Pathfinder: Constructing Cycle-accurate Taint Graphs for
Analyzing Information Flow Traces

Katharina Ceesay-Seitz Flavien Solt

ETH Zurich UC Berkeley
Switzerland USA
kceesay @ethz.ch flavien.solt@berkeley.edu

Abstract—Hardware Information Flow Tracking (IFT) is gaining trac-
tion for detecting security vulnerabilities in hardware designs. Analyzing
IFT violation traces can be extremely time-consuming since they often
contain hundreds, if not thousands, of signals that need to be manually
analyzed to establish the root cause behind the unexpected information
flow. To resolve this problem, we introduce taint graphs that provide
context as to where, when, and why information flows. To generalize to
different IFT verification methods, we first develop a theoretical foun-
dation for unifying taint tracking and self-composition under a common
abstraction. Relying on this abstraction, we then build Pathfinder for
automatically generating taint graphs from a given Hardware Description
Language (HDL) design and a trace of the information flow violation
given either by simulators or formal model checkers. We demonstrate
the effectiveness of taint graphs in simplifying root cause analysis of
information flows through multiple case studies that involve constant-
time violations, temporal fencing, hardware Trojans, and Spectre. By
extracting only the relevant signals on a path, Pathfinder reduces the
number of signals that need to be manually analyzed between 1.6 and
769.9 times in these case studies.

I. INTRODUCTION

With an increasing number of discovered hardware vulnerabili-

ties [1]-[10], non-interference has become a popular security property
to verify confidentiality and integrity in hardware designs [5], [11]—
[13]. Non-interference is inherently an information flow property. The
violation of such a property is caused by an unauthorized information
flow, where a secret input is leaked to an observable output (i.e., a
confidentiality violation) [5], [11]-[13], or attacker-controlled input
maliciously changes the system’s state (i.e., an integrity violation) [5],
[14]. While existing Information Flow Tracking (IFT) methods can
detect such flows, verification engineers currently lack the necessary
support to efficiently analyze the root-cause behind these flows. This
paper aims to fill this gap.
Information flow tracking. Information flow properties can be veri-
fied with various IFT methods, which are built for detecting unwanted
information flows that would, for example, breach confidentiality or
integrity properties. IFT methods can be broadly categorized into two
types: taint tracking and self-composition. Taint tracking augments
hardware designs with taint logic and can operate at different levels
of abstraction and precision [15]-[18]. Self-composition, also known
as miter circuit [6], [1 1]-[13], [19], relies on juxtaposing two identical
instances of a design. Both methods can be used with formal veri-
fication [5], [6], [111-[13], [191-{21] or simulation [14], [17], [21],
[22]. IFT property violations are reported as cluttered violation trace
waveforms that intertwine information flows with design signals.

The authors would like to thank the anonymous reviewers for their valuable
feedback, and Tobias Kovats for his feedback on Pathfinder and for providing
the new CVAG6 trace. This work was supported in part by the Swiss State
Secretariat for Education, Research and Innovation under contract number
MB22.00057 (ERC-StG PROMISE).

Alexander Klukas Kaveh Razavi

ETH Zurich ETH Zurich
Switzerland Switzerland
aklukas @student.ethz.ch kaveh @ethz.ch

Root-cause analysis. The state-of-practice for understanding the root
cause of information flows, may it be through taint tracking or self-
composition, is to manually analyze the waveforms consisting of
thousands of signals over many clock cycles. Verification engineers
spend around half (reportedly 47% [23]) of their time debugging
failing test cases or formal properties, which slows down hardware
development cycles. Determining the signals that lie on an infor-
mation flow path is similarly a heavy manual burden. Information
that is unrelated to the failing property may flow through the design
via many paths, obfuscating the actual path. Hence, analyzing IFT
traces requires first manually determining which signals are part of
the path and then manually ordering them into a temporal sequence,
by manually inspecting the source code in parallel. Additionally
to extracting the information flow path, verification engineers must
analyze design states and understand their intertwinements. These
aspects severely complicate root-cause analysis, which is necessary
to identify the underlying vulnerability before it can be fixed.

