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Abstract—DDRS has shown an increased resistance to Row-
hammer attacks in production settings. Surprisingly, DDR5
achieves this without additional refresh management com-
mands, pointing to the deployment of more sophisticated in-
DRAM Target Row Refresh (TRR) mechanisms. This paper
reverse engineers such advanced TRR schemes in DDRS
devices for the first time. Our findings show that compared
to older mitigations deployed in DDR4, these new schemes
have considerably fewer blind spots spread over many refresh
intervals. This means that an effective DDRS Rowhammer
pattern must precisely track thousands of refresh operations,
which we show is not possible with existing techniques. To
address this challenge, our new DDR5 Rowhammer attack,
called Phoenix, self-corrects the pattern whenever it detects
a missed refresh operation during the attack. OQur evaluation
shows that Phoenix triggers bit flips on 15 out of 15 DDRS
devices in our test pool. Using these bit flips, we build the first
Rowhammer privilege escalation exploit that obtains root on
a commodity DDRS5 system with default settings in as little
as 109 seconds. These results provide further evidence that a
principled Rowhammer mitigation, such as per-row activation
counters, is mandatory for a secure operation of future devices.

1. Introduction

Four years after its inception, DDRS devices remain pro-
tected against Rowhammer attacks. Recent work shows that
this protection is due to improved Target Row Refresh (TRR)
mechanisms inside commodity DDRS chips [1], [2]. What
remains unclear is how these mechanisms manage to capture
aggressor rows in advanced Rowhammer patterns [3], [4],
[Sl. Our reverse-engineering efforts show that significantly
longer Rowhammer patterns are nowadays necessary to
bypass these new protections. To trigger Rowhammer bit
flips, such patterns need to remain in-sync with thousands
of refresh commands, which is challenging. Our new Row-
hammer attack, called Phoenix, resynchronizes these long
patterns as necessary to trigger the first DDRS bit flips in
devices with such advanced TRR protections.

Rowhammering DDRS. In 2024, Zenhammer [6]] reported
the first Rowhammer bit flips on one of ten tested DDRS
DIMMs. These initial DDRS results are surprising, given
that earlier work using similar patterns could trigger bit
flips on 40 out of 40 DDR4 DIMMs [3]. An improved
DRAM substrate could explain the increased resilience
of DDRS devices against Rowhammer, but recent work
shows that the DDRS substrate is similarly vulnerable to

Rowhammer as DDR4 devices [1]. Another possibility could
be the introduction of the new Refresh Management (RFM)
commands for DDRS devices to give the device more
time to perform internal mitigative refreshes, but neither
CPUs from Intel nor AMD send any RFM commands
under Rowhammer workloads [2f]. In the absence of RFM
commands and improvements to the DRAM substrate against
Rowhammer, all indications point toward improved in-
DRAM TRR mechanisms in DDRS5 chips [1].

TRR mechanisms in DDRS. Our FPGA-based reverse
engineering experiments on DDRS devices from SK Hynix,
currently the largest DRAM vendor [7], [8], reveal that
compared to DDR4 [3]], [4]], [S]], these new TRR mechanisms
change their behavior over significantly longer periods
of activity — sometimes thousands of refresh intervals.
This change makes it challenging to apply the state-of-the-
art reverse engineering technique that looks at individual
activate commands due to this significant increase in TRR’s
state [5]]. Instead, we devised a new reverse-engineering
technique that allows studying the TRR behavior at the
granularity of refresh intervals. Using this technique, we can
zoom out to identify less frequently sampled refresh intervals
among many thousands of them, and thereafter, zoom in to
analyze the precise TRR behavior at these specific intervals
with previous techniques [3[], [5]. This approach enables us
to study these new and more complex TRR mechanisms
in DDRS for the first time. Our results based on reverse
engineering two particular TRR mechanisms show that a
significant portion of activations in specific refresh intervals
are not accounted for by the TRR mechanisms.

Bypassing TRR mechanisms on DDRS. We leverage our
reverse-engineering results to build Rowhammer patterns
that evade the TRR mechanisms on these DDRS devices.
These carefully crafted patterns, covering 128 and 2608
refresh intervals, hammer particular activation slots in very
specific refresh intervals only. As a result, they evade the
corresponding TRR mechanisms. Furthermore, these patterns
need to be aligned with the right refresh command to
be effective, which we optimize by hammering multiple
banks simultaneously. We show that executing these new
complex patterns triggers bit flips on all 10 SK Hynix
DDRS5 RDIMMs in our test pool. However, executing
these patterns from commodity systems requires reliable
synchronization with the refresh command over thousands
of refresh intervals.

Phoenix. We find that the state-of-the-art synchronization



method [6]] misses refresh commands regularly, making it
unsuitable for effective Rowhammer attacks on DDRS. We
explore two techniques for a more effective synchronization
in the design of Phoenix, the first system-level Rowhammer
attack that bypasses advanced TRR schemes deployed in
DDRS devices. The first technique aims to improve refresh
detection by separating Rowhammer accesses and refresh
synchronization accesses into different threads. Instead of
improving refresh detection, the second technique aims
to detect a missed refresh and resynchronize the pattern
accordingly. Our results show that while the first technique
improves the state of the art, it still fails to remain synchro-
nized for a sufficiently large number of refresh intervals,
preventing Phoenix from triggering bit flips. However, the
second technique, which we refer to as self-correcting
synchronization, can keep Phoenix synchronized with refresh
commands for entire refresh windows, sufficient for our new
patterns to trigger bit flips.

We evaluate Phoenix on 15 DDR5 UDIMMs produced
between 2021 and 2024. Phoenix triggers bit flips on all
these devices in seconds. We use Phoenix to craft the first
end-to-end DDRS page table exploit that succeeds in as little
as 109 seconds. Our measurements show that increasing the
refresh rate by 3x mitigates Phoenix on devices we tested
while introducing an overhead of 8.4% in the SPEC2017
benchmark suite [9].

Contributions. We make the following contributions:

® We reverse engineer two distinct TRR implementations in
DDRS5 devices from SK Hynix using a series of carefully
crafted experiments.

® We derive custom Rowhammer patterns that effectively
bypass TRR mechanisms on these devices based on the
insights from our reverse engineering.

®* We present Phoenix, a new Rowhammer attack that
leverages a new self-correcting refresh synchronization
mechanism to execute these new Rowhammer patterns.

* We show that Phoenix triggers bit flips on all 15 DDRS
devices in our test pool. We use these bit flips to craft
the first Rowhammer privilege escalation exploit on a
commodity DDRS system with default configuration.

Responsible disclosure and open sourcing. We started a
responsible disclosure of Phoenix through the Swiss NCSC
with SK Hynix, CPU vendors, and major cloud providers
on June 6, 2025. The issue remained under embargo until
September 15, 2025. We were informed on September 12
that there is a BIOS update for AMD client machines to
address the issue, but we could not independently verify if
this update adequately addresses Phoenix. Phoenix is tracked
under CVE-2025-6202. More information, including the
source code for all the experiments and the exploit, can be
found at the following URL: https://comsec.ethz.ch/phoenix

2. Background

We discuss DRAM organization (§2.1) and operation (§2.2),
followed by changes in DDR5 (§ 2.3). We then provide
background on the Rowhammer vulnerability and
the proposed mitigations (§2.3).
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Figure 1. DRAM organization. The hierarchical organization of
a modern DRAM system such as DDRS5 DIMMs.

2.1. DRAM Organization

A dynamic random-access memory (DRAM) system, such
as a DDRS Dual In-line Memory Module (DIMM) or device,
is organized hierarchically (Fig. I). At the bottom, DRAM
cells store single bits of information in capacitors. Matrices
of cells are arranged in rows and columns, forming a bank.
Each bank has a row decoder to select a row, transferring
the entire row to the row buffer, and a column decoder
to select specific columns for access. Banks are grouped
into bank groups within a DRAM chip. A DDR5S DRAM
module typically has two subchannels, each with multiple
DRAM chips operating in lockstep mode and organized
into ranks. DIMMs are connected to the CPU’s memory
controller through dedicated memory channels.

Server systems typically use Registered DIMMs
(RDIMMs) instead of Unbuffered DIMMs (UDIMMs),
which include an on-DIMM buffer to reduce the electrical
load on the memory controller. As RDIMMs are designed
for servers, most of them are equipped with rank-level
Error Correction Code (ECC) in addition to On-Die Error
Correction Codes (ODECC) in the DDR5 DRAM chip itself.

2.2. DRAM Operations

The memory controller (MC) communicates with a DDRS
DRAM device by following the DDRS protocol [[10], which
specifies DRAM commands and their required timings.

Memory Operations. When accessing data, the MC issues
an activate (ACT) command to the DRAM row given by the
memory address. The activation loads the row bits into the
row buffer, from which data can be read (RD) or written
(WR) by specifying the requested column. After an access,
precharge (PRE) prepares the bank for the next ACT.

Periodic Refreshes. The capacitors in DRAM cells leak
charge over time, which would lead to retention errors. To
avoid such errors, the MC issues a REF command every
refresh interval (tREFI, i.e., 3.9us on average).

2.3. Changes introduced in DDRS

With DDRS, several changes were introduced to the DRAM
architecture and protocol, of which we briefly summarize
the ones relevant to our work.

Higher Refresh Rate. DDRS devices require refresh com-
mands to be sent once every 3.9us on average by default,
which is two times more often than on DDR4 (7.8 ps).
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Refresh Management. The Refresh Management (RFM)
command provides additional time to the DRAM device to
refresh memory cells, thus protecting data integrity during
periods of high memory activity (e.g., Rowhammer). This
device-specific, optional feature requires MC support and
may not be required by all DDR5 DIMMs. RFM is based
on per-bank counters that track the number of activations,
and whenever a certain threshold is reached, the MC issues
an RFM to reduce the counter and perform a mitigative
refresh. Recent work [2] showed that RFM is not used by
the memory controllers of AMD Zen 4, Intel Alder Lake,
and Intel Raptor Lake CPUs.

