions. But
how can we find kernel return instructions that satisfy these
conditions and provide an attacker with sufficient control
over registers and/or memory? This is our second challenge:

Challenge (C2). Finding return instructions in the kernel
that an attacker can hijack while retaining sufficient
control over registers and/or memory.

Section 6 addresses this challenge by using kernel function
graph tracing for discovering call stacks of interest. By
analyzing these call graphs, we discover system calls that

lead to vulnerable return instructions. We then match system
call inputs with registers and their referenced memory when
executing the vulnerable return instruction. System call
inputs that match with registers and memory at the vulnerable
return instruction are likely to be controllable by the attacker
and are as such considered exploitable return instructions.
But even with these return instructions at the attacker’s
disposal, how can they control the speculation target?

Challenge (C3). Controlling the speculation target of
a hijacked return instruction.

We also address this challenge in Section 6 by showing that
an unprivileged attacker can perform BTI on indirect branches
and return instructions across privilege domains, without re-
quiring permission to allocate executable memory at high
addresses. With this capability, we now have full control over
the speculative execution of a kernel return. Our next chal-
lenge is finding an exploitable disclosure gadget in the kernel.

Challenge (C4). Finding an exploitable disclosure
gadget in the kernel.

We address this challenge in Section 7, where we show
how we can find disclosure gadgets and how they can be used
to leak arbitrary data. Furthermore, we address a number of
practical challenges for reliable exploitation. These include
increasing the speculation window, poisoning of the right
BTB entry given the history of victim return instruction, and
derandomizing KASLR.

4.2 Summary of the full-chain attack

Offline phase. The following steps are executed on a different
machine than the victim, where the attacker has full access.

1 Detecting vulnerable returns. We create a list of
locations in the victim kernel where we can arbitrarily
control the speculative instruction pointer.

2 Identifying exploitable returns. We reduce the list of
locations to only include those where we additionally
control registers or memory references.

3 Finding compatible disclosure gadgets. We scan the
kernel image for gadgets that enable FLUSH+RELOAD
with any of the exploitable returns. We select the victim
exploitable return accordingly.

4 Detecting branch history at the victim return. We
generate a list of branch sources and target addresses
preceding the victim return.

Online phase. The following steps are executed on the
victim machine, where the attacker has no special privileges.

5 Derandomizing kernel addresses. We detect the absolute
addresses of the disclosure gadget and the reload buffer
in kernel memory. On AMD CPUs, we develop a new
technique for this purpose.

6 Setting up branch history for BTI. We set the BHB to
the same state as it will be at the victim return. We then
perform BTI to the disclosure gadget which poisons the
right BTB entry.

7 Executing the victim return via a system call. Finally,
executing the victim return triggers a BTB prediction
to our disclosure gadget, allowing us to leak arbitrary
kernel memory.

5 Branch Target Injection on Returns

Given the limited number of entries in the RSB, in this section
we want to understand the behavior of the BPU in different
microarchitectures when observing return instructions under
different conditions. We first reverse engineer the BPU be-
havior of the indirect branches in different microarchitectures
and then show how it interacts with returns.

5.1 Finding BTB collisions
As discussed in Section 2.3, the BPU makes use of BTB to
predict the target of an indirect branch. The BTB is usually
indexed using the PC of an indirect branch to find the branch
target. However, an indirect branch can have multiple targets.
The BPU tries to distinguish between these using branch
history preceding the indirect branch. The combination
of branch history and the branch’s PC for the selection of
the target makes the reverse engineering of BTB indexing
particularly challenging.

BTB collisions on Intel. Previous BTB reverse engineering
work on Intel revealed two BTB predictors [32, 36]. The
history-backed predictor indexes the BTB using the PC of
the last byte of the indirect branch source instruction and
its preceding branch history of taken branches. The generic
predictor is used if no prediction backed by branch history
is available, and selects branch target solely using the PC of
the indirect branch source instruction. Because we will target
return instructions that follow a deep call stack, we expect
a consistent branch history, resulting in using the history-
backed predictor. To gain further insight into BTB indexing
on Intel platforms, we reproduce the experiment described
in [32], shown in Figure 2. This experiment executes a num-
ber of taken branches branch_path, to set the branch history
to a consistent state before executing an indirect branch
instruction. When training, the indirect branch target is the
“Poisoned target”, which signals its execution through a mem-
ory access that can later be inferred using FLUSH+RELOAD.
For the victim, the branch target should lead to no signal, but

jmp j1; j1: jmp j2; ... j29: jmp *src;

A = NO_SIGNAL
jmp *dst

A = SIGNAL
jmp *dst

access(&mem[A])
poisoned_tgt:

Speculation barrier
Speculation barrier
victim_tgt:

Misprediction

training:
src = guess_src
dst = poisoned_tgt
jmp branch_path

src = victim_src
dst = victim_tgt
jmp branch_path

victim:

time(&mem[A])

branch_path:

guess_src: victim_src:

Same hist./path

sizeof(guess_src) ＝ sizeof(victim_src)

Figure 2: Experiment for reverse engineering BTB indexing.
Triggering BTB collisions on AMD Zen 1 and 2 does not require
executing branch_path to match; only the instruction addresses of
the last branch target and branch source are significant for the BTB
index. However, branch_path is necessary for Intel BTB predictor.

if the indirect branch source addresses collide in the BTB,
the CPU incorrectly speculates using the poisoned target.

On Intel Haswell, branch history is derived from the 29 last
taken branches and stored as a fingerprint in the BHB. We
verified that Intel Skylake, Kaby Lake and Coffee Lake use a
BHB that is similar to Haswell’s. The experiment primes the
BHB using 29 direct branch (jmp) instructions. On Intel, the
BHB is updated using the lower 19 bits of the previous branch
source and target addresses. The attacker therefore needs
to know these bits of the preceding branches, in addition to
the victim indirect branch, to inject the poisoned target at the
correct BTB entry. Our evaluation of an Alder Lake system
shows that up to 99 branches are accounted for by the BHB.

With the same branch_path for training and victim, we can
focus on finding indirect branch source addresses that success-
fully collide with our victim indirect branch source. We guess
a colliding branch source address guess_src by brute-forcing
addresses with 1–3 bits mutated across the entire address vic-
tim_src. The results show that an indirect branch, with bits 6–
11 matching the victim’s indirect branch, causes the victim to
mispredict (unlike lower 12 bits as reported for Haswell [32]).
This collision is also possible cross-privilege for Intel systems
prior to Coffee Lake Refresh, which do not support eIBRS.

BTB collisions on AMD. There is no known study on
creating BTB collisions on recent AMD platforms. We
adopt the same approach as in Figure 2 for creating BTB
collisions on AMD. Interestingly, the same approach allows
us to successfully create collisions with the victim indirect
branch on AMD’s Zen 1 and Zen 2 microarchitectures. Again,
bruteforcing variations of the victim indirect branch, shows
that guess_src poisons victim_src when mutating two or more
bits. On Zen 2, we derive the combinational logic shown in
Figure 3 by observing the bits mutated once a misprediction

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10bit

&

&

Figure 3: Combinational logic for creating BTB collisions with a
victim indirect branch on AMD Zen 2 microarchitecture.

to the poisoned target occurs. By moving the victim branch
source into a kernel module while keeping guess_src in user
mode (always mutating bit 47 to stay in valid user mode
address-space), we verified that this collision is possible even
across privilege boundaries. This works by disabling SMAP
and SMEP (Supervisor Mode Execution/Access Prevention)
protections. However, as we show in Section 6.2, this is not
a requirement for exploitation.

We observe collisions on Zen 3 as well when mutating
similar bits as in Zen 2. However, Zen 3 has a less reliable
signal from the poisoned target, and we have to rerun the
experiment several times to observe all the possible bits. We
refer to Appendix A for details regarding the combinations of
mutated bits that successfully collide with the victim indirect
branch. Furthermore, we were unable to observe collisions
across privilege boundaries on Zen 3.

Our reverse engineering further shows that the preceding
29 branches are redundant for crafting a valid history to
poison the BTB on Zen 1 and Zen 2. In fact, a single jump
instruction to an address that matches the victim’s last branch
target address, before the guessed indirect branch, is enough
for setting the correct history to create collisions with the
victim indirect branch. This essentially resembles Figure 2,
but branch_path can be omitted. Therefore, it helps to think
of the BTB index generation as a function of a “basic block”,
where start and end addresses together form the BTB index.

5.2 Creating mispredictions with returns

After gaining understanding of how the BTB works with
indirect branches, we proceed to reverse engineer the behavior
of return instructions on different microarchitectures.