IFT unification. Currently, IFT methods fail at explaining why an
information flow exists. Providing context information for a diverse
set of IFT methods requires first understanding their similarities.
In this paper, we provide a unified formal definition of hardware
information flow tracking, which allows us to design a unified
violation trace analysis method applicable to all existing IFT methods,
for both formal and simulation-based approaches. To build generic
support for root-cause analysis of information flows, we first need a
common abstraction between taint tracking and self-composition. To
this end, we formally prove the correspondence between taint tracking
logic and self-composition. These results show that taint tracking
and self-composition are equivalent in terms of detection capabilities,
apart from the potential imprecision of taint tracking. This unification
further allows for designing a representation of information flows that
is agnostic to the underlying IFT method.

Taint graphs. We then introduce Taint Graphs (TGs), a novel rep-
resentation for visualizing information flows by providing contextual
spatio-temporal information (i.e., where and when information prop-
agates). Only inspecting signals on the path is, however, insufficient
to understand why information propagated unexpectedly and how to
resolve the hardware flaws that caused the unwanted flow. To address
this, TGs include flow control signals, which we define as signals
interfering with the information flow path, and which are able to
block the information flow entirely, if they have the right values.
Thus, these signals hint at the design modifications necessary to block
the flow and thus remove the vulnerability.

Pathfinder. We introduce Pathfinder for generating TGs. Pathfinder
relies on a Temporal Information Flow Graph (TIFG), which provides
spatio-temporal information of all potential information flows in a
given Hardware Description Language (HDL) design. Pathfinder then
takes an information flow trace and uses the TIFG to generate the

taint: 1 =< : 0 > t
no taint; inted! —» int
: +ta|nted: tainted
2 1
Som ! o1 0/1 « 0
2 1
(a) % 1 « 1 0 (b)

Fig. 1: Taint logic (TL) for an and gate propagates taint (from
top taint input tracking the top design value) if the untainted input
(bottom) has design value 1 (a). No taint propagates if the output of
the and (0) is independent of the tainted input (0/1) (b). [15].

corresponding TG. Pathfinder is able to isolate information flows
between chosen information source and sink signals, and it provides
means for identifying unknown information sources (or sinks). Due
to our IFT unification, Pathfinder can be applied to self-composition
traces as well as explicit taint tracking traces. Pathfinder is compatible
with state-of-the-art open-source and commercial tools as it relies
on standardized tool outputs. We demonstrate the effectiveness of
Pathfinder on a range of case studies and show that it significantly
reduces the manual effort required to understand the root cause of
information flows in hardware.

Contributions. In summary, our contributions are:

« We formally show that taint tracking and self-composition, two
different IFT methods, provide similar detection capabilities,
enabling the design of a generic information flow representation.

o We introduce taint graphs, a novel representation of information
flows that aids verification engineers in understanding the root-
cause of non-interference violations, by focusing on when, where
and why information was flowing.

« We introduce Pathfinder, a tool that automatically generates taint
graphs from a formal counter example or test case violation
VCD trace, and the design description in any standard HDL [24].

o We apply Pathfinder to recent non-interference violation re-
ports [5], [19], [21], including Spectre [1], and show that they
significantly reduce the manual effort required to understand the
underlying vulnerability.

We open sourced Pathfinder at https://comsec.ethz.ch/pathfinder.

II. BACKGROUND AND MOTIVATION

Hardware designs undergo extensive simulation and formal verifi-
cation before production. Verification engineers spend a substantial
portion of their time debugging formal counter examples (CEXs)
or test case violations [23]. Existing verification tools typically
provide Value Change Dump (VCD) [25] traces that can represent
a simulation trace or a CEX to a formal property. The VCD format
is a standard compact textual representation for storing signal value
changes per clock cycle that can be visualized as a waveform or
processed by further tools. Analyzing security property violations
with existing functional verification tools requires even more effort
than functional property violations, since these tools are not aware of
the nature of the properties they verify. Before discussing the effort
involved in analyzing such violations, we briefly discuss security
verification with Information Flow Tracking (IFT) which has recently
seen a surge for security verification [5], [0], [11], [12], [14], [17],

[19]-[21], [26].
A. Information Flow Tracking (IFT)

Non-interference is a common security property for verifying
confidentiality or integrity [15], [27]. IFT methods express this
property in terms of information sources and sinks. Since such an

Out
DUT AL DUT
UN
* Identical input B *

Fig. 2: Self-composition: the outputs of two instances of the DUT
are compared (xor) to identify whether substituting A for A’ results
in differences.