2.4. Rowhammer

Rowhammer is a DRAM disturbance error that was first
publicly reported in 2014 on DDR3 [[11]]. Rowhammer allows
an attacker to flip bits in DRAM victim rows by repeatedly
activating neighboring aggressor rows. A multitude of
attacks have demonstrated the practicality of exploitation
with Rowhammer to cause denial-of-service [|12], escalate
privilege [[13[], [14]], [15]], [16], [17], [18], [19], leak data [20]],
[21], [22]], [23]], degrade deep learning models [24]], [25]],
[26], and attack VMs [27]], [28]], browsers [29], [30], [31],
[32]], [33]], and systems across the network [34], [35].

Hammer Count. The Hammer Count (HC) refers to the
cumulative number of activations to aggressor rows. Accord-
ingly, the minimum HC (HC,y;,) is the lowest HC to trigger
a bit flip in a DRAM row, which varies across different rows.
Therefore, the HC,,;,, characterizes a device’s Rowhammer
vulnerability level [36]. Generally, smaller technology nodes
make DRAM cells more vulnerable to Rowhammer by
reducing the HC,,;,,, for example, from 138.4K-314K in
DDR3 to 20K-80K in DDR4 across different vendors [36].

DDR5 DRAM is equipped with ODECC, which in-
creases the HC,,;;, as its error correction capabilities need to
be bypassed prior to observing any bit flips. Gloor et al. [1]]
were the first to measure the HC,,;,, over 128 rows of two
DDRS5 RDIMMs from Samsung and Micron by suppressing
REFs using a custom fault injector. They found that both
devices have a lowest HC,,;, of around 32K, which is
similar to DDR4 devices. Therefore, they attributed the
increased Rowhammer resistance to improved mitigations.

Patterns. Various access patterns have been shown to trigger
Rowhammer [4], [[16]], [36], [37], [38], [39]; however, the
most effective one remains the double-sided pattern, which
activates two aggressor rows on either side of the victim
row [28]]. To bypass in-DRAM Rowhammer mitigations,
state-of-the-art non-uniform patterns hammer different ag-
gressors of a pattern more or less often [3], [30] while
using decoy rows [40] to trick the mitigation from sampling
those rows instead of the aggressors. For the first time,
Zenhammer [6] reported bit flips on DDRS DIMMs using
non-uniform patterns, but only on one of ten tested DIMMs.

Refresh Synchronization. SMASH [29] showed that care-
fully placing NOPs in between hammering sequences affects
REF scheduling, which can help in bypassing TRR mitiga-
tions more effectively. Later, Blacksmith [3]] adopted this
idea by explicitly detecting REFs using the bank-conflict
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Figure 2. U-TRR experiment. After profiling DRAM rows, U-
TRR resets the TRR and waits for half of the retention time, 7/2.
Then, it executes a hammering-refreshing payload. Finally, after
the remaining retention time has passed, it checks for bit flips.

Hammer

side channel before executing each round of its non-uniform
patterns, greatly increasing the number of effective patterns
and bit flips. More recently, Zenhammer [|6] proposed a
new continuous and non-repeating refresh synchronization
method that works more reliably on AMD systems and
avoids the need for flushing rows during synchronization.

2.5. Rowhammer Mitigations

There have been many proposals for mitigating Rowhammer
in software [14f], [18]], [34], [41], [42], [43[l, [44], [45],
[46], [47], inside the MC [L1]l, [48]l, [49]I, [50], 511, [52],
[I53[1, 1541, 1551, [56], [57]], [58], and more recently, inside
DRAM itself [40], [59], [60], [61], [62]I, [63], [64], [65],
[66], [[67], [68]. Despite these proposals, DRAM vendors
rely on proprietary TRR mitigations, whose mechanism are
undisclosed. At the very high level, TRR tries to detect
aggressor rows in its sampler, and proactively refresh the
victim rows during the available slack in the standard refresh
commands. Earlier work on DDR4 [3]], [4], [5] proved that
these TRR mitigations are insecure and can be bypassed.

Reverse Engineering TRR. Previous work reverse-
engineered aspects of DDR4 TRR implementations by
using the bit flips themselves as a side channel [3]], [4].
For example, researchers determined how frequently REFs
perform TRR by (i) disabling refreshes, (ii) hammering half
of HC i, (iii) issuing a single REF, and (iv) hammering
for the remaining half of HC,;,. If no bit flips occurred,
the issued REF must have been a TRR [4]. As this method
involves hammering for HC 3, times, it may affect the TRR
mechanism and conceal observing the actual behavior.

Alternatively, U-TRR [5]] relies on retention errors as a
side channel for detecting TRRs activity, as shown in [Fig. 2|
To run an experiment, U-TRR first identifies adjacent rows
with similar retention times (). It then initializes victim
and aggressor rows obtained from the profiling with a data
pattern (@) and resets the TRR-internal state by hammering
dummy rows (@). After waiting for half of the retention time,
U-TRR hammers aggressor and dummy rows for multiple
rounds, while issuing REFs to give TRR opportunities to
refresh the victims (@). Finally, after the remaining retention
time of the profiled rows has passed, U-TRR checks the
victims for bit flips (@).

Although recent work shows that RFM is not deployed
on recent CPUs with DDRS5 [2]] and the hammer count
is similar compared to DDR4 despite ODECC, there have



Table 1. DDRS RDIMMs. For each DIMM of the major DRAM
manufacturer SK Hynix [8], we report its manufacturing date (Mf.
Date); size; data transfer rate (Speed); device width (Wd.); and
DRAM geometry as number of ranks (RK), bank groups (BG),
banks per bank group (BA), and rows (R).

p Mf.Date Size Speed Wd. Geometry
[Yr-Mth] [GiB] [MT/s] [b] #RK,BG,BA,R)
Ho 2023-04 64 4800 x4 2,8, 4,2°
H,  2023-04 64 4800 x4 2,8, 4,26
H, 2023-04 16 4800 x8 1,8,4,2'°
Hs 2023-04 64 4800 x4 2,8, 4,26
Hys 2023-07 32 4800 x8 2,8, 4,2'°
Hs 2023-10 16 4800 x8 1,8,4,2'6
He 2024-02 16 4800 x8 1,8, 4,2!°
H, 2024-02 32 4800 x4 1,8, 4,2
Hs 2024-05 32 4800 x8 2,8,4,2'°
Hy 2024-08 32 4800 x8 2,8, 4,2

been no reports of DDRS bit flips on more recent DDRS
devices. This suggests that the TRR mechanisms must
have improved substantially. This raises the fundamental
question: are today’s DDR5 DRAM devices still vulnerable
to Rowhammer?

3. Overview of Challenges

We aim to understand how the newly deployed TRR mech-
anisms on DDRS5 devices operate. Rigorously analyzing
these mechanisms allows us to assess their ability to prevent
Rowhammer attacks. This is our first challenge (f§-):

B- (C1.) Understand how in-DRAM TRR mechanisms on
current DDR5 DIMMs operate.

In [§4] we present the first analysis of TRR mechanisms
on DDRS devices. Due to the complexity of current TRR
implementations, we devise a reverse engineering method-
ology to look at the TRR behavior across tREFIs rather
than at individual ACTs. Our analysis covers two DIMMs
from SK Hynix (Hz, Hg in [TbL._IJ), currently the largest
DRAM vendor [7]], [8]. The results show that the state
of their TRR sampling mechanisms is large: the sampling
occurs irregularly and repeats after hundreds (H3) or even
thousands (Hg) of tREFIs. Nevertheless, our experiments
expose less frequently sampled tREFIs on both DIMMs,
revealing opportunities to hide activations from TRR.

Given these exploitable tREFIs, our next goal is to build
Rowhammer patterns that can bypass TRR. These patterns
also allow us to easily cross-test other devices from the
same vendor without having to reverse engineer their TRR
mechanisms first. This motivates our second challenge:

B (C2.) Leverage the insights from reverse engineered
TRR mechanisms to build effective Rowhammer patterns.

In [§3] we present our new TRR-avoiding Rowhammer
patterns that are fully compliant with the JEDEC DDRS
timings [[10]. Our patterns are carefully designed to only
hammer in selected tREFIs in patterns that consist of 128 (Hs)
and 2608 (Hg) tREFIs. Our FPGA evaluation on 10 RDIMMs
shows that they are all vulnerable to these patterns and that
these patterns are highly effective in triggering bit flips.
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Figure 3. FPGA testing setup with heating infrastructure. The
Antmicro DDRS5 Tester board [69] with the MaxWell FT200 [70]]
PID controller and custom-size DRAM heater pads.

However, requiring precise synchronization for thousands of
refresh intervals immediately raises concerns regarding their
feasibility on commodity systems. Furthermore, it is unclear
if the same TRR mitigations deployed on RDIMMs are also
present on UDIMMs. This leads to our last challenge:

- (C3.) Ensure the new Rowhammer patterns remain
synchronized over thousands of refresh commands to
trigger bit flips in a commodity system.

In [§6] we show how our FPGA patterns can be ported
to commodity systems. Our analysis of the state-of-the-
art refresh synchronization [6] method shows that it is
unable to remain synchronized with a large number of
refresh commands. To address this challenge, our new DDRS
Rowhammer attack, called Phoenix, relies on self-correcting
refresh synchronization that realigns the pattern execution
if it detects missed REFs. Our evaluation in [§ 7] using a
commodity system with a default configuration shows that
self-correcting refresh synchronization enables Phoenix to
successfully trigger bit flips on all 15 SK Hynix UDIMMs
from our test pool. We also demonstrate the practical impact
of Phoenix by crafting the first end-to-end DDRS page table
exploit that succeeds in as little as 109 seconds.