Hijacking returns on Intel. To confirm that RSB underflows
result in using BTB predictions for returns, we make an
experiment in which we execute N nested function calls.
Each function ends with a return and is allocated at a random
location for every round. This way, only RSB prediction
is possible, because the randomly located returns have not
executed in the past, which is necessary for BTB predictions.
We calculate the number of mispredicted branches and
subtract the number of mispredicted calls by sampling
the performance counters br_misp_retired.near_taken and

0 4 8 12 16 20 24 28
branches

0

15

30

m
is

pr
ed

ic
tio

ns return
indirect branch
RSB capacity

Figure 4: Return instructions behave like indirect branches
instructions when reaching the threshold of more than 16 calls.

br_misp_retired.near_call before the first call and after the
Nth return. We compare the results with the same experiment,
only this time we replace each return with an indirect branch
to the return target (i.e., pop %rax; jmp *%rax).

Figure 4 shows that for N ≥ 16, which is the capacity of
the RSB, the number of mispredicted branches increases
linearly with N. Hence, once we exhaust the RSB, returns
start to mispredict similar to indirect branch instructions. This
experiment indicates that the BPU tries to resolve the returns
through some other, apparently near branch, prediction
scheme. The question is whether this prediction scheme uses
the BTB, and whether we can hijack one of these returns by
poisoning its BTB entry.

To answer this question on Intel, we need to set up a specific
history, and a PC that collides with the victim return instruc-
tion. The problem is that if returns are to be treated as indirect
branches, they need to be predicted by the BTB instead of the
RSB. To verify whether returns can be predicted this way, we
replace all 30 jmp instructions in the experiment described in
Figure 2 with returns and check whether we can still observe
the misprediction to the poisoned target. Doing so requires an
additional step, where we first push all the return targets (pre-
viously jump targets) to the stack. Replacing all jmp instruc-
tions with returns serves two purposes: not only will returns
preceding the victim branch source prime the BHB (like the
replaced jmp instructions did), but since the number of returns
exceeds the RSB capacity, we expect them to be treated as
indirect branches. The results show that returns are indeed
treated as taken indirect branches. Moreover, our results show
that on our Intel platforms, we can successfully hijack all
returns that come after an RSB underflow. This means that all
returns following a sufficiently deep call stack can be hijacked.

Hijacking returns on AMD. Similar experiments on AMD
Zen 1 and 2 microarchitectures show vastly different results:
we observe BPU mispredictions on returns without RSB
underflow, whenever there is a colliding indirect branch. This
means that unlike Intel, we can hijack any return, simplifying
exploitation significantly.

We want to know why we observe collisions without
exhausting the RSB on AMD. We confirm that the RSB is
being used (32 entries on Zen 2) by reusing the previous
experiment but instead sampling the performance counter
ex_ret_near_ret_mispred. To check whether RSB predictions
are used at all when there is a BTB entry, we create a new
experiment, illustrated in Figure 5, where we try to create an

A_collide:

jmp r1

B:

access(Y)

call A rsp ⟵ rsp+8

returnaccess(X)

A:RSB_mispred:

r1 ⟵ B

A_collide()
flush(X,Y)

RSB_mispred()
time_access(X,Y)

X is
uncached

Y is
cached

RSB prediction BTB prediction

Figure 5: This experiment shows that BTB prediction takes
precedence over RSB on AMD CPUs. Note that access(X) can
never be architecturally executed due to the stack adjustment in A.

RSB and BTB misprediction on the same return at the same
time. Following Koruyeh et al.’s method to create an RSB
misprediction [37], we move the stack pointer ahead so that
the latest return target is skipped when executing the return
from A. Following our own insights from Section 5.1, we
inject a BTB entry for the return in A by executing the func-
tion Acollide, which is allocated such that it matches its start
and end addresses with A, except its address bits are mutated
according to Figure 3. The question is whether a BTB or RSB
prediction will be used when returning from A. To signal
an RSB misprediction, we access memory address X at the
skipped return target. To signal a BTB prediction, our injected
branch target accesses memory location Y . When we run the
code, we find that X is uncached and Y cached. Conversely,
if we run the experiment without executing Acollide, we see
the opposite: X is cached and Y is uncached. Our conclusion
is that BTB prediction takes precedence over RSB prediction.

Summary. We showed the conditions under which return
instructions can be hijacked in different microarchitectures.
In the next section, we describe a framework that we built for
identifying these return instructions inside the Linux kernel.

6 Exploitation Primitives

RETBLEED relies on two basic primitives: exploitable return
instructions, discussed in Section 6.1, and BTI on kernel mem-
ory, discussed in Section 6.2.

6.1 Discovering exploitable returns

Because we assume the attacker can run unprivileged code,
they can detect the kernel version. Assuming the victim
kernel is not custom-built, the attacker can obtain a copy of
the victim kernel from the package repository of their Linux
distribution. Hence, the following primitives are crafted
during an offline phase, where the attacker has root privileges.

State-of-the-art speculation primitive scanners are
overwhelmingly dedicated to the discovery of vulnerable
conditional branches [25, 26, 28, 33, 43, 48, 64], since indirect
branches are believed to be mitigated by compilers using

retpoline [8, 13, 45]. Return speculation is hardly ever consid-
ered as a significant attack vector. Because of the lack of tools,
we construct one to discover vulnerable returns in the kernel.
We first describe our framework for finding exploitable return
instructions in the kernel and then show how to poison the
target of these return instructions from user mode.

Exploitability of return instructions depends heavily on
the microarchitecture according to our reverse engineering in
Section 5. More specifically on Intel CPUs, we need to find re-
turn instructions that follow deep call stacks, resulting in RSB
underflow conditions that fall back to the BTB. On AMD,
even shallow return instructions are potentially exploitable.

To find vulnerable returns, we make use of the ftrace
facility inside the Linux kernel [51], which allows us to
observe all function call graph when executing a syscall.
A vulnerable return provides us with arbitrarily control
over its target (i.e., the instruction pointer). However,
additional control is typically necessary to leak arbitrary
secrets, resulting in an exploitable return. For example, for
a FLUSH+RELOAD covert channel, we need to control two
memory pointers, where one references a secret in the kernel,
to be leaked, and the other is a buffer pointer (referred to as
reload buffer) that can be accessed by both kernel and user.
Previous work shows that the kernel’s direct mapped memory
can be exploited for this purpose [21].

To see whether these vulnerable returns can be exploited
with FLUSH+RELOAD, we trace register and memory state
at the system call entry and at the point of the vulnerable
return using kprobes and kretprobes, respectively [34]. Our
framework, built around eBPF, ftrace, kprobes and kretprobes,
can be broken down into four different steps:

Step 1: Generate test cases. We detect system calls and
inputs that result in deep call stacks by running test cases in
the form of small compiled binaries that perform system calls.
A system call fuzzer, such as Syzkaller1, could be modified
for this purpose. However, an arguably simpler approach is
to use a pre-written system call test suite. Linux Test Project2

includes one that suits our purpose. All test cases are run
as unprivileged user to exclude the call stacks that require
privileged access.

Step 2: Construct kernel function graphs. The Function
Graph Tracer [51] is an ftrace feature that constructs call
graphs of all kernel functions (with a few exceptions).
For each test case, we construct function graphs for every
executed system call.

Step 3: Analyze function graphs. We simulate a 16-entry
RSB as we traverse the function graphs. Whenever our
simulated RSB experiences an underflow condition, when
returning from a deep call stack, we consider the offending
return and all others that follow it as vulnerable. If there is a

1https://github.com/google/syzkaller
2https://linux-test-project.github.io/

syscall

sysret

call

return

call

return

call

return

N calls

N returns

Kernel space

Test case

Function Graph Tracer

Filter out returns
in deep call-stacks

BTB
Fallbacks

ftrace
buffer

Linux Test Project

Figure 6: Finding vulnerable returns using kernel tracing tools.
Let’s assume that we have detected a vulnerable return in the red
marked function.

kprobe

syscall

sysret

call

return

call

return

kretprobe

call

return

N calls

N returns

Kernel space

Test case

dumps
eBPF Program

Registers &
memory

at A and B

 A

B

Detect
matching

regs./mem.
from A at B

scans

Figure 7: Detecting attacker control of registers and memory. For
each vulnerable return found in the previous step, we run the same
test case again, only this time, we break the control flow at the
vulnerable return (at B) to dump registers and memory. We analyze
the information to discover whether anything matches the system
call inputs (dumped at A), which we control.

context switch in the call graph, we conservatively skip ahead
to the call graph of the next system call. The first three steps
are outlined in Figure 6. The function graph also informs us
of how many times a particular system call and vulnerable
return executed when the RSB underflow occurred.