Information Flow (IF) property is a hyperproperty (i.e., a property
over sets of traces [28]), it cannot be expressed over a single instance
of the design logic. As such, IFT methods must provide means for
obtaining the necessary information for proving or disproving the
hyperproperty. Two common ways for doing so are broadly known
as Taint Tracking (TT) and Self-Composition (SC), which we discuss
next. Both TT and SC reduce the hyperproperty to a trace property.
Both methods can be used in dynamic (i.e., simulation) [17], [22],
[29] or static (i.e., formal) settings [5], [6], [1 1], [12], [19], [20].
Taint Tracking (TT). As shown in Figure 1, TT instruments an RTL
design with a parallel (shadow) taint logic. It adds one taint bit per de-
sign signal bit for calculating and tracking symbolic information flows
through a design, without affecting the original design logic [15]—
[18]. It dynamically tracks at runtime where information, introduced
via some sources, propagates during interactions with the design. TT
was originally proposed based on gate instrumentation [15], and later
extended to RTL and cells for better scalability [17], [18], [21].
Self-Composition (SC). Self-composition, also known as miter [6] or
product circuit [11], juxtaposes two identical instances of the Design
Under Test (DUT). Information sources are presented with values that
differ between the two instances, while all other inputs are driven
equally on both sides. IFs manifest as differing values of the two
instances of a state or output, as illustrated in Figure 2.

Information can propagate via explicit paths, like in the ‘and’ gate
in Figure 1, or via implicit paths. For example, the condition in a
conditional assignment implicitly influences the result of the assigned
signal. Similarly, signals that influence the update time of a signal
(e.g., an enable signal of a flip-flop) implicitly influence a sink via a
timing path [5], [26]. While TT and SC are implemented differently
and often used in different contexts, they verify the same underlying
property: the existence of information flows. We argue that it should
be possible to analyze their violation traces in a unified manner.

Research question 1. How can we unify taint tracking and self-
composition under a common abstraction?

We answer this question in Section III.

B. Manual information flow trace analysis

Adding taint logic or self-composing a design inevitably leads to
an increased number of signals that verification engineers needs to
analyze. Figure 3 shows an excerpt of violation traces when verifying
an IF property on the Ibex CPU (more information in Section VI-C).
The verified property asserts that no taint shall flow to the signal
‘PC’, the program counter. The left side depicts an excerpt of a taint
tracking trace obtained as CEX to the property, which fails in the 4th
clock cycle. Taint propagated from ‘ready_t’ to ‘iaddr_t’, via some
intermediate taint logic (‘_5_t’, *_9_t’), to ‘PC_t’. The right trace
shows a self-composition trace of the same example.

Manual backtracking. Due to the lack of generic techniques for
debugging IFT traces, verification engineers currently resort to func-
tional wave form analysis tools for understanding where, when, and
why information could flow. These tools are able to show the signals

https://comsec.ethz.ch/pathfinder

Taint logic trace —, Self_cﬁ;?siti, clk
ok [L] LI LI LI L, | outtee [32h8030.
PC_t /32'h1B55.] o DUT2.PC /32'h1030.
iaddr_t /32h1B55..Y32h1B76.} _ | DUT1.iaddr /32'h8030...{32'n8020.]
Y 2 o | TR
5.t /32'h4FFF..{ 32'h4F0.. DUT1.ready 1
ready_t / 1 \ @ DUT2.ready [0 \

Fig. 3: Waveform excerpts. Left: A taint logic trace, showing taint
signals (suffix _t), where a bit being one means that the corresponding
design signal bit is tainted. We show the manual backtracking steps
to determine the first three signals on the path out of, often, thousands
of signals. @ Signal PC_t (taint signal of PC) is tainted by @
iaddr_t (taint signal of instruction address), via some intermediate
taint logic signals (_5_t, _9 t) and ‘ready”s taint signal @ ready_t.
Right: Self-composition trace for the same example. Information
propagation is represented as propagation of differences between the
signals of the two DUT versions. E.g., DUT1.ready differing from
DUT2.ready corresponds to ready_t being 1.