4. Reverse Engineering TRR

In 2024, Zenhammer [6] reported the first Rowhammer bit
flips on only one of ten tested DDRS DIMMs, whereas
earlier work with similar patterns triggered bit flips on all
40 tested DDR4 DIMMs [3|]. These state-of-the-art fuzzers
generate access patterns that span at most 16 tREFIs [3]],
[6l. This choice is motivated by the assumption that TRR’s
internal sampling behavior repeats every 16 tREFIs, which
we refer to as sampling period. Given that the susceptibility
to Rowhammer (HC,,;,) is similar between DDR4 and
DDRS5 DRAM [}, we hypothesize that TRR in recent DDRS
devices may have increased the sampling period to make
it harder to bypass it. Determining this period is the first
step in understanding how to craft a successful hammering
pattern. This poses our first question (Q):

O (Q1.) After how many tREFIs does the sampling
behavior of TRR repeat?

To answer this question, we first zoom out in [§ 4.1}
instead of tracking individual ACT commands, we profile
TRR activity at refresh-interval granularity to identify the
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Figure 4. Zooming-out experiment on H,.

sampling period. Once this period is known, we examine
whether certain tREFI intervals inside the period are sampled
less often than others. We call these sparsely monitored
regions light intervals. This motivates our second question:

0 (Q2.) Within one sampling period, which tREFI inter-
vals are sampled least frequently by TRR?

Having pinpointed the light intervals within a sampling
period, in [§4.2] we zoom in: we switch our focus to per-
ACT granularity, issuing controlled activation sequences
exclusively inside a chosen light interval. By observing
which activations TRR samples within such a tREFI and
which ones it overlooks, we identify which aggressor ACTs
can be consistently placed in blind spots that TRR never
considers. This brings us to our last question:

O (Q3.) Inside a light interval, can activations be crafted
in a way that evade TRR’s per-ACT sampling?

Platform. For all our RDIMMs experiments, we use Antmi-
cro’s RDIMM DDRS Tester [71]]. This FPGA-based memory
controller allows us to issue DRAM commands and disable
automatic refreshes. The platform keeps a refresh counter of
the REFs issued since boot, which we use in our experiments.
Although we initially faced reliability issues, we resolved
them by investing significant debugging effort—including
using a high-speed oscilloscope to find bugs in the FPGA’s
design—so the platform now operates stably for our studies.
In we briefly summarize the interesting bugs
that we found and are now fixed in the platform’s official
repository. We also attach a thermocouple sensor with two
heater pads around the DDRS5S RDIMM, and we use a
MaxWell FT200 [[70] PID controller to maintain a DRAM
temperature of 50°C during our experiments.

Methodology. Similar to the methodology used by previous
work on DDR4 [5]], we use retention errors as a side channel
to infer if rows have been refreshed by TRR. This side-
channel allows us to study the TRR behavior for a profiled
set of rows after executing a given experiment-specific
DRAM payload. We implemented the same approach as
summarized in [§ 2.5 on top of the Antmicro platform.

4.1. Zooming Out On H,

We address in this zooming out stage of our reverse-
engineering methodology. We start with a candidate length
of 16 tREFI intervals—matching the period assumed by state-
of-the-art fuzzers—and incrementally increase this length
until the sampling period becomes evident. For each tested
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Figure 5. Zooming out. The result of brute-forcing the TRR
sampling period over 32, 64, 128, and 256 tREFIs, presented using
a bin size of 2. We show how often every refresh interval (x-axis)
is targeted by TRR over 25 experiment repetitions (y-axis). We
can see a repeating sampling behavior in the 256 tREFIs plot.

length N, we carefully craft a DRAM payload spanning
exactly IV consecutive tREFI intervals as described next.

DRAM payload. Each of the N intervals in our payload
is monitored by a distinct canary row, i.e., we need N
canaries in total. We perform double-sided hammering in
each interval: we repeatedly activate the two canary-adjacent
rows above and below and then issue one REF before moving
to the next interval. All canaries are retention-profiled rows
with similar retention times as required by the retention-
error side channel. The resulting access pattern, depicted in
is standard-compliant, following the JEDEC DDRS5
timing parameter [[10]. Once the payload has been executed,
we check every canary for retention errors. The experiment
is designed such that if a canary survives its hammered
tREFI without any retention errors, we can assume that it
must have been refreshed by TRR. As the probability that
our canary is target of its periodic refresh is negligibly small
(once per tREFW, i.e., 1/8192 REFs), we can safely assume
that survived canaries were always refreshed by TRR.

Analyzing REF counters. For each experiment, we record
the REF counter immediately after the interval. A single
run therefore yields a set of REF counter values identifying
the TRR-sampled tREFIs. For each candidate period N, we
repeat the experiment for 25 times. After every run, we
take each recorded REF counter modulo N and map all
observations into an N-slot histogram. If N matches TRR’s
true sampling period, the histogram should reveal a stable
pattern: certain tREFI intervals collect many samples (i.e.,
are frequently monitored) while others are sampled less
often (light intervals). We note that if our candidate period
M is larger than the true sampling period N, we expect to
see a repeating pattern.

Results. We perform the experiment for every candidate [NV
from 16 to 256 and present the cases N € {32, 64,128,256}
in this order in The first two cases, already covering
up to four times more than the 16-tREFI window assumed
by current fuzzers [3]], [6], show no visible regularity. A
clear structure appears only at N = 128: where a clear
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Figure 7. Zooming-in experiment on Hs.

recurring pattern of four blocks becomes visible. Doubling
the candidate length IV to 256, lets the same pattern reappear
in the upper 128-tREFI slice (128—255), confirming that it
repeats every 128 tREFI intervals. This answers [QI] and is
our first observation (@®):

@ (01.) TRR on Hg operates with a sampling period of
128 tREFI intervals.

4.2. Zooming In On Ho

To gain a deeper understanding of TRR’s sampling strategy,
we must study how sampling works within the 128-tREFI
sampling period (Fig. 6). In the first 64 tREFIs, no consistent
sampling pattern is observable. The last 64 tREFIs, however,
exhibit a pronounced regularity: in every group of four
consecutive refresh intervals, TRR samples most in the
fourth interval, less in the third, and almost never in the first
two intervals. We focus on these first two lightly sampled
tREFIs (see [Fig. 6), of which there are 32 in total. Their
low sampling probability makes them an attractive target for
hammering aggressor rows. However, before hammering, we
need to understand sampling in these intervals better as TRR
still samples these intervals occasionally. We now zoom in
on each lightly sampled tREFI and profile its behavior at
ACT granularity. The goal of this fine-grained analysis is to
pinpoint the exact activation slots that TRR samples in this
specific interval. Investigating this, will answer [Q3]

Profiling ACTs. To measure TRR’s per-activation sampling
across all lightly sampled intervals, we craft a DRAM
payload that spans over a whole 128-tREFI period. This
payload is illustrated in Prior to the experiment
execution, we issue REF commands until the internal refresh
counter is aligned with the start of the sampling period, so
the 32 lightly sampled tREFIs appear at identical offsets in
every run. We issue 59 ACTs in each light interval to the
rows adjacent to a fixed set of 59 canaries that we have
profiled before. Thus, every light interval activates the same
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Figure 8. Zooming in: ACT-based analysis. We show for each
possible activation slot (x-axis) inside the lightly sampled tREFI
intervals (y-axis), the probability that TRR samples it. We can see
that the last slot (58) is sampled significantly more often than the
others, which is why we avoid hammering it.

aggressors in the same order. The remaining 96 intervals are
filled with continuous hammering of a double-sided, fixed
decoy aggressor pair. By monitoring which canaries TRR
refreshes, we reveal the exact activation slots inside each
light interval that are sampled by TRR.

Results. We execute the 128-tREFI payload 100 times
and, for every activation slot (0-58), record how often the
corresponding canary is refreshed. Dividing these counts
by 100 yields the empirical refresh probability per slot.
Each run also issues 128 REF commands from the regular
refresh schedule, and—because TRR samples the lightly-
sampled intervals only infrequently—refreshes from this
schedule introduce a non-negligible bias. With a refresh
window of 8192 REF commands, the chance that a slot
is refreshed by the regular schedule in a single run is
1/8192 ~ 0.012 %. Over 100 runs this baseline accumulates
to1—(1—1/8192)19 ~1.2%.

We subtract this 1.2 % baseline from the measured
probabilities to isolate TRR’s contribution. The data reveal
a single, pronounced spike at slot 58 (Fig. 8), suggesting
that TRR almost exclusively samples the /ast ACT issued
before the next REF while ignoring earlier activations within
a lightly sampled interval.

@ (02.) In lightly sampled intervals, TRR samples the
last issued ACT before the next REF.

We now know which tREFIs in the 128-tREFI sampling
period are rarely sampled by TRR. We also know which
activation slots to avoid—or fill with decoys—should those
intervals be sampled. With this information, we can build
effective TRR-bypassing patterns for Ho, which we present

in[§5]

4.3. Generalization & Summary

Our results raise the question if our observations also
apply to other DIMMs (i.e., models) from the same vendor.
Answering this can help to assess if deployed TRR imple-
mentations are the same across different DIMMs, which
would mean that they are also vulnerable to the same
Rowhammer patterns. To this end, we applied the same
methodology on Hg from SK Hynix (TbL. 1)) and found that
the TRR implementation is different. We refer to
for the details of our findings, which we summarize in[Tbl. 2]
As we will show later (§3.3), the TRR implementations of
these two DIMMs already cover all our ten DDR5 RDIMMs.