Step 4: Detecting control for exploitability. If any of the
system call inputs are present at a vulnerable return, we
assume it is to some degree attacker-controlled. While
methods such as symbolic execution or dynamic taint
tracking could establish the attacker’s control with precision,
a more relaxed variant proves sufficient and works without
augmenting the kernel. For each vulnerable return, we register
a kretprobe at the return and a kprobe at the respective system
call handler. For this purpose, we write a eBPF program that
we instruct from user mode to register probes at the desired
locations, and read register state, as shown in Figure 7.

If a register is a memory pointer, we also dump 96 bytes of
memory that it points to. The test case may issue a particular
system call more than once, and likewise it may execute the

https://github.com/google/syzkaller
https://linux-test-project.github.io/

return in a call stack where it is not vulnerable. We make
use of the function graph from Step 3 to find the number of
times a particular system call was made and when a function
returned under an RSB underflow condition. If we find
memory or register values used in the system call inputs
that are also present in memory or registers at the vulnerable
return, we log them if they can be altered without affecting
the call stack depth. For example, we omit system call input
arguments such as file descriptors, mode and flag parameters
as they provide limited control.

With knowledge about what memory and registers
are under the attacker’s control, we next need to find an
appropriate disclosure gadget which we will discuss in
Section 7.1. Our framework is made out of 1301 LoC in user
mode and 197 LoC of eBPF code that runs in the kernel.

6.2 BTI on kernel returns
The original Spectre-BTI attack against KVM [36] accom-
plished BTI by allocating executable memory in the guest
kernel address space that would also be mapped in the host
kernel. Branching into this address would successfully poison
a host indirect branch. An unprivileged attacker does not en-
joy this benefit. However, as we will discuss next, allocating
executable memory with kernel addresses is not necessary.

In Section 5, we discussed how to create collisions
on kernel return instructions from user mode. However,
even though we can create collisions, it is not possible to
speculatively execute or access unprivileged code, such as
the attacker’s, from kernel space due to SMEP and SMAP
protections. The question is how to inject a branch target that
resides in the kernel address space in the BTB.

Previously work noted that illegal branches update the
BTB [36], but to the best of our knowledge, this has never
been considered in the context of a User–Kernel threat model
like ours before. As it turns out, branch resolution feedback
is recorded to the BTB across privilege boundaries even if
the branch target is not architecturally allowed to execute.
Consequently, we can inject arbitrary branch targets into the
BTB, including ones that are neither mapped nor executable
in the current privilege domain. Therefore, a user program
can branch into kernel memory and recover from the page
fault using a signal handler as BTI primitive.

We evaluate this primitive on different microarchitectures
and observe successful BTI on almost all of them (more
information in Section 8). Note that, as part of our BTI
primitive, we have to use the correct BTB entry. Branch
history and BTB collision can be set up using the techniques
we described in Section 5.

7 RETBLEED

Armed with the necessary tools to find exploitable return in-
structions, in this section we develop RETBLEED. For this pur-

0 1 2

3

4

load
ptrA

load
ptrB

load B
B is secret

load A
A is secret

5

6

load (B+ptrA)

load (A+ptrB)

Figure 8: State transitioning of our disclosure gadget scanner

pose, we scan the Linux kernel for suitable disclosure gadgets
(Section 7.1) and show how we can improve the signal with
non-trivial disclosure gadgets that match exploitable return in-
structions (Section 7.2). We also show how we can adequately
set up branch history as needed (Section 7.3) and bypass
KASLR as a prelude to our end-to-end exploit (Section 7.4).

7.1 Scanning for disclosure gadgets

Gadget scanners typically focus on discovering gadgets for
code-reuse attacks [30,52,53,56], and Spectre gadget scanners
look for speculation primitives [25,26,26,28,33,43,45,48,64].
Because neither fits our scenario well, we construct a basic
disclosure gadget scanner, specifically for Spectre-BTI.

We consider two types of gadgets, FLUSH+RELOAD and
PRIME+PROBE. A PRIME+PROBE-type gadget requires a
controllable input for the secret pointer that it references and
uses it in a secret-dependent memory accesses. Alternatively,
a FLUSH+RELOAD-type gadget requires the secret-dependent
access to be in the memory that is shared with the attacker,
thus requiring a reload buffer pointer as second input.

Requirements. Our BTI primitive allows arbitrary specula-
tive code execution. However, SMAP and SMEP protections
limit memory accesses and execution of the disclosure gadget
to the kernel address space. Arbitrary physical memory,
including attacker-owned memory, can be accessed by the
kernel via direct mapped memory physmap, but physmap
is marked as non-executable for the kernel. Hence, for the
disclosure gadget, we must reuse code in the executable
sections of the kernel. Furthermore, typical disclosure
gadgets assume that the secret value pointer and reload buffer
(for FLUSH+RELOAD) are already populated in registers. To
increase the number of potential gadgets, we further need
to additionally support the scenario where such pointers are
present through memory dereferences as well.

Implementation. Our basic disclosure gadget scanner uses
the Capstone engine3 to disassemble executable kernel sec-
tions and discover FLUSH+RELOAD gadgets. It transitions
from an initial state to a final state as shown in Figure 8. We
scan for a sequence of up to 20 instructions without branches.
To handle memory dereferences, additional instructions are
required, which accounts for the first two state transitions.
After observing two quad-word memory loads, the scanner

3https://www.capstone-engine.org/

https://www.capstone-engine.org/

CL0CL1CL2CL3CL4CL5CL6CL7

CL0CL1CL2CL3CL4CL5CL6CL7

reload buffer page

CL0CL1CL2CL3CL4CL5CL6CL7

signal strength

weak strong

CL0CL1CL2CL3CL4CL5CL6CL7

Figure 9: We continuously trigger the secret-dependent access while
sliding cached CLs over the reload buffer page boundary by offsetting
its pointer until we observe no signal. This shows us which CL was
the secret-dependent access and which ones that were prefetched

has transitioned to state 2. From there, either pointer ptrA or
ptrB can be dereferenced. The one that is dereferenced first is
considered to be the secret pointer and the second, the reload
buffer pointer. We then manually go through the discovered
gadgets to find the most appropriate. Particularly, we are inter-
ested in gadgets that load 2 bytes of the secret at maximum.

7.2 Using non-trivial disclosure gadgets

The gadgets that we discover are non-trivial to exploit. We
discuss some of the problems that we encounter and how we
overcome them.

Handling small secret-encoding strides. An ideal disclo-
sure gadget multiplies the secret with a value that is large
enough to avoid triggering data prefetchers (e.g., 4096).
Unfortunately, these are unusual to find in the kernel. A
simpler gadget, such as reload_buf + *secret, is much
easier to find. There are however two problems with such
a gadget. First, data prefetchers will access neighboring
cache lines (CLs) after observing the secret-dependent access.
Second, we can only detect the CL that was accessed, but
the lower 6 bits of the secret remain unknown.

We overcome the first problem by exploiting a known prop-
erty of data cache prefetchers. Because prefetchers usually
only operate within page boundaries [55], if we have multiple
cached CLs as exemplified in Figure 9, we can detect the
secret-dependent access by continuously triggering the disclo-
sure gadget with the same secret while offsetting (i.e., sliding)
the reload buffer pointer until we observe no signal anymore.
As seen on the last row in the example given, all the remaining
entries become uncached when CL4 was shifted over the page
boundary. This means that the secret-dependent access was to
CL4 and the other cached CLs (2–3 and 5–7) were prefetched.

Considering the second problem, if the secret is one byte,
this merely allows us to infer the upper 2 bits. However, if
the secret was multiplied by 2, 4, or 8 we infer 3, 4 or 5 bits,
respectively. To infer the lower bits of the secret, we shift the
reload buffer back until we observe cache hits again. There
are 64 possible offsets in the CL where the access could take
place. Through binary search, we need to check 16 locations
to find the exact offset. If the secret was multiplied by 2, 4,

or 8, we only need to check 5, 4, or 3 locations, respectively.

Word-sized secrets. A typical disclosure gadget loads only
one byte of the secret, but we also consider gadgets that load
word-sized (i.e., 2-byte wide) secrets. For these disclosure
gadgets, we can leak only the upper byte byteupper, of the
secret, without needing to multiply the secret. byteupper is
at bit index 8 of the register, meaning the word-sized secret
can be expressed as bytelower +byteupper ∗256. By knowing
bytelower, we can let rb′= rb−bytelower. By passing rb′, we
will speculatively access rb+byteupper ∗256, which can be
leaked by reloading cache lines with 256 bytes strides. Once
we infer byteupper, we let bytelower = byteupper to leak the
next byte. It’s realistic to assume that a portion of the secret
is known, for example root:$ in /etc/shadow [62].

Increasing the speculation window. Spectre works by
winning a race condition against the memory hierarchy. As
soon as the architectural branch target is resolved, the CPU
stops executing in the wrong speculative path and restarts
at the correct one. Because our speculation primitive is a
return instruction, the correct branch target, according to the
Instruction Set Architecture (ISA), is allocated on the stack,
which is frequently accessed and therefore is usually present
in data caches. Additionally, as shown in Figure 8, non-trivial
disclosure gadgets can contain 4 (or more) memory loads,
which arguably require a larger speculation window to
execute. Hence, we somehow need to increase the speculation
window so that our injected branch target gets a chance to
execute long enough to leak information.

Whereas the kernel stack pointer varies across process
invocations, the lower 12 bits remain consistent, even across
reboots. Because CPU cache sets are partially indexed using
the lower 12 bits of memory addresses, we can use a cache
eviction primitive to evict the kernel stack. Simultaneous
Multi-Threading (SMT) allows executing two threads in
parallel on the same physical core, where L1 and L2 caches
are shared by the threads. To leverage SMT, we pin two
threads to same physical core, where one is constantly
attempting to evict the kernel stack by accessing memory
pages at the same offset as the target stack location, thereby
evicting L1d and L2. This allows us to successfully execute
the entire disclosure gadget speculatively.

As a final step towards successfully exploiting the
vulnerable return, we must also obtain the history of the last
29 control flow edges leading up to the vulnerable return
for exploitation on Intel CPUs. Note that ftrace [51] (used in
Section 6.1), only provides us with function calls and returns,
and we need a different (more heavyweight) mechanism to
track all control flow edges.

Restarts. We sometimes observe that the leakage stops
at certain page offsets with certain disclosure gadgets.
RETBLEED overcomes this problem by forking a new process
after detecting it.

Log branch
src. & dst.

Single step until B .

Python GDB

syscall

sysret

call

return

call

return

call

return

N calls

N returns

Guest Kernel

Test case

B

QEMU Guest VM

C

Break @ C Branch
History

Figure 10: Gather branch history for BTI.

7.3 Obtaining branch history
We need to collect the last 29 control flow edges for ex-
ploitation on Intel. Since many of these edges are runtime-
dependent, we need find to them dynamically. Intel’s Last
Branch Records (LBRs) are capable of recording recent con-
trol flow edges, but the limited number of LBRs makes it diffi-
cult to record all the necessary edges. For example, obtaining
the LBRs at the address of a vulnerable return using a kret-
probe, contributes unrelated branches that overwrites older
ones from the history, before it is possible to stop recording.

Instead, we run the victim’s kernel inside a VM which
allows us to attach a debugger, as illustrated in Figure 10.
Using a debugger, we can single step over instructions and
record the source and target addresses of as many control
flow edges as desired. Having obtained the function graph
trace from a test case that reaches a vulnerable return, we
set a breakpoint inside function that is clearly more than 29
control flow edges away from the vulnerable return. From
there on, we single-step until we encounter the victim branch
(using a gdb-python script), and log all control flow edges.

To avoid crashes or deadlocks, we create a list of
locations (e.g., __sysvec_apic_timer_interrupt,
asm_call_irq_on_stack, psi_task_change, try_to_
wake_up and check_preempt_curr), where we continue
execution until returning to a stable location where we can
restart recording control flow edges again. This can cause a
gap in the recorded history since prior control flow edges are
discarded. Nonetheless, our strategy could always find suffi-
cient control flow edges preceding the speculation primitive.

7.4 Derandomizing KASLR
Several derandomization attacks on KASLR have previously
been proposed [11,12,18,23,27,31,38,62]. These are all side-
channel attacks on the CPU hardware. Despite the plenitude
of these attacks, the majority is either strictly limited to Intel
systems [11, 12, 31] or require further reverse engineering be-
fore they could be applied on a modern AMD CPU [18,27,38].
We show how our RETBLEED primitives can be used for break-

1 ADD RCX,qword ptr [page_offset_base] ; physmap
2 MOV RAX,qword ptr [RCX]
3 MOV qword ptr [RDX],RAX

Listing 1: Disclosure gadget for breaking KALSR on AMD Zen 1
and Zen 2, located in init_trampoline_kaslr (arch/x86/mm/kaslr.c).
RCX and RDX are attacker-controlled. Lines 1–2 are used for Steps 1
and 2. Step 3 only uses Line 3.

ing KASLR on modern AMD CPUs. On Intel, we simply use
MDS [62] instead of the following steps for breaking KASLR.

To use a FLUSH+RELOAD-type gadget, we need both
a code pointer of the gadget location in kernel address
space and a kernel pointer to our reload buffer via physmap,
the direct mapped memory address space. Ubuntu by
default allows allocation of transparent huge pages (thp).
Therefore, with 32 GiB of physical memory, according to
recent work [38], the cumulative entropy to find our reload
buffer using a gadget at the unknown location of the kernel
image is entropykern+entropyphysmap+entropyphysreloadbuf =
9+15+14=38 bits, which is too large to bruteforce directly.
Instead, we will reduce this entropy in the following three
steps. For the speculation primitive on AMD, we target a
vulnerable victim return inside the mmap system call handler,
which we discuss in Section 8.3.

1 Derandomizing kernel image. We conduct a
PRIME+PROBE attack on a single L1d set. The goal is
to evict memory from the set by misprediction to the
disclosure gadget in Listing 1. Since both the victim return
and disclosure gadget are relative to the kernel image,
correctly guessing the kernel image consequently forces the
victim return to mispredict into the disclosure gadget.

For each guess, we poison the BTB entry of the victim
return with the disclosure gadget, prime the cache set and
make the system call. When the system call returns, we probe
our primed cache set to detect the memory access. Knowing
the kernel image location reduces the entropy by 9 bits.

2 Leaking a physical memory pointer. We use
FLUSH+RELOAD to detect the physical address of our
reload buffer. Our disclosure gadget dereferences physmap
using an attacker-controlled register as offset. We allocate
our reload buffer as a transparent huge page so that it is
aligned on a 2 MiB boundary in physical memory. Using the
attacker-controlled register, we try all 2 MiB aligned physical
memory addresses that the reload buffer can be assigned to.

For each guess, we flush the first reload buffer cache line,
poison the BTB entry of the victim return, execute the system
call, and time the access to the same reload buffer cache
line. A cache hit means we have guessed the correct physical
address. Knowing the physical address of the reload buffer
reduces the entropy by 14 bits.

3 Finding physmap. All we need is a single-instruction

Table 1: RETBLEED primitives and leakage rate with ideal gadgets on various Intel and AMD microarchitectures.

CPU Microarch. Microcode Year Defense c
Primitive

Bandwidth Success rate
RET-BTI a U→K b RETBLEED

AMD Ryzen 5 1600X Zen 1 0x8001138 2017 retpolineAMD 3 3 3 18.4 kB/s 99.5 %
AMD Ryzen 5 2600X Zen 1+ 0x800820d 2018 retpolineAMD 3 3 3 22.5 kB/s 99.8 %
AMD Ryzen 5 3600X Zen 2 0x8701021 2019 retpolineAMD 3 3 3 20.6 kB/s 96.7 %
AMD Ryzen 7 PRO 4750U Zen 2 0x8600106 2019 retpolineAMD 3 3 3 17.1 kB/s 99.0 %
AMD EPYC 7252 Zen 2 0x8301038 2019 retpolineAMD 3 3 3 14.8 kB/s 99.9 %
AMD Ryzen 5 5600G Zen 3 0xa50000c 2020 retpolineAMD 7 7 7 – –
Intel Core i7-7500U Kaby Lake 0xea 2016 retpoline 3 3 3 3.6 kB/s 77.0 %
Intel Core i7-8700K Coffee Lake 0xea 2017 retpoline 3 3 3 5.9 kB/s 83.1 %
Intel Core i9-9900K Coffee Lake Ref. 0xea 2018 eIBRS 3 7 7 – –
Intel Core i9-12700K Alder Lake 0xd 2021 eIBRS 3 7 7 – –

aBTI on returns; out-of-place [10]; bUser→Kernel boundary BTI; cAMD-style retpoline is referred to as RETPOLINE_LFENCE since Kernel 5.14.

disclosure gadget that dereferences a register that we control.
We follow the same procedure as in Step 2, but this time,
we guess the possible locations of physmap by passing
guessphysmap + physreloadbuf in our register. In each attempt,
we load our reload buffer. Detecting a cache hit means we
have guessed the correct physmap address and reduces the
remaining entropy to 0.