Table 2. Summary: reverse engineering. We summarize the
key findings from our DDRS reverse-engineering experiments. We
report the sampling period, the HCyin over all tested rows, and
the measured refresh window size.

SK Hynix H> SK Hynix Hg
Sampling Period [tREFI] 128 2608
tREFW Size [tREFIs] 11054 16582

HCmin [min/max/avg] (56.6/150.4/105.1) K (29.3/70.3/51.4)K

In the next section (§3), we will use these findings
to build custom Rowhammer patterns that bypass the
TRR mechanism. However, to better understand the time
constraints and device vulnerability when hammering these
patterns, we need to first determine the refresh window
(tREFW) size and the minimum hammer count of our two
DDRS DIMMs.

tREFW Size. Previous work [5, §6.1.3] showed that the
tREFW size of one of the devices is smaller than half of
the typically assumed size (i.e., 8192 REFs). We replicate
this experiment on our DIMMs and find that the tREFW
size is 11054 and 16582 REFs for DIMMs H,; and Hg,
respectively. This is 1.3x and 2.0x more than commonly
assumed. This is to the benefit of the attacker as it allows

hammering for longer before the targeted row is refreshed.

@ (03.) The periodic row refresh of Hy and Hg is 1.3
and 2.0x larger than 8192 REFs (tREFW), respectively.

In we assumed tREFW = 8192 when calculating
the baseline REF probability. For window size W, the per
run probability that the regular schedule refreshes a slot is
1/W. Hence, over 100 runs the baseline refresh probability

is 1—(1—1/W)00, With W = 11054 this is ~ 0.90 % (vs.

1.2% for W = 8192). Considering this adjustment results
in a similar figure to [Fig. 8 a single spike at slot 58 and
near zero elsewhere.

HC,,in. We determine the minimum hammer count (HC ;)
of our two DIMMs over four data patterns (0x0, 0xff, 0x33,
0xcc) following the existing methodology [36]. We report
in the minimum, maximum, and average combined
over all four patterns. The minimum is about in the same
range as the minimum numbers reported for different DDR4
DIMMs, between 20K and 80K [36].

@ (04.) The HC,,;,, of our DIMMSs, H, and Hg, is in
the same range as for modern DDR4 devices.

5. Bypassing TRR from the FPGA

Based on the insights from[§4] we now build memory access
patterns that defeat TRR. [§5.1]introduces two patterns, P12g
and Pag0s, based on the reverse-engineered DIMMs, Hy and
He. [§5.2) characterizes these patterns, laying the groundwork
for running them on commodity systems. [§3.3] evaluates the
patterns across all our SK Hynix RDIMMs, demonstrating
that every tested device is vulnerable.

Experimental Setup. During all experiments and while
hammering, the memory controller issues one REF command
every tREFI (3.9us). All access patterns respect the JEDEC
DDRS timing constraints [[10]. Before each run, aggressor
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Figure 9. Hammering pattern for DIMM H..

Algorithm 1: SK Hynix pattern (Hz2), 128 tREFIs.

1 fori=1...16 do > 64 tREFIS
2 HAMMER_REF(decoys, 4 tREFI)

3 fori=1...16 do > 64 tREFIS
4 HAMMER_REF(aggressors, 2 tREFI)

5 HAMMER_REF(decoys, 2 tREFI)

rows are initialized with random data and their corresponding
victim rows with the bitwise inverse.

5.1. Rowhammer Patterns

Both patterns combine two interval types revealed by the
reverse-engineering analysis in In a light interval, we
hammer the aggressor pair for nearly the entire tREFI.
Immediately before the next REF, we issue a decoy access
as TRR appears to focus its sampling on the last activation
(§4.2). In all other intervals, we hammer a fixed double-sided
decoy row pair.

Pattern P;2g5 (H:). We showed that every 128 tREFIs
contain a 64-tREFI period with 32 lightly sampled intervals
(§4.1). The pattern P;og aligns with this sequence: the
four-interval block is executed 16 times to cover the 64-
tREFI window. The remaining 64 tREFIs are sampled more
frequently, and therefore, we access only a fixed decoy pair.

The pattern is visualized in and described in

Pattern Pagos (Hg). The pattern Pogos takes the same
approach as Pjog to hammer in lightly sampled intervals
only. However, because of its longer pattern length—2608
tREFIs —the pattern’s structure is more complex. The pattern
is described in detail as pseudocode in

5.2. Pattern Characterization

As shown in[§4.1] TRR does not sample every tREFI interval
in the same way. Our Rowhammer patterns therefore are
effective only at specific refresh-counter offsets. On an
FPGA, we can issue extra REF commands to align the
counter with the offset before hammering the pattern. A
commodity CPU lacks this capability, so we enumerate
all vulnerable offsets to estimate the probability that a run
starting at an arbitrary REF lands at a vulnerable offset.

Vulnerable offsets. To identify the refresh-alignment offsets
at which a pattern triggers bit flips, we scan the entire refresh
counter range modulo the pattern length. At each offset, we
hammer up to 1024 rows in the current bank and stop as
soon as a bit flip is observed; if any bit flips, we record
the offset as vulnerable and advance to the next one. This
procedure is repeated for every bank to check whether the
set of vulnerable offsets is bank-specific or shared.



Algorithm 2: SK Hynix pattern (Hg), 2608 tREFIs.

1 fork=1...8do > 1288 tREFIs
2 for j=1...5do

3 HAMMER_REF(decoys, 5 tREFI)

4 HAMMER_REF(aggressors, 3 tREFI) [ light interval

5 HAMMER_REF(decoys, 24 tREFI)

6 HAMMER_REF(decoys, 1 tREFI) > Shift after 160 tREFIs
7 HAMMER_REF(decoys, 16 tREFI)

8 fork=1...8do > 1288 tREFIS
9 for j=1...5do

10 HAMMER_REF(decoys, 21 tREFI)

11 HAMMER_REF(aggressors, 3 tREFI) > light interval
12 HAMMER_REF(decoys, 8 tREFI)

13 HAMMER_REF(decoys, 1 tREFI) > Shift after 160 tREFIs

14 HAMMER_REF(decoys, 16 tREFI)

Table 3. Pattern characteristic: refresh alignment. For each
pattern, we report the number of vulnerable refresh alignment
offsets; and the probability to start hammering at one of them both
without and with our pattern optimization.

Pi12s (H2)  Pagos (He)

#Vulnerable Refresh Offsets 2/128 92/2608
Hit Probability [%] 1.56 3.53
Hit Probability Optim. [%] 24.96 56.48

Results. Sweeping all 128 REF offsets on Hy with Pjag and
all 2608 offsets on Hg with Pagog yields two insights. First,
vulnerable alignments are sparse: 2 of 128 for Hy and 92 of
2608 for Hg. Second, the same offsets recur in every bank.
[TBL. 3] summarizes the counts and the probability to hit a
vulnerable refresh alignment.

@ (05.) Pi1og has 2/128 vulnerable REF offsets (i.e.,
1.56 %), while Pygog has 92/2608 (i.e., 3.53 %); in both
cases, the same offsets recur in every bank.

Pattern optimizations. As our patterns need to be aligned
to certain vulnerable REF offsets, we optimize the pattern
execution to increase the chance of hitting a vulnerable offset.
In essence, we run four shifted instances of the pattern on
each of four banks in parallel, thus increasing the success
chance by a factor of 16. This is illustrated in and

explained in more detail in

@ (06.) We can increase the chance of hitting a vulner-
able REF offset by running four shifted instances of the
pattern in parallel on each of the four banks.

Activation rate vs. hammer duration. Besides the refresh
alignment, the effectiveness of our hammering patterns is
limited by the number of activation commands we can issue
to aggressors in a tREFI. Commodity CPUs may achieve
a lower activation rate than FPGAs because of the cache-
flushing overhead and memory-controller scheduling [6].
Therefore, we want to estimate how much slack our patterns
permit by reducing the number of aggressor ACTs per tREFI.

We sweep over 1024 victim rows in a randomly se-
lected bank at a refresh alignment previously identified as
vulnerable. Within each hammered tREFI, we issue 30, 40,
or 50 ACTs to the aggressor rows; and fill the remaining
slots of the 59 ACTs/tREFI with decoy accesses, whereas
non-hammered tREFIs contain only decoys. The pattern is

C]REF ...ACTs of pairs P-4 (xNBlock Reps.

Figure 10. Optimized P2z pattern. We hammer four shifted
pattern instances on each of four banks in parallel to increase the
chance of hitting a vulnerable REF offset by a factor of 16.

#Rows flipped [%]
0 20 40 60 80 100

1 2 3 4 5
#tREFWs

Figure 11. Activation rate vs. hammering duration. We show for
different activation budgets (ACTs/tREFI) and hammering durations
(#tREFWSs), the share of rows (%) with at least one bit flip.

applied for one to five consecutive tREFWs since [§4.3] shows
that rows are refreshed less often than once per tREFW.

Results. shows the share of rows that incur at least
one bit flip when we hammer P12 on Hy and Paggs on Hg,
sweeping the activation budget (30-50 ACTs/tREFI) and the
hammering duration (1-5 tREFWs) over 1024 victim rows
in a randomly selected bank.