Results. We can break KASLR in 60 ms with 97.5%
accuracy. We find the physical address of the reload buffer
at physical address 6 GiB into physical memory after 16
seconds. Finding the physmap base address takes about 1
second. After breaking KASLR and finding the physmap
address of our reload buffer, we can leak memory using a
FLUSH+RELOAD-type disclosure gadget.

8 Evaluation

We first evaluate the attack primitives we designed in
Section 6 on a variety of microarchitectures from Intel and
AMD running on Ubuntu 20.04 with Linux kernel 5.8. We
then evaluate the end-to-end RETBLEED attack on Intel
Coffee Lake (bypassing generic retpoline) and AMD Zen 2
(bypassing AMD retpoline) microarchitectures.

8.1 RETBLEED primitives
We verify the existence of two required RETBLEED primitives
on different microarchitectures. First primitive RET-BTI, is
to perform BTI on returns. The second primitive U→ K BTI,
is to inject branch targets on kernel branches from user mode.
To accurately evaluate these, we construct a simple kernel
module with an ideal victim return instruction and disclosure
gadget. For end-to-end exploitation in the next sections, we
use returns and disclosure gadgets within the kernel image.

As seen in Table 1, Intel Kaby Lake and Coffee Lake
microarchitectures are susceptible to both primitives. On
Coffee Lake Refresh and Alder Lake, while we can hijack
return instructions, we did not observe a signal using our U
→ K BTI primitive, even after disabling eIBRS. Therefore,

tests

vuln.syscall
vuln. rets

0

250

500

750

1000

#
 e

nt
ri

es

908

96

1069

1 47bit
2 47bit

1 64bit
1 64bit 2 64bit

3 64bit
4 64bit

0

20

40

60

80

#
 v

ul
n.

 r
et

ur
ns

 w
/ c

on
tr

ol 85

11
4

88

64

31
22

register
memory

Figure 11: Breakdown of the vulnerable returns discovered. Totally
908 tests cases were run. We found 1069 vulnerable returns across
96 system calls.

we cannot confirm whether eIBRS stops our primitive or if
it is ineffective for other reasons. On AMD platforms, our
primitives are successful on Zen 1, Zen 1+, and Zen 2 microar-
chitectures. On AMD Zen 3, we were only able to observe
BTI through indirect branches in the same privilege mode,
thus is not susceptible using our method (see Section 5).

When repeatedly leaking 4096 bytes of randomized
memory with an ideal victim return and disclosure gadget,
we measure the covert channel bandwidth and accuracy of
5.9 kB/s and 83.1 % on Intel Coffee Lake, and 20.6 kB/s and
96.7 % on AMD Zen 2, respectively.

8.2 RETBLEED on Intel

Vulnerable returns. We used our framework to analyze the
entire syscall test suite from Linux Test Project to search
for vulnerable return instructions. Out of 1363 test cases, an
unprivileged user can run 908. The results are shown in Fig-
ure 11. We discovered 1069 vulnerable return instructions
reached from 96 different system calls in total. For four vulner-
able returns, we had partial control over a full 64 bit register.
For three of which, the register contained a file name, thus re-
fusing NULL (0x00) and forward slash characters (0x2f), and
the fourth case could not be reached consistently. For 85 differ-
ent vulnerable returns, we had control over 47 bits of a register
with the upper bits unset, constrained to a valid user-space
pointer. For 11 cases, we had control over two such registers.

We could detect substantially more control if we also
resolved pointers to compare memory referenced by registers
at vulnerable returns. We found 88 vulnerable returns with
control over at least a 64 bit block of memory through one
indirection. For 64 for which we had control over 2 or
more 64 bit blocks, which satisfies the requirements of a
FLUSH+RELOAD gadget. We decided to target the sendto
system call, since in the test case recvmsg02, it led to two
vulnerable returns, where the entire message buffer was
present through R14+0x8. These returns were discovered in
functions in ip6_local_out (net/ipv6/output_core.c) and
ip6_send_skb (net/ipv6/ip6_output.c).

1 MOV RAX,qword ptr [R14 + 0x28]
2 MOV RDX,qword ptr [R14 + 0x20]
3 MOV dword ptr [RDX + 0x1c],0xffffffff ; bogus
4 MOVZX EAX,byte ptr [RAX + 0x14]
5 ADD RAX,0x1 ; secret + 1
6 MOV ECX,dword ptr [RDX + RAX*0x4 + 0x58]

Listing 2: Disclosure gadget found in mb_mark_used
(fs/ext4/mballoc.c). &R14[8] holds the second argument, *buf, of
the syscall sendto. The secret and reload buffer pointers are loaded
into RAX and RDX respectively.

Disclosure gadget. With the fairly loose constraint of having
control over buffer contents pointed to by R14, we run our
disclosure gadget scanner. We discover a compatible gadget
that loads a byte-sized secret, shown in Listing 2. Looking
at Listing 2, the following memory address is accessed

rb′+(secret+1)∗4+0x58

Because we freely control the reload buffer address rb′,
offsetting it by −0x5c the memory address becomes
rb+4∗secret. This gadget is non-trivial to exploit, since the
secret is only multiplied by 4. To leak arbitrary data using
it, we use the sliding method discussed in Section 7.2.

Results. We leak 1 kB of kernel memory 10 times with an
average accuracy and covert channel bandwidth of 98 % and
219 bytes per second respectively. We furthermore verified
that RETBLEED is capable of locating and leaking the root
password hash from /etc/shadow in physical memory in 28
minutes on a Coffee Lake system with 16 GiB of RAM.

8.3 RETBLEED on AMD
The AMD Zen 1 and Zen 2’s branch predictors are easier to
mistrain than their Intel counterparts. Neither underflowing
the RSB, nor generating a perfectly matching branch history is
necessary. This means that virtually all returns are vulnerable.

Vulnerable returns. Because of the looser constraints
for AMD, our framework finds many vulnerable returns.
Specifically, we found suitable vulnerable returns on early
error paths in system calls. Because these error paths are
easily reached (e.g., by providing an invalid argument), the

syscall inputs are often untouched. In particular, mmap and
mremap have all six arguments present in the registers at the
vulnerable return instructions. Using one of these returns,
we can fully control RDI, RSI, RDX, RCX, R08 and R09. With
such control, finding disclosure gadgets is trivial.

Disclosure gadget. With the mmap syscall, the attacker can
control 6 registers. We found a disclosure gadget that loads a
word-sized secret, as shown in Listing 3. It uses the RDI and
RSI registers, which are among the 6 attacker-controllable
registers. As before, the secret is not shifted enough to
leak the secret. However, by using the method described in
Section 7.2, exploiting this gadget becomes practical.

1 MOVZX EDX,word ptr [RDI + 0x7c]
2 MOV R14D,dword ptr [RDI + 0x70] ; bogus
3 MOV R13,qword ptr [RSI + RDX*0x8 + 0x900]

Listing 3: Disclosure gadget found in tun_net_xmit
(drivers/net/tun.c). RDI points to the secret and RSI points to
the reload buffer

Results. We leak 4 KiB of kernel memory 100 times. 20 times
the attack was unsuccessful due to noise. For the remaining
80 times, we leak with a median accuracy and bandwidth of
>99 % and 3.9 kB per second respectively. We furthermore
verified that RETBLEED is capable of locating and leaking
the root password hash from /etc/shadow in physical memory
in 6 minutes on a Zen 2 system with 64 GiB of RAM.

9 Mitigation

We saw that retpoline-protected Intel and AMD CPUs are
vulnerable to RETBLEED. We will now discuss the possible
directions of mitigating RETBLEED, specifically we consider
mitigations by means of preventing speculation and isolation.
Furthermore, Intel and AMD have shared with us their current
mitigation strategies, which we also discuss and evaluate.

9.1 Preventing speculation
Retpoline, as a Spectre-BTI mitigation, fails to consider
return instructions as an attack vector. While it is possible to
defend return instructions by adding a valid entry to the RSB
before executing the return instruction, treating every return
as potentially exploitable in this way would impose a tremen-
dous overhead. Previous work attempted to conditionally
refill the RSB with harmless return targets whenever a per-
CPU counter that tracks the call stack depth reaches a certain
threshold, but it was never approved for upstream [35]. In
the light of RETBLEED, this mitigation is being re-evaluated
by Intel, but AMD CPUs require a different strategy.