Even with a slack of almost 50 % in the activation
budget (30 ACTs/tREFI), both patterns still flip rows: after
five tREFWS, 23.5 % of the rows flip on Hs and 44.2 % on
Hg. Raising the budget to 40 ACTs/tREFI markedly increases
the success rate: three tREFWs already flip 89.8 % (H2) and
91.2% (Hg) of the rows, and four tREFWs exceed 93 %
for both devices. At the highest budget, 50 ACTs/tREFI,
nearly all rows flip within two tREFWs and full (100 %) row
coverage is achieved after three tREFWs. Given these results,
we will focus in future experiments on the more efficient
range, i.e., between 40 and 50 ACTs/tREFI.

@ (07.) Even with a reduced activation budget of 30—
40 ACTs/tREFI, both P125 on Hy and Pagps on Hg induce
bit flips when the pattern is synchronized to a vulnerable
REF offset and executed for several consecutive tREFWS.

Discussion. We attribute the continuing rise of flipped rows
across successive tREFWs to two effects. First, a row is
most vulnerable when hammering starts immediately after
its periodic refresh, providing the longest time to hammer.
Extending the hammering duration makes it increasingly
likely that every row eventually encounters this worst-case
point in the refresh cycle. Second, ODECC does not write
back corrected data to DRAM when reading from memory.
Hence, a bit that flips in one tREFW will persist in the
next one. If a second bit flips in the same ECC word, the



Table 4. DDR5 RDIMMSs: pattern coverage and effective-
ness. For each DIMM, we report the average HCyin and the
percentage of rows with at least one bit flip when hammering
the pattern for one up to five refresh windows (tREFWSs).

ID HC.,in Patterns tREFWs / Flipped Rows [%]
X10001  Pyyg Pogos 1 2 3 4 5
Ho 1084 (X 63.7 86.2 95.1 96.6
H; 9.2 Vv 13.6 X9 98.9 CLR I (V0X0)
Hs 105.1 22.5 EEZAI 99.9 100.0 100.0
Hs 983 V 19.2 REEK 99.9 100.0 100.0
Hy 1140 v LM 53.6 77.1 88.6 93
Hs 51.6 v 13.3 B ] 99.9 100.0
He 51.4 v Il 80.3 100.0 100.0 100.0
H~ 93.6 V VAl 01.4 99.4 99.7 100.0
Hsg 1044 14.4 BO%] 98.2 99.6 99.8

Hg 52.7 v Rl 639 973 999
Pattern P28 originates from DIMM H2 and P2g0s from DIMM Hg.

100.0

scheme’s single-bit error-correction capability is exhausted
and the error becomes visible at the memory controller.

@ (08.) Bit flips can accumulate over hammering multi-
ple tREFWs before they become visible.

5.3. Cross-Device Evaluation

We apply our two custom Rowhammer patterns to the
SK Hynix DDR5 RDIMMs listed in [TBI. 1} For every
module, we rerun the vulnerable offset experiment for each
pattern to determine whether the module is susceptible to
one or both patterns. Any DIMM that exhibits at least one
vulnerable offset is then tested for its effectiveness: starting
from an identified offset, we sweep 1024 randomly chosen
rows and record how many experience at least one bit flip.
We hammer the aggressor rows for 50 ACTs/tREFI, while
varying the hammering duration for one to five tREFWs.

Results. [Tbl._4] summarizes the cross-device evaluation.
Every DIMM responds to exactly one of the two patterns:
P1ag triggers bit flips on seven modules, whereas Pogpg is
effective on the remaining three. When the selected pattern
is aligned with a vulnerable REF offset and executed at
50 ACTs/tREFI, it reaches near-complete coverage in just
a few refresh windows: after three tREFWs, eight of the
ten modules already show bit flips in at least 97.3 % of the
1024 probed rows. Extending the hammering to five tREFWs
raises the minimum coverage to 93 % across all modules,
with seven modules achieving 100 %.

These results reveal that SK Hynix deploys, at most,
two functionally distinct TRR implementations in the DDRS
generation from 2021 to 2024 (see . Thus, reverse
engineering only a handful of modules is sufficient to craft
patterns that generalize to the entire product line.

@ (09.) All our 10 SK Hynix RDIMMs share the same
TRR mitigation as Hy (7x) and Hg (3%).

Relation to HCj,. We determine the HC,;, of our
RDIMMs, in the same way as we already did in [§ 4.3
for DIMMs H, and Hg. The result in [TbI. 4] reveals that
there is a connection between the pattern’s length (i.e., TRR

implementation) and the HC;,, of the DIMMs. Devices
with a hammer count lower than 51.4K (i.e., Hs, Hg, Hg)
trigger bit flips only with the longer Pagos pattern, whereas
those with a hammer count of at least 93.6K are vulnerable
to the shorter P;og pattern.

@ (010.) DIMMs with a lower avg. HC,,;,, require longer
patterns to bypass TRR, whereas DIMMs with a higher
avg. HC,,;, can be attacked with shorter patterns.

6. Bypassing TRR in Commodity Systems

In our FPGA-based evaluation, we had full control over the
DRAM commands. A key novelty of our patterns is that they
are longer and need to be repeated over many thousands of
refresh intervals. This is crucial to bypass TRR as missing
a REF will lead to hammering our aggressors too late and
erroneously detecting a REF will lead to hammering them
too early. Unlike on the FPGA, where we can control the
REF commands to synchronize, on commodity systems we
have no control over when REFs are issued and need to
detect REFs to synchronize our pattern execution with them.

A Assumption. Having full control over the REF com-
mands to synchronize our pattern execution.

To eliminate this assumption, we first define the requirements
of the refresh synchronization method (§6.I) and evaluate
the state-of-the-art method by Zenhammer (§6.2). As this
method cannot satisfy our requirements, we propose two
novel methods to improve the reliability of detecting REFs
(§6.3) and to self-correct the pattern’s execution whenever
we lose synchronization (§6.4).

Platform. All our system-level experiments are run on an
AMD Zen 4 (R7 7700X) system running on Ubuntu 20.04
with GNU/Linux kernel 5.15.0.

Oscilloscope. We analyze our experiments using McSee [2],
an oscilloscope platform capable of capturing and decoding
the DDRS protocol. This setup is based on a DDRS
interposer sitting in between the memory controller and the
DIMM, and a software pipeline for decoding the captured
traces. Equipped with this, we can precisely study when
REFs happen to assess the quality of our REF synchroniza-
tion method and correctness of our hammering pattern.

6.1. Requirements Analysis

Our patterns rely on precise synchronization with REF
commands to ensure hammering specific tREFIs only. This
requirement is not new as previous work [3[], [6], [29], [30]
already employed synchronization. However, they synchro-
nized the pattern once per pattern hammering repetition
only [3]], which is insufficient for the significantly longer
patterns that can trigger bit flips on DDRS devices. Given the
intricate nature of such patterns that hammer at very specific
refresh intervals, we must synchronize with every tREFI.
Furthermore, since these patterns hammer on comparably
fewer refresh intervals inside the patterns, they need to
remain synchronized with REFs for longer durations to
reach a desired HC. Finally, due to tREFI being halved
on DDRS (compared to DDR4), these patterns need to
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Figure 12. Required #tREFIs in sync for pattern P;25. We show
the hammer count (y-axis) achievable with a number of tREFIs in
sync (x-axis). Each line represents a different activation rate (ACTs
per tREFI). The HCin values are based on the three DIMMs
vulnerable to Pi2s, see [§5.3] We show the tREFW according to
the standard (8192) and as measured (11054) in @}

synchronize with REF commands twice as often, Therefore,
we need a synchronization method that detects REFs with
high reliability. Before evaluating the existing method, we
analyze for how long our pattern needs to stay in sync.

We aim to answer the following question: how many
tREFIs do we need to stay in sync when hammering our
pattern to trigger any bit flips? For the calculation, we
consider the P;og pattern and the average HC,,;,, of 103.3K,
based on the three DIMMs vulnerable to this pattern (§3.3).
As we visualize in we need an activation rate of at
least 50 ACTs/tREFI to reach the average HC,,;, within a
tREFW (i.e., 8192 REFs). The HC,,;,, is based on our devices
vulnerable to Piog (see [§5.3). To the attacker’s benefit, we
determined earlier (§4.3) that the tREFW is actually 11054
REFs. This means, we could hammer for longer with a lower
rate (= 38 ACTs/REF) to reach the same average HC,;y,.
This trade-off provides us with some flexibility: we can
hammer with a lower activation rate in exchange for a more
reliable refresh synchronization method. We will explore
next if the state-of-the-art refresh synchronization method
meets our minimum requirements.

6.2. Zenhammer Refresh Synchronization

Our goal is to evaluate how well the state-of-the-art Zenham-
mer [[6] refresh synchronization works and if it allows us to
stay in sync sufficiently long to trigger bit flips. Zenham-
mer’s continuous and non-repeating refresh synchronization
method employs precise timing measurements with multiple
rows to eliminate “blind spots” and avoid cache flushes.

Experiment. We integrate Zenhammer’s synchronization
method into the code of our Hy hammering pattern and use
it to synchronize with every REF. To facilitate the analysis,
we access two specific marker rows whenever we detect
a REF. We run the hammering code on our test platform
and capture 50 traces of each 2ms (i.e., around 25K tREFIs)
with McSee. As we found that we need an activation rate
between 40 and 50 to reach the average HC,,;, before a
row gets periodically refreshed, we repeat the experiment
with both activation rates.