AMD’s mitigation. AMD proposed a mitigation, called
jmp2ret, which prevents speculation by replacing returns in
the kernel with direct jumps to a return thunk. This is used to

Table 2: Unixbench overhead with AMD and Intel mitigations.

Microarch. Coffee Lake Zen 1+ Zen 1+ (no SMT) Zen 2
Overhead 20.25 % 6.13 % 38.69 % 13.56 %

return from all function calls, and it narrows down the attack
surface to a single return located in the return thunk. To
mitigate the remaining attack surface, an untrain procedure,
executed at kernel entry, jumps to a byte that immediately
precedes the return in the return thunk. Consequentially,
this byte gets encoded by the CPU as a different instruction,
which invalidates the BTB entries associated with the return
instruction. Unlike IBPB, jmp2ret leaves the remaining BTB
intact. Furthermore, to prevent BTI from a sibling thread,
right after untrain, on affected AMD systems that do not
support STIBP [16] (e.g., Zen 1+), SMT must be disabled.

9.2 Isolation

We observed that eIBRS systems seem protected from RET-
BLEED. IBRS, which is the alternative for earlier systems, was
considered too expensive to use in practice when Spectre was
introduced in 2018. Flushing the entire BTB through IBPB
upon kernel entry would arguably be even more expensive.

Intel’s mitigation. Despite the performance cost of IBRS,
it mitigates RETBLEED on vulnerable Intel CPUs. Hence,
IBRS will selectively be enabled on systems that exhibit
RSB-to-BTB fallback behavior that do not support eIBRS.

We initially considered conditional IBPB as a feasible
alternative. The key component of RETBLEED is the U→K
BTI primitive, which triggers a page fault in the kernel
caused by executing a kernel address that is outside the range
of valid user program memory. At this stage we “untrain” by
issuing IBPB. Because invalid memory accesses to kernel
memory that originate in user mode is exceptional behavior
for normal applications, the performance implication is
negligible. Unfortunately, this mitigation turned out to be
incomplete, since the page fault of the U→K BTI primitive
can be suppressed by training speculatively. We verified on
Coffee Lake that such a variant of RETBLEED indeed works.

9.3 Security and performance of mitigations

We verified that the proposed patches indeed stop RETBLEED
on vulnerable Intel and AMD systems. To evaluate the
performance overhead, we use Unixbench 4.

Table 2 shows the incurred performance overhead derived
from the geometric mean of the median of 10 invocations
of each workload in multi-threaded mode. While the
performance overhead is generally significant across the

4https://github.com/kdlucas/byte-unixbench

Table 3: Cross privilege domain Spectre attacks.

Attack Variant [10] Domain Assumption

KVM Attack [36] BTB-OOP Guest→ Host Privileged guest
eBPF Attack [36] PHT-IP User→ Kernel Unprivileged eBPF
Blindside [21] PHT-IP User→ Kernel Memory corruption
BHI [7] BTB-OOP User→ Kernel Unprivileged eBPF
RETBLEED BTB-OOP User→ Kernel Unprivileged user

board, Zen1(+) systems suffer the most due to the need for
disabling SMT.

10 Related work

Attacking the BPU. Initial security research used branch
predictors for leaking secret keys [3, 4]. Later work by
Evtyushkin et al. [18, 19] explored alternative attacks for
breaking ASLR or leaking secrets from SGX enclaves. This
past work laid out the stepping stones for Spectre attacks.

Spectre. Kocher et al. published Spectre [36], with extensive
BTB reverse engineering by Horn [32]. While their contri-
butions include speculative execution on top of conditional
and indirect branches, they also correctly predicted that
further attacks can be designed through mispredicted return
instructions, via the RSB, as was later shown in [37, 40, 67].
Conversely, RETBLEED uses returns to target the BTB, which
has never been shown in previous work.

There are only a few Spectre attacks where the attacker
is in a lower privilege domain than the victim [7, 21, 36].
We enumerate these in Table 3. The original Spectre attack
features Spectre-BTI in a guest-to-host attack on KVM [36].
Göktas et al. [21] showed that speculative probing can be
combined with a memory corruption vulnerability, allowing
them to break fine-grained KASLR and craft a code-reuse
attack against the kernel. In contrast to their threat model,
RETBLEED assumes no software bugs while providing
arbitrary leakage of kernel data.

Concurrently to our work, Branch History Injection
(BHI) [7] explored the limitations of eIBRS and found that
indirect branch speculation can be hijacked to run previously
executed indirect branch targets in the kernel. Whereas
RETBLEED targets Intel CPUs without eIBRS and certain
AMD CPUs, BHI targets Intel CPUs with eIBRS and ARM.
Moreover, because of the limited number of disclosure
gadgets available to BHI, unprivileged eBPF is required
for practical exploitation, which consequentially has been
disabled as a mitigation. It is possible to combine RETBLEED
with BHI. While a future RETBLEED-BHI appears to be mit-
igated for platforms that support RRSBA controls (Restricted
RSB Alternative) [29], evaluating this attack vector on other
systems remains an interesting direction for future research.

AMD-specific Spectre research, concurrent to ours, has

https://github.com/kdlucas/byte-unixbench

shown that the BTB indexes conditional branch targets [65],
and that AMD CPUs are vulnerable to Straight-line
Speculation attacks [6, 66].

Closely related to Spectre are fault-based transient execu-
tion attacks, such as Meltdown [39], which along with Spec-
tre [36], were the first transient execution attacks able to leak
arbitrary privileged memory. Fault-based transient execution
attacks that exploit CPU faults rather than branch predictors
are plenty [9, 11, 49, 50, 54, 61, 62]. Canella et al. [10] pro-
vided a systematization of all types of transient execution at-
tacks. They classify different Spectre attacks by their training
methods. For example, training is either on the same virtual
memory address as the victim branch in-place (IP), or on a dif-
ferent one out-of-place (OOP), where IP is more constrained
than OOP. Our work exclusively focuses on OOP training.

Spectre vulnerability detection. Locating code vulnerable
to transient execution attacks, such as Spectre, is ongoing
research. Initial work included compiler passes to detect
and remove speculation primitives [8, 13, 28, 45, 64]. Other
methods such as using symbolic execution [25, 26], dynamic
taint analysis [48] or fuzzing [43] have also been explored.
Recent work, Kasper [33], combines fuzzing with dynamic
taint analysis to detect transient execution primitives. Despite
the variety of contributions in this category, focus on
Spectre-BTI is lacking. Our work complements these by
discovering return instructions that can hijack the speculative
control flow. Moreover, our disclosure gadget scanner finds
branch targets that can be used to disclose memory.

11 Conclusion

We showed how return instructions can be hijacked to
achieve arbitrary speculative code execution under certain
microarchitecture-dependent conditions. We learned these
conditions by reverse engineering the previously-unknown
details of indirect branch prediction on Intel and AMD
microarchitectures and its interaction with the RSB. We
found many vulnerable returns under these conditions, using
a new dynamic analysis framework which we built on top
of standard Linux kernel testing and debugging facilities.
Furthermore, we showed that an unprivileged process can
control the destination of these kernel returns by poisoning
the BTB using invalid architectural page faults. Based on
these insights, our end-to-end exploit, RETBLEED, can leak
arbitrary kernel data as an unprivileged process running
on a system with the latest Linux kernel with all deployed
mitigations enabled. Our efforts led to deployed mitigations
against RETBLEED in the Linux kernel.

Acknowledgments

We thank our reviewers for their feedback, particularly Yuval
Yarom for shepherding our paper. Finn de Ridder contributed

to the initial version of our gadget scanner. Jean-Claude
Graf evaluated a speculative version of RETBLEED’s BTI
primitive. We also want to thank AMD, Intel and Linux
kernel developers for working transparently with us and
sharing insights into their mitigation strategies.

References

[1] The Chromium Projects: Site Isolation. https://www.
chromium.org/Home/chromium-security/site-i
solation/. Accessed on 29.1.2022.

[2] The Linux kernel user’s and administrator’s guide: Spec-
tre Side Channels. https://www.kernel.org/doc/D
ocumentation/admin-guide/hw-vuln/spectre.r
st. Accessed on 29.1.2022.

[3] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre
Seifert. On the power of simple branch prediction
analysis. In CCS, 2007.

[4] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
Predicting secret keys via branch prediction. In Cryptog-
raphers’ Track at the RSA Conference. Springer, 2007.

[5] AMD. Amd64 technology indirect branch control
extension. https://developer.amd.com/wp-conte
nt/resources/Architecture_Guidelines_Updat
e_Indirect_Branch_Control.pdf, 2018. Accessed
on 7.6.2022.

[6] ARM. Straight-line speculation. https://develope
r.arm.com/-/media/Arm%20Developer%20Commun
ity/PDF/Security%20Update%2008%20June%2020
20/Straight-line_Speculation-v1.0.pdf, 2020.
Accessed on 7.6.2022.

[7] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert
Bos, and Cristiano Giuffrida. Branch history injection:
On the effectiveness of hardware mitigations against
cross-privilege spectre-v2 attacks. In SEC. USENIX,
2022.

[8] Richard Biener. LWN.net: GCC 7.3 released.
https://lwn.net/Articles/745385/, 2018.
Accessed on 7.6.2022.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution. In
SEC. USENIX, 2018.

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A

https://www.chromium.org/Home/chromium-security/site-isolation/
https://www.chromium.org/Home/chromium-security/site-isolation/
https://www.chromium.org/Home/chromium-security/site-isolation/
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/spectre.rst
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/spectre.rst
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/spectre.rst
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://lwn.net/Articles/745385/

Systematic Evaluation of Transient Execution Attacks
and Defenses. In SEC. USENIX, 2019.

[11] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking data
on meltdown-resistant cpus. In CCS. ACM, 2019.

[12] Claudio Canella, Michael Schwarz, Martin Haubenwall-
ner, Martin Schwarzl, and Daniel Gruss. Kaslr: Break
it, fix it, repeat. In AsiaCCS. ACM, 2020.

[13] Chandler Carruth. Introduce the "retpoline" x86
mitigation technique for variant 2 of the speculative
execution... https://reviews.llvm.org/D41723,
2018. Accessed on 7.6.2022.

[14] Intel Corp. Indirect Branch Restricted Speculation.
https://www.intel.com/content/www/us/en/de
veloper/articles/technical/software-securi
ty-guidance/technical-documentation/indire
ct-branch-restricted-speculation.html, 2018.
Accessed on 7.6.2022.

[15] Intel Corp. Retpoline: A Branch Target Injection
Mitigation. https://www.intel.com/content/dam/
develop/external/us/en/documents/retpoline
-a-branch-target-injection-mitigation.pdf,
2018. Accessed on 7.6.2022.

[16] Intel Corp. Speculative Execution Side Channel
Mitigations. https://www.intel.com/content/ww
w/us/en/developer/articles/technical/softw
are-security-guidance/technical-documentat
ion/speculative-execution-side-channel-mit
igations.html, 2018. Accessed on 7.6.2022.

[17] Craig Disselkoen, David Kohlbrenner, Leo Porter, and
Dean Tullsen. Prime+abort: A timer-free high-precision
l3 cache attack using intel TSX. In SEC. USENIX, 2017.

[18] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael
Abu-Ghazaleh. Jump over ASLR: Attacking branch
predictors to bypass ASLR. In MICRO. IEEE, 2016.

[19] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-
Ghazaleh, Dmitry Ponomarev, et al. Branchscope: A
new side-channel attack on directional branch predictor.
In ASPLOS. ACM, 2018.

[20] Anders Fogh. In debt to Retpoline. https://cyber.
wtf/2018/02/13/in-debt-to-retpoline/, 2018.
Accessed on 7.6.2022.

[21] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Her-
bert Bos, and Cristiano Giuffrida. Speculative probing:
Hacking blind in the spectre era. In CCS. ACM, 2020.

[22] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
KASLR is Dead: Long Live KASLR. In Engineering
Secure Software and Systems, 2017.

[23] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-
channel attacks: Bypassing smap and kernel aslr. In
CCS. ACM, 2016.

[24] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: a fast and stealthy cache
attack. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment.
Springer, 2016.

[25] Marco Guarnieri, Boris Köpf, José F Morales, Jan
Reineke, and Andrés Sánchez. Spectector: Principled
detection of speculative information flows. In S&P.
IEEE, 2020.

[26] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng,
Huibo Wang, Meng Wu, and Zhiqiang Zuo. Specusym:
Speculative symbolic execution for cache timing leak
detection. In ICSE. ACM, 2020.

[27] Ralf Hund, Carsten Willems, and Thorsten Holz.
Practical timing side channel attacks against kernel
space aslr. In S&P. IEEE, 2013.

[28] Open Source Security Inc. Respectre: The state of the
art in spectre defenses. https://grsecurity.net/r
espectre_announce, 2018. Accessed on 7.6.2022.

[29] Intel. Branch history injection and intra-mode branch
target injection / cve-2022-0001, cve-2022-0002 /
intel-sa-00598. https://www.intel.com/conten
t/www/us/en/developer/articles/technical/s
oftware-security-guidance/technical-docume
ntation/branch-history-injection.html, 2022.
Accessed on 7.6.2022.

[30] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block oriented programming:
Automating data-only attacks. In SIGSAC. ACM, 2018.

[31] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking
kernel address space layout randomization with intel
tsx. In CCS. ACM, 2016.

[32] Reading privileged memory with a side-channel. https:
//googleprojectzero.blogspot.com/2018/01
/reading-privileged-memory-with-side.html,
2018. Accessed on 7.6.2022.

[33] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Kasper: Scanning
for Generalized Transient Execution Gadgets in the
Linux Kernel. In NDSS, 2022.

https://reviews.llvm.org/D41723
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://cyber.wtf/2018/02/13/in-debt-to-retpoline/
https://cyber.wtf/2018/02/13/in-debt-to-retpoline/
https://grsecurity.net/respectre_announce
https://grsecurity.net/respectre_announce
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

[34] Jim Keniston, Prasanna S Panchamukhi, and Masami Hi-
ramatsu. Kernel Probes (Kprobes). https://www.kern
el.org/doc/html/latest/trace/kprobes.html,
2021. Accessed on 7.6.2022.

[35] Andi Kleen. LKML.ORG: [PATCH 1/4] x86/retpoline:
Add new mode RETPOLINE_UNDERFLOW.
https://lkml.org/lkml/2018/1/12/609, 2018.
Accessed on 7.6.2022.

[36] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In S&P. IEEE, 2019.

[37] Esmaeil Mohammadian Koruyeh, Khaled N. Kha-
sawneh, Chengyu Song, and Nael Abu-Ghazaleh.
Spectre returns! speculation attacks using the return
stack buffer. In WOOT. USENIX, 2018.

[38] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Tagbleed: Breaking kaslr on the isolated
kernel address space using tagged tlbs. In EuroS&P.
IEEE, 2020.

[39] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In SEC. USENIX, 2018.

[40] Giorgi Maisuradze and Christian Rossow. Ret2spec:
Speculative execution using return stack buffers. In
CCS. ACM, 2018.

[41] Matt Miller, Anders Fogh, and Christopher Ertl. Wran-
gling with the Ghost: An Inside Story of Mitigating
Speculative Execution Side Channel Vulnerabilities.
BlackHat, 2018.

[42] Alex Murray. Unprivileged eBPF disabled by default for
Ubuntu 20.04 LTS, 18.04 LTS, 16.04 ESM. https://
discourse.ubuntu.com/t/unprivileged-ebpf-d
isabled-by-default-for-ubuntu-20-04-lts-18
-04-lts-16-04-esm/27047. Accessed on 15.5.2022.

[43] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein,
and Christof Fetzer. Specfuzz: Bringing spectre-type
vulnerabilities to the surface. In SEC. USENIX, 2020.

[44] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of aes. In Cryp-
tographers’ track at the RSA conference. Springer, 2006.

[45] Andrew Pardoe. Spectre mitigations in msvc. https:
//devblogs.microsoft.com/cppblog/spectre-m
itigations-in-msvc/. Accessed on 7.6.2022.

[46] Filip Pizlo. What spectre and meltdown mean for
webkit. https://webkit.org/blog/8048/what-sp
ectre-and-meltdown-mean-for-webkit/, 2018.
Accessed on 7.6.2022.

[47] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the Observer Effect for
High-Precision Cache Contention Attacks. In CCS.
ACM, 2021.

[48] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan,
Peng Li, Heng Yin, and Tao Wei. Spectaint: Speculative
taint analysis for discovering spectre gadgets. In NDSS,
2021.