Results. In [Fig. 13] we show the probability of staying
in sync (y-axis) over time, expressed as hammer count (Xx-
axis), for both activation rates in different subplots. We can
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Figure 13. Comparison of refresh synchronization methods. We
compare Zenhammer’s synchronization against a multi-threaded
variant of it, and our self-correcting synchronization. We show for
two activation rates, the probability of reaching a hammer count
(x-axis) given the synchronization’s methods error rate (legend).
We omit line markers where the probability is below 0.001 %.

see that, with neither 40 nor 50 activations per tREFI, the
Zenhammer refresh synchronization is reliable enough to
stay in sync for the necessary time to reach the average
HC,,;n of our DIMMs vulnerable to Pjog. In the best case
(40 ACTs/tREFI), where the error probability is the lowest,
we can reach a HC of 35840, 55040, and 72 960, before
the probability of staying in sync drops below 1 %, 0.01 %,
and 0.001 %, respectively. Given the survival probability
p of 0.000169 % to reach the average HC,;, of 103.3K,
we would need to repeat hammering the pattern for around
591.7K times to succeed once, which makes the attack
infeasible in practic in practicee.

@ (011.) The state-of-the-art refresh synchronization
method is insufficient to keep in sync with refreshes
for long enough to reach the HC,,;,, of vulnerable rows.

Directions. Our analysis of many DRAM traces with
Zenhammer’s refresh synchronization revealed that the most
common reason for losing synchronization is because of
missing just a single REF. If this happens, we hammer the
pattern’s interval 7, although we should have skipped one
interval, i.e., hammer the interval 7+ 1 to not get sampled by
TRR. Therefore, our goal is to optimize the synchronization
method for this single-missed REF case. To tackle this, we
came up with two possible directions: (i) improving the
reliability of detecting REFs and (ii) realigning the pattern’s
execution whenever we detect a missed REF. We consider
both directions: we propose a new multi-threaded variant
of Zenhammer’s refresh synchronization (§ 6.3) and a new
self-correcting synchronization method (§ 6.4).

6.3. Multi-Threaded Refresh Synchronization

We present a multi-threaded variant of Zenhammer’s refresh
synchronization method [6], aiming to improve the reliability
of detecting REFs. This is motivated by the assumption that
single-threaded refresh synchronization will inevitably miss
a REF at some point. Missing a REF can be caused by,
for example, system events such as receiving an interrupt
or being preempted by the kernel. The synchronization
detection itself can also fail, for example, if another process



accesses the same bank as the one used for synchronization.
We propose to separate activations used for hammering from
those for synchronizing to increase the reliability of detecting
REFs. Therefore, our multi-threaded refresh synchronization
uses several synchronization threads that work in parallel
on different banks and different cores.

Approach. We use three threads, each pinned to a different
core and solely responsible for detecting refreshes. A fourth,
main thread hammers in the pattern’s respective intervals
and thereafter, checks if the synchronization threads detected
a REF. If two out of three threads detected a REF within
0.12us (3 % of tREFI) of each other, we consider the REF
as genuine and continue with the pattern’s execution.

Results. [Fig. 13| shows the result of our multi-threaded
refresh synchronization method. We can see that for 40
ACTSs/tREFI, the error probability is similar to Zenhammer
(0.129 % vs 0.125 %). For the case of 50 ACTs/tREFI, the
error probability is by 0.039 percentage points lower but
still higher than the best case with the Zenhammer method.
Given this, we conclude that the refresh synchronization
method is not practical to reach the average HC ;.

@ (012.) Multi-threaded refresh synchronization only
slightly improves the reliability compared to the state-of-
the-art method and only at a higher activation rate.

6.4. Self-Correcting Refresh Synchronization

Orthogonal to making the synchronization more reliable,
we came up with a completely different approach: self-
correcting refresh synchronization. The idea is that instead of
trying to avoid missing REFs, which seems to be unrealistic
to achieve in practice, we accept that we will miss some
REFs and instead adjust the pattern execution whenever a
REF is missed. The implementation is simple as we already
retrieve a timestamp during synchronization that we can use
for detecting one or multiple missed REFs.

Approach. Our approach for self-correcting refresh syn-
chronization is illustrated in we show how a
perfect refresh synchronization would execute the pattern (a),
compared to the naive refresh synchronization (b), and our
novel self-correcting refresh synchronization (c).

After detecting a REF, we compare the rdtscp times-
tamp of the last detected REF with the current timestamp.
Based on the difference, we check if we missed any REFs,
and if so, how many refresh intervals of the pattern we
need to skip to realign the execution. To optimize for the
most common case of missing a single REF only, we choose
the threshold in a way that we avoid false positives despite
REFs sometimes being slightly delayed. For example, given
a threshold of 5.5us (i.e., 1.4X tREFI), a smaller timestamp
difference will be considered as no missed REF and a larger
one as one missed REF.

Evaluation. We repeat the same experiment (§6.2) using our
self-correcting refresh synchronization method. We take 50
traces (each 2ms) for each activation rate using our scope.
The results in show that the self-correcting refresh
synchronization method makes the overall pattern execution
significantly more reliable. From the 9 and 58 missed REFs

(a) Ideal refresh synchronization (unrealistic)

(b) Naive refresh synchronization
Out of sync
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(c) Self-correcting refresh synchronization
Out of sync
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Figure 14. Self-correcting refresh synchronization. The ideal
pattern execution where each REF is correctly detected (a) is
compared to the execution if one REF is missed (b-c). In the naive
synchronization case (b), the execution is continued and remains
out of sync, causing the aggressors to be sampled by TRR. With
our self-correcting approach (c¢), we detect the missed REF and
skip one or multiple tREFIs to restore the synchronization.

for 40 and 50 ACTs/tREFI, respectively, all of them were
detected correctly, and the pattern execution was realigned.
This allows us to stay in sync for many thousands of tREFIs,
thus easily reaching the average HC,;, of our DIMMs.
As we show later in [§7] our novel self-correcting refresh
synchronization method enables us for the first time to
trigger bit flips on modern DDRS DIMMs from commodity
systems.

@ (013.) Self-correcting refresh synchronization allows
us to stay in sync for many thousands of tREFIs, sufficient
to reach the average HC,,;, of vulnerable rows.

7. Evaluation

In this section, we evaluate Phoenix by answering the
following three questions:

1) How widely applicable are our patterns across different
DDRS5 UDIMMs from SK Hynix (§7.1)?

2) Can our patterns trigger the particular bit flips on DDR5
DIMM s that enable existing attacks (§7.2))?

3) Is it possible to build an end-to-end Rowhammer exploit
on DDR5 DRAM with our patterns (§7.3)?

Experimental Setup We evaluate our patterns and the end-
to-end attack on an AMD Zen 4 (R7 7700X) system with
Ubuntu (GNU/Linux 5.15.0) and default BIOS settings. We
use the UDIMMs listed in [TbL. 3] Testing these DIMMs
with the state-of-the-art Rowhammer fuzzer, Zenhammer [6]],
did not show any bit flips.

7.1. Pattern Coverage & Effectiveness

We evaluate on how many of our DDRS UDIMMs our
crafted patterns are effective and how many bit flips they can



Table 5. Evaluation of DDR5 UDIMMs. For each DIMM, we report its manufacturing date (Mf. Date); size; data transfer rate (Speed);
device width (Wd.); DRAM geometry (number of ranks (RK), bank groups (BG), banks per bank group (BA), and rows (R)); and the
Rowhammer pattern it is vulnerable to (§3). For each DIMM, we sweep its pattern over 256 MB of memory and report the number of
one-to-zero (1 - 0) and zero-to-one (0= 1) bit flips. We also report the average time to find the first exploitable bit flip in mm:ss format
for three Rowhammer attacks: the page table entry (PTE) attack [[14], the RSA key attack [27], and the sudo binary attack [15].

D MF. Date Size Speed Wd. Geometry Pattern Sweep [#bfs.] Attacks [avg. time]
[yyyy-mm] [GiB] [MT/s] #RK,BGBA,R)  Pi2s Pasos 1-0 0-1 PTE RSA sudo
Ho  2021-12 8 4800 x16 1,4,4,2'° v 3329 5460 10s  4m57s  80m 45s
H, 2022-07 16 4800 x8 1,8, 4,2 v 2917 4582 14s 7m 6s  49m 37s
H,  2022-08 16 4800 x8 1,8, 4,2 v 2629 4082 15s  6m 38s -
Hs  2022-12 8 4800 x16 1,4, 4,2!° v 2837 4526 11s  6m36s -
H,  2022-12 32 5200 x8 2,8, 4,2 v 207 318 2m 55s - -
Hs  2022-12 32 4800 x8 2,84, 2° v 3922 5821 11s  4m 17s -
Hs  2023-01 32 4800 x8 2,8, 4,2 v 6592 9672 7s  2m29s  20m 19s
H,  2023-01 32 4800 x8 2,8, 4,2!° v 566 860 39s - -
Hs  2023-01 32 5600 x8 2,8, 4,2!° v 156 240 4m 6s - -
Hy  2023-01 32 6000 x8 2,8, 4,2 v 314 486  2m17s  9m25s -
Hio  2023-02 32 5600 x8 2,8, 4, 2!° v 304 461 T7m?27s  23m 57s -
Hy,  2024-01 16 4800 x8 1,8, 4,2 v 12523 18446 6s 1m19s  12m4ls
Hi,  2024-01 16 4800 x8 1,8, 4,2!° v 10833 15917 5s 1m?27s  21m 17s
His  2024-04 16 5600 x8 1,8, 4,2 v 8520 12761 5s 1m 38s -
His  2024-12 16 4800 x8 1,8, 4,2 v 24 19  20m 15s - -

trigger. This can show us if the TRR mitigations deployed
on RDIMMs and UDIMMs are the same. As our UDIMM
test pool covers devices with manufacturing dates between
end of 2021 and end of 2024, it will also show us if the
mitigation changed over time.

Methodology. For each DIMM, we first determine which of
the two patterns, Piag or Pagog, are effective in bypassing
TRR. We then follow the methodology from previous
work [3]], [4]] and sweep the effective pattern over the row-
equivalent of 256 MB of physically contiguous memory and
record the number of bit flips. While sweeping, we hammer
each row for one second, i.e., for more than 15 tREFWs.

Results. The results of our pattern sweep is presented in
[TBI. 5] For each DIMM, we report the effective pattern,
and for this pattern, the number of one-to-zero (1-0) and
zero-to-one (0- 1) bit flips. Similar as in our FPGA-based
evaluation (§5.3), we find that every DIMM is vulnerable
to exactly one of the two patterns only: P12g (8X) or Pagps
(7x). Pattern P12g with 13 050 bit flips on average, is around
2.62x more effective than the Pogos pattern with 4 989 bit
flips on average. We will see next how these bits flips affect
the attack time of existing Rowhammer end-to-end attacks.

7.2. Exploitation Analysis

We now show that the bit flips produced by our patterns
enable existing Rowhammer attacks on DDRS DIMMs by
analyzing their exploitability.

Attacks. For this exploitability analysis, we consider three
existing Rowhammer attacks targeting (i) PTEs (Page
Table Entries) to craft a memory read/write primitive [14];
(i) RSA-2048 keys of a co-located VM to break SSH
authentication [3[]; and (iii) the sudo binary to escalate local
privileges to the root user [3]. We use the Rowhammer attack
simulation framework Hammertime [72]] with our results

from to simulate the attacks based on the required
attack-specific bit flip offsets.

Results. We present the results in For each of the
three attacks, we report the average time to trigger the
first exploitable bit flip. We can see that all 15 devices are
vulnerable to the PTE attack and the average time to trigger
the first exploitable bit flip is 2m 36s. For the RSA-2048
attack, 11 of 15 devices (73 %) are vulnerable, with an
average time of 6m 20s. Although requiring very specific
bit flips offsets, the sudo binary attack still works on 5 of
15 devices (33 %) with an average time of 36m 55s. We
note that in we limited hammering to 256 MB but it
is likely to find the necessary bit flips for the RSA-2048
and sudo binary attack when hammering for longer.

We conclude this section by showing that the exploitable bit
flips that we determined can be used to escalate privileges
in a real end-to-end attack. As DDRS introduces ODECC,
which could make memory templating more difficult if the
attack’s target data is not known in advance, such as in the
PTE attack, we chose to replicate this specific attack.

7.3. End-to-End Exploit

We integrate Phoenix’s bit flip primitive into the privilege
escalation exploit Rubicon [14], which equips the attacker
with an arbitrary memory read/write primitive. Flipping a
single bit in the Page Frame Number (PFN) field of a PTE,
lets the attacker forge PTEs to arbitrarily read/write into
memory. Exploitation requires allocating a large buffer of
contiguous physical pages, locating a row with an exploitable
bit flip, massaging memory so the target PTE resides in that
row, and retriggering the flip to complete the escalation.

Threat model. We assume a vanilla x86-64 Linux system
where the attacker can run code as an unprivileged user.
The system uses a DDRS UDIMM produced by SK Hynix



employing ODECC and TRR with all BIOS defaults and
vendor defenses remain enabled.

Physically contiguous memory. To obtain 4 MB contiguous
memory blocks, we exhaust smaller page block orders to
force the buddy allocator to return 4 MB blocks at the tail of
the allocation. We then release everything except the sMB
at the tail of the allocation, creating a search window of at
least one physically contiguous 4 MB block. We slide a 4 MB
probe across this window and use the DRAM addressing
functions [6] with bank conflicts to find the block alignment.
Accessing each address pair while recording the minimum
latency reveals the alignment: when the probe covers the
target block, every pair will trigger a row buffer conflict,
marking the first page of the contiguous block.

ECC-aware templating. Templating typically fills aggressor
and victim rows with complementary byte patterns, but
ODECC makes bit flips data-dependent [73]]. Therefore,
we prime aggressor rows with OxAAAAAAAAAAAAAAAA and
victim rows with a fake PTE value 0x8000000555555027.
This surrogate PTE approximates the layout of a Linux 64-
bit page table entry, increasing the chance that a flip found
during templating can be retriggered later. We repeatedly
hammer and read back the victim rows until the first
exploitable bit flip emerges.

Memory massaging and exploitation. After identifying
a vulnerable cell, our aim is to install a PTE whose PFN
differs from the page table’s PFN by exactly one flippable
bit. Thanks to the 4MB contiguous aligned blocks, we can
choose a sibling frame whose PFN is one bit apart from
the target PFN. We free this frame, then map a file to back
the file with that frame. Using Rubicon’s allocator massage
primitive [14]], we steer the next page-table allocation onto
the target frame. Mapping the same file again at a crafted
virtual address writes the sibling’s PFN into the PTE located
at the vulnerable 8-byte slot. Immediately before hammering,
we clear that slot in the sibling page to 0x0 and read it
back afterward. If it now contains a valid PTE, we have
control over a page table page; otherwise we repeat the
entire sequence.

Evaluation. We test our attack on DIMM H4. Across ten
successful runs, the time-to-exploitation is between 1m 49s
and 17m 6s with an average of Sm 19s.

8. Discussion
We discuss extending Phoenix (§8.1)) and possible mitigation

strategies (§8.2).

8.1. Extending Phoenix

Phoenix was a high effort project: debugging the Antmicro
FPGA took us roughly 1 person-year, reverse engineering
H, and Hg took 0.5 person-year, and developing self-
correcting refresh synchronization took another 0.5 person-
year, totaling 2 person-years. However, we think more work
is needed in this important area and discuss some interesting
future directions with an estimation of effort.

Additional DIMMs. H, and Hg provided a full coverage of
DDRS5 SK Hynix RDIMMs and UDIMMs in our pool. Fu-

ture devices from this vendor, however, could introduce new
TRR mechanisms. In our experience, reverse engineering a
new TRR mechanism from the same vendor typically takes
a shorter time given similarities in the implementation.

Additional DRAM vendors. We expect reverse engineering
devices from other vendors, such as Micron or Samsung, to
take roughly the same amount of time as it took us for SK
Hynix. It remains to be seen whether additional system-level
techniques, beyond self-synchronization, will be necessary
to trigger bit flips on a commodity system with DIMMs
from these other vendors.

Additional CPU vendors. Phoenix is designed to work
on AMD CPUs. Self-synchronization will likely require
additional tuning to work on Intel CPUs. Furthermore,
triggering bit flips on Intel CPUs requires bypassing the
in-CPU pTRR mitigations as shown by McSee [2]]. We are
not aware of any work that bypasses both in-DRAM and
in-CPU mitigations simultaneously.

Better fuzzers. Existing Rowhammer fuzzers [3]], [4], [6]
fail to find the patterns we crafted in this paper. We attribute
this to the TRR sampling behaviors that span over much
more refresh intervals in DDRS which makes the search
space significantly larger to brute force. Future fuzzers can
explore this space more effectively, for example, by focusing
on finding blind spots at the granularity of refresh intervals
instead of activations. Such fuzzers could benefit from
Phoenix’s more accurate refresh synchronization capability.

8.2. Mitigations

Mitigating Phoenix requires different strategies when consid-
ering existing and future DRAM devices, which we discuss
here.

Increasing refresh rate. Unlike CPU vulnerabilities that
can be mitigated via modifications to the microcode, DRAM
features a much more rigid execution pipeline that is not
amenable to changes after production. Hence, the only
possibility to fully address Phoenix in existing systems
is via increasing the refresh rate. Our measurements show
that increasing the refresh rate by 3x mitigates Phoenix on
the most vulnerable device at the system level. SPEC2017
benchmark suite [9] shows an overhead of 8.4% due to this
increase in the refresh rate in our test system. We would
like to point out that there could be more effective patterns
than the ones we constructed where increasing the refresh
rate by 3x may not be sufficient.

Fine-granularity refresh. As a response to our responsible
disclosure, we were told that a BIOS update for AMD
client CPUs has been issued. This BIOS update switches
the memory controller’s refresh mode to Fine-Granularity
Refresh (FGR). FGR increases the refresh rate, but reduces
the time allotted to each refresh command [2]]. While it
remains to be seen how this change affects Phoenix, we do
not think that it will provide a strong protection.

Rank-level ECC. Rank-level ECC is known to make
Rowhammer attacks more difficult in practice. Previous
work, however, has shown that it does not stop Rowhammer
attacks in both DDR3 [74] and DDR4 [75] server systems.



Investigating an ECC variant of Phoenix would be an
interesting direction for future research.

Future devices. We strongly recommend against deploying
yet another obscure mitigation without a rigorous security
analysis in future devices. Instead, the DRAM vendors must
deploy TRR mitigations with principled guarantees [40],
[60]. The new Per Row Activation Counting specifica-
tion [76]], [[77] provides a possibility for implementing such
principled mitigations inside DRAM.

9. Related Work

We discuss reverse engineering of TRR implementations
via FPGAs and system-level attacks that bypass TRR.

FPGA studies. TRRespass [4] and U-TRR [5] used an
FPGA to study TRR mitigations in commodity DDR4
devices. Similar to U-TRR, we relied on cell retention time
as a side channel for detecting TRRs. Our methodology,
however, scales to a larger number of refresh intervals,
necessary for bypassing TRR on commodity DDRS devices.
Blacksmith [3|] tested LPDDR4X devices via a development
board to assess the efficacy of non-uniform patterns at
bypassing TRR. Half-double [37] studied the effect of far
aggressors to victims and their interactions with TRR. To
the best of our knowledge, there is no existing study of
DDRS5 devices based on an FPGA.