[49] Hany Ragab, Enrico Barberis, Herbert Bos, and Cris-
tiano Giuffrida. Rage against the machine clear: A sys-
tematic analysis of machine clears and their implications
for transient execution attacks. In SEC. USENIX, 2021.

[50] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. CrossTalk: Speculative
Data Leaks Across Cores Are Real. In S&P. IEEE,
2021.

[51] Steven Rostedt. Linux kernel: ftrace - Function Tracer.
https://www.kernel.org/doc/Documentation/t
race/ftrace.txt. Accessed on 29.1.2022.

[52] Jonathan Salwan. Ropgadget-gadgets finder and
auto-roper. http://shell-storm.org/project/RO
Pgadget/, 2011. Accessed on 7.6.2022.

[53] Edward J Schwartz, Cory F Cohen, Jeffrey S Gennari,
and Stephanie M Schwartz. A generic technique for
automatically finding defense-aware code reuse attacks.
In CCS. ACM, 2020.

[54] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-privilege-boundary
data sampling. In CCS. ACM, 2019.

[55] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon,
Ji Hoon Jeong, and Junbeom Hur. Unveiling hardware-
based data prefetcher, a hidden source of information
leakage. In CCS, pages 131–145. ACM, 2018.

[56] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. Sok:(state of) the art of war: Offensive
techniques in binary analysis. In S&P. IEEE, IEEE,
2016.

[57] Teja Singh, Sundar Rangarajan, Deepesh John, Russell
Schreiber, Spence Oliver, Rajit Seahra, and Alex
Schaefer. 2.1 zen 2: The amd 7nm energy-efficient

https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://lkml.org/lkml/2018/1/12/609
https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://discourse.ubuntu.com/t/unprivileged-ebpf-disabled-by-default-for-ubuntu-20-04-lts-18-04-lts-16-04-esm/27047
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/

high-performance x86-64 microprocessor core. In
ISSCC. IEEE, 2020.

[58] Linus Torvalds. LKML.ORG: Re: [PATCH 0/7] IBRS
patch series. https://lkml.org/lkml/2018/1/4/7
20, 2018. Accessed on 7.6.2022.

[59] Linus Torvalds. LKML.ORG: Re: [RFC 09/10]
x86/enter: Create macros to restrict/unrestrict Indirect
Branch Speculation. https://lkml.org/lkml/2018
/1/21/192, 2018. Accessed on 7.6.2022.

[60] Paul Turner. Retpoline: a software construct
for preventing branch-target-injection. h t t p s :
//support.google.com/faqs/answer/7625886,
2018. Accessed on 7.6.2022.

[61] Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yuval
Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
Lvi: Hijacking transient execution through microarchi-
tectural load value injection. In S&P. IEEE, 2020.

[62] Stephan van Schaik, Alyssa Milburn, Sebastian
Österlund, Pietro Frigo, Giorgi Maisuradze, Kaveh
Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL:
Rogue in-flight data load. In S&P. IEEE, 2019.

[63] Luke Wagner. Mitigations landing for new class of
timing attack. https://blog.mozilla.org/secur
ity/2018/01/03/mitigations-landing-new-cla
ss-timing-attack/, 2018. Accessed on 7.6.2022.

[64] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotov-
chits, Tulika Mitra, and Abhik Roychoudhury. oo7:
Low-overhead defense against spectre attacks via
program analysis. IEEE Transactions on Software
Engineering, 2019.

[65] Pawel Wieczorkiewicz. The amd branch (mis)predictor:
Just set it and forget it! https://grsecurity.net/a
md_branch_mispredictor_just_set_it_and_for
get_it, 2022. Accessed on 7.6.2022.

[66] Pawel Wieczorkiewicz. The amd branch (mis)predictor
part 2: Where no cpu has gone before (cve-2021-26341).
https://grsecurity.net/amd_branch_mispred
ictor_part_2_where_no_cpu_has_gone_before,
2022. Accessed on 7.6.2022.

[67] Johannes Wikner, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. Spring: Spectre Returning in the
Browser with Speculative Load Queuing and Deep
Stacks. In WOOT. IEEE, 2022.

[68] Dan Williams. LKML: [PATCH v6 02/13] ar-
ray_index_nospec: sanitize speculative array de-
references. https://lore.kernel.org/lkml/151

727414808.33451.1873237130672785331.stgi
t@dwillia2-desk3.amr.corp.intel.com/, 2018.
Accessed on 7.6.2022.

[69] David Woodhouse. LWN.net: Re: [RFC 09/10]
x86/enter: Create macros to restrict/unrestrict Indirect
Branch Speculation. https://lwn.net/Articles/7
45113/, 2018. Accessed on 7.6.2022.

[70] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In SEC. USENIX, 2014.

A Collisions detected on AMD Zen 1, 2 and 3

We denote folding bits as functions. A collision occurs for
two addresses A and B when fi(A)= fi(B) for all i.

Zen 1. We obtain the following functions.

f1 = b39⊕b30⊕b21 f2 = b40⊕b31⊕b22
f3 = b41⊕b32⊕b23 f4 = b42⊕b33⊕b24⊕(b15∧b9)
f5 = b43⊕b34⊕b25⊕(b16∧b10) f6 = b44⊕b35⊕b26⊕(b17∧b11)
f7 = b45⊕b36⊕b27⊕b18 f8 = b46⊕b37⊕b28⊕b19
f9 = b47⊕b38⊕b29⊕b20

Zen 2. With the following, patterns we observed BTB
collisions on Zen 2.

f1 = b36⊕b24 f2 = b37⊕b25
f3 = b38⊕b26 f4 = b39⊕b27⊕(b15∧b10)
f5 = b40⊕b28⊕(b16∧b11) f6 = b41⊕b29⊕b17
f7 = b42⊕b30⊕b18 f8 = b43⊕b31⊕b19
f9 = b44⊕b32⊕b20 f10 = b45⊕b33⊕b21
f11 = b46⊕b34⊕b22 f12 = b47⊕b35⊕b23

Zen 3. For Zen 3, we found the following patterns. Note that
b47 is not included because we were unable to create cross
privilege domain BTI on this microarchitecture. Moreover,
we only f8−12 under certain conditions. More work is
necessary to fully understand Zen 3 BTB index generation.

f1 = b44⊕b32⊕b20 f2 = b45⊕b33⊕b21
f3 = b46⊕b34⊕b22 f4 = b35⊕b23
f5 = b36⊕b24 f6 = b37⊕b25
f7 = b38⊕b26 f8 = b27∧b15∧b6
f9 = b40⊕b28⊕(b16∧b7) f10 = b41⊕b29⊕(b17∧b8)
f11 = b42⊕b30⊕(b18∧b9) f12 = b43⊕b31⊕(b19∧b10)

Zen 3 was more difficult to infer the exact patterns on than
Zen 1 and Zen 2. For example, we only found f1−7 to work
independently. For f8−12, we only found them working in
combination with other functions as shown below.

f8∧(¬ f11∧¬ f12), f9∧¬ f12, f10∧¬ f1,

f11∧¬ f2, f12∧¬ f3

https://lkml.org/lkml/2018/1/4/720
https://lkml.org/lkml/2018/1/4/720
https://lkml.org/lkml/2018/1/21/192
https://lkml.org/lkml/2018/1/21/192
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before
https://lore.kernel.org/lkml/151727414808.33451.1873237130672785331.stgit@dwillia2-desk3.amr.corp.intel.com/
https://lore.kernel.org/lkml/151727414808.33451.1873237130672785331.stgit@dwillia2-desk3.amr.corp.intel.com/
https://lore.kernel.org/lkml/151727414808.33451.1873237130672785331.stgit@dwillia2-desk3.amr.corp.intel.com/
https://lwn.net/Articles/745113/
https://lwn.net/Articles/745113/

	Introduction
	Background
	CPU caches
	Cache attacks
	Branch prediction
	Spectre attacks
	Spectre mitigations

	Threat Model
	Overview
	Challenges
	Summary of the full-chain attack

	Branch Target Injection on Returns
	Finding BTB collisions
	Creating mispredictions with returns

	Exploitation Primitives
	Discovering exploitable returns
	BTI on kernel returns

	Retbleed
	Scanning for disclosure gadgets
	Using non-trivial disclosure gadgets
	Obtaining branch history
	Derandomizing KASLR

	Evaluation
	Retbleed primitives
	Retbleed on Intel
	Retbleed on AMD

	Mitigation
	Preventing speculation
	Isolation
	Security and performance of mitigations

	Related work
	Conclusion
	Collisions detected on AMD Zen 1, 2 and 3