System-level attacks. Existing literature has shown Row-
hammer bit flips on TRR-enabled (LP)DDR4 devices on
a wide variety of systems, including on Intel [3]], [4],
[29], (78], AMD [6]], RISC-V [79], and ARM devices [3],
[4], [13], [37]. TRRespass [4]] was the first study able to
systematically bypass TRR on DDR4 devices at a system
level. Blacksmith [3] demonstrated that all major DRAM
vendors were vulnerable to the novel non-uniform aggressor
patterns. Zenhammer [6] reported Rowhammer bit flips on
a single DDRS device with production year 2021 out of ten
tested DDRS5 devices. Furthermore, Zenhammer does not
study the deployed DDRS5 TRR mitigation.

Rowhammer Fuzzers. Zenhammer [|0] is the only fuzzer
that claimed to have found bit flips on DDR5 DIMMs;
however, only on one out of ten tested DIMMs. We believe
that current fuzzers cannot find our patterns due to three
fundamental differences in our patterns: (i) significantly
longer patterns (128/2608 tREFIs) [3]], [6], (i) an irregular
TRR distance [3]], (iii) and hammering the same aggressors
for certain tREFIs almost entirely. Besides this, we require
starting to hammer with the right refresh alignment and
maintaining synchronization for thousands of tREFIs, which
previous synchronization methods could not achieve (§ 6).

10. Conclusion

We presented Phoenix, the first Rowhammer attack that
could trigger bit flips on DDRS5 devices with modern TRR
mechanisms. To achieve this, we had to reverse engineer
TRR behaviors over a large number of refresh intervals
to find blind spots. We then built custom patterns that
hammer these blind spots over thousands of refresh intervals.
To remain synchronized with these many refresh intervals,

Phoenix relies on a novel self-correcting refresh synchro-
nization method that detects missed refresh commands
and readjusts the Rowhammer patterns automatically. Our
evaluation shows that Phoenix triggers bit flips on all 15
SK-Hynix DDRS5 UDIMMs running on a commodity system
with default settings. We also built a privilege escalation
exploit using these Rowhammer bit flips on a DDRS system
that succeeds in as little as 109 seconds. Our measurements
show that increasing the refresh rate by 3 x mitigates Phoenix
on the most vulnerable device we teseted while introducing
an overhead of 8.4%.
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Appendices

Appendix A.
Platform

We summarize some of the issues that we had with the DDRS
Rowhammer RDIMM Tester platform by Antmicro [69].
All reported bugs have meanwhile been fixed in the official
Rowhammer Tester repository [71]].

Refresh counter buﬂ We found a bug where activating
certain rows would increment the refresh counter as a
side effect, even though no refresh command was issued.
Their logic assumed that all commands were single-cycle
command, which is not the case for DDRS5. Since our
experiments depend on the refresh counter, we worked with
Antmicro to resolve it.

Payload executor bugs. We found several bugs in the
payload executor, which is the component that generates
DRAM payloads based on a simple assembly-like language.
For example, upon our error report, Antmicro found a bug in
the activation condition of the DDR4-to-DDRS adapter unit
which caused the payload executor to not work correctly.

1. https://github.com/antmicro/rowhammer-tester/issues/199

Another payload executor bu included a wrong encoding
of the LOOP instruction caused by a silent truncation.

Incorrect addresses. Using McSee [2]], we found that
hammered addresses defined in our FPGA code do not
correspond to the ones we can see on the bus. More precisely,
we hammered double-sided in the code but saw that two
far-apart rows were activated on the bus. After reporting
this issue, Antmicro found that this was caused by a bug
that creates a mismatch between DRAM address component
bits in the FPGA design and the platform’s software.

RDIMM support. When we first started working with the
platform, only a handful of DDR5 RDIMMSs successfully
passed the memory training. Among others, we had issues
with dual-rank DIMMs. We worked with Antmicro to
improve the supported list of memory modules, which they
now also document on their websit

Appendix B.
Generalization to Another DIMM

To reverse engineer TRR on Hg, we apply the same method
as in [§4 We first zoom out to capture the TRR behavior
at refresh granularity. We measure the sampling period and
identify the tREFIs that TRR samples far less frequently than
in others. We then zoom in to ACT granularity, analyzing
each lightly sampled interval to discover which activation
slots TRR actually samples. This fine-grained view lets
us craft a hammering pattern in which aggressor rows are
activated throughout the interval, while decoy rows are
carefully placed into activation slots known most likely to
sample. Any TRR refresh therefore targets only the decoys
and leaves the aggressors unsampled.

B.1. Zooming Out On Hg

We brute force the sampling period by incrementing N
and rerunning the zoom out experiment of Starting
at N=16 and increasing it step-wise to N=256, shows
no signs of a repeating pattern, hinting at a much longer
sampling period. However, testing larger N, requires adding
more regular refreshes to the DRAM payload, which in-
evitably leads to noise in the results. Hence, we need a new
way to scale our zooming out even further.

We came up with a new technique to scale our method-
ology to sampling periods covering thousands of tREFIs.
The key idea is that if we found the correct sampling period,
then repeating the same experiment for refresh counters
N,2N,3N, ... should give us a clear pattern in the TRRs-
per-tREFI histogram (e.g., already by looking only
at the first few hundred tREFIs.

We test this approach by examining only the first 256
tREFIs of the sampling window for each candidate N: we
align the refresh counter ¢ to ¢ =0 (mod N) before every
run and look for a stable pattern. We repeat this experiment
for many repetitions. This refined method uncovers a clear,
repeatable pattern at N=2608, showing that Hg operates on
a 2608-tREFI sampling period.

2. https://github.com/antmicro/rowhammer-tester/issues/191
3. https://antmicro.github.io/rowhammer-tester/memory_testing.html
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[@(014.) Hg employs a 2608-tREFI sampling period. J

With the 2608-tREFI sampling period known, we scan
the entire period in smaller, 256-tREFI chunks. Before each
run, the refresh counter is advanced by 256 REFs, so every
experiment covers a fresh 256-tREFI slice. Ten such shifts
cover the first 2560 intervals; the eleventh iteration captures
the remaining 48 intervals and wraps around, completing
the sweep. The results reveal that roughly three tREFIs in
every 32-tREFI block are sampled significantly less often.

@ (015.) Across the full 2608-tREFI period, approx-
imately three tREFIs per 32-tREFI block are sampled
significantly less often.

B.2. Zooming In On Hg

After isolating the lightly sampled tREFIs in the 2608-tREFI
period, we zoom in to ACT granularity. Repeating the per-
activation test from for all the candidate tREFIs, we
have the same result as for Hy: TRR is most likely to sample
the last ACT issued before the next REF. This means we
know both which tREFIs to hammer and how to schedule
activations inside each interval.

B.3. Pattern Pogos

Alg. 2| on page [8| shows the pseudocode for Pagos. The
complete sequence spans 2608 tREFI intervals and is di-
vided into two identical 1288-tREFI segments (lines [THS).
Within each segment the aggressor pair is hammered for
8 x 5 x 3 = 120 tREFIs, while decoy activations occupy
the remaining 1168 tREFIs. The 120 hammered tREFIs
(lines correspond exactly to the lightly sampled
intervals identified earlier.

Appendix C.
Pattern Optimizations

We show how brute forcing the refresh alignment can
be made 16x more efficient by leveraging the pattern’s
structure. Our reverse engineering revealed that the
TRR sampling behavior shows a repeating pattern recurring
after 128 (H3) and 2608 (Hg) refreshes. To bypass TRR,
we need to hammer in specific refresh intervals within these
repeating patterns. Therefore, we need to align to certain
refresh commands before executing our hammering pattern.
For example, for DIMM H,, there are two REFs within
each sequence of 128 REFs where we can start hammering
to trigger bit flips (§5.3). This means, our chance to hit the
right refresh alignment is 2/128 = 1.56 %. Next, we show
how we increase the pattern’s success rate by a factor of
16x by implementing two optimizations.

OPT. 1: Pattern instances. We hammer only selected tREFIs
in our pattern, for example, 32 tREFIs in our Hs pattern.
Consequently, there are 92 unused tREFIs in which we only
access decoys to stay in sync. However, instead of decoys,
we could make use of these tREFIs to hammer three more
instances of the pattern (i.e., in 3 X 32 tREFIs) with different
refresh alignments and targeting other rows. This reduces the

number of decoy rows to the ones used for synchronization
as we are now hammering a double-sided aggressor pair
in every tREFI. This optimization increases the chance to
hit the right refresh alignment from 1/64 = 1.56% to
4/64 = 6.25%.

OPT. 2: Bank-level parallelism. Earlier work [78]] showed
that bank-level parallelism can be exploited to increase the
number of bit flips by hammering multiple rows on different
banks in parallel. In our case, however, we argue that the
probability of hitting a vulnerable refresh offset (6.25 %)
is significantly lower than not reaching the HC ,;, of any
of the four targeted rows. For example, if we hammer our
pattern Pjog for 8192 tREFIs with 50 ACTs/tREFI, we can
accumulate a HC of approx. 102.4K, which is roughly
the average HC,,;, (103.3K) of the DIMMs vulnerable to
this pattern. Therefore, we use bank-level parallelism to
further increase the number of different refresh alignments
that we try in one pattern execution (instead of testing
different rows with the same refresh alignment). We can
use different banks for this as we showed in that
the vulnerable refresh offsets are identical across banks.
By hammering four banks in parallel with shifted pattern
instances, we can try 128/32 = 4 alignments at once. This
optimization combined with OPT. 1 increases our success
rate from originally 1/64 = 1.56 % to (4 x 4)/64 = 25 %.

Similar to Hs, the pattern for Hg allows us to increase the
success probability by trying different refresh alignments on
different banks in parallel. This increases the success rate
from 92/2608 = 3.53 % to (4 x 4) x92/2608 = 56.48 %.
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