Taint entrance

Taint entrance

Fig. 4: A manually created graph based on a trace with multiple
taint entrances and taint paths (nodes with red border). Pathfinder
generates a TG that extracts a temporal path (yellow nodes) between
a chosen source and sink and annotates it with (possibly multiple)
clock cycles of IF occurrences, and a ‘C’ for implicit paths. Control
flow signals, controlling the existence of the path, are shown in blue.

in the fan-in that contributed to the violation. However, being unaware
of the semantics of taint logic, the tools show only the taint signal
‘PC_t’ as cause of the violation in the example of Figure 3. This
information alone is insufficient for understanding the root cause
behind a CEX or test case violation. While it is possible to extract
further context information from the waveform, this manual process
is extremely cumbersome: verification engineers need to manually
backtrack the taint logic, which not only doubles the number of
signals in the design by inserting the shadow signals but also inserts
the shown additional intermediate tracking signals. Analyzing IF
traces obtained from SC is also cumbersome as the two copies of
each signal need to be inspected. The number of backtracking steps
depends on the number of signals that can be influenced by an
information source, which can be in the order of several thousands
in complex designs and long traces.

Path isolation. Figure 4 shows how verification engineers could
manually create a graph with nodes being HDL signals and edges
being a potential influence between them for a given CEX trace.
It highlights the challenges of answering where, when, and why
information propagated. If source and sink signals are known, the
difficulty lies in extracting the specific path(s) between them, i.e.
finding the yellow filled nodes out of all red-bordered ones. If either
the sink or source is unknown, the difficulty lies in finding where the
information flew from or where it reached, i.e. finding the sources
or sinks respectively. In particular, outgoing paths of a source may
propagate over large portions of the design without ever reaching the
sink. For example, register data (source) propagates through various

modules in a CPU, but only reaches the PC (sink) through some of
those. While information propagates through the modules in space
and time, it influences other dependent signals, where many are
irrelevant for the property. There may exist multiple paths, or sources
or sinks, further complicating the analysis given that even more
signals may now need to be considered. Thus, verification engineers
are faced with thousands of signals that need to be manually examined
and sorted, and mentally or per hand mapped to the HDL design (i.e.,
where) and particular clock cycles (i.e., when).

While backtracking the information flow helps reveal the spa-
tial and temporal path taken by information through modules and
signals, the underlying cause of the flow—why the information
propagated—often lies beyond the path itself. The untainted signals
that interfere with the path, which we define as flow control signals,
are key to understanding the root cause of the violation. These signals
represent specific results of the conditions that are able to block
the information flow, hinting directly to the design logic that needs
to be modified to fix the vulnerability. Hence, we require a new
representation of IFs that facilitates answering these crucial questions
by providing a simple to grasp, but sufficiently detailed, view that
only presents essential information.

Research question 2. How should we represent information
flows to facilitate root-cause analysis?

We answer this question in Section IV and show how this represen-
tation facilitates root-cause analysis using a number of case studies
covering different methods and scenarios in Section VI.

C. Open-source hardware synthesis

Yosys [24] is an open source hardware synthesis tool that parses
Register Transfer Level (RTL) designs into its own RTL Intermediate
Language (RTLIL). RTLIL represents a design as a directed bit-
level graph of macro-cells that form RTL modules or common state
and their logic functions. Design signals are represented as wires
between these elements. Yosys can be extended with passes that,
similar to compiler passes, can operate on and transform the RTLIL
representation. For example, CellIFT [17] is implemented as a Yosys
pass that instruments a design with taint logic for IFT.

IITI. UNIFYING INFORMATION FLOW PROPERTIES

In this Section, we unify the information flow methods of TT and
SC under a common ground.

A. Notations

TT notations. Regarding TT, we adopt the notations introduced
by Tiwari et al. [15]: for a given bit a in the original design, a
corresponding taint bit a’ in the shadow logic is introduced and is
set to 1 if a is tainted.

TT at cell level. Consider a combinational cell C' (e.g., an addition,
as defined in [17]) that takes an input vector I with a taint vector
of same length I*. Equation 1 [17] defines taint propagation through
C, where @ represents an exclusive-or, and C(I) and C*(I, I') refer
to C’s output bits and their corresponding taint bits respectively. j
indicates a bit within a vector. Taint propagates from a non-zero taint
input I* to C*(I, I") if there exist two different input vectors I and I
that match on zero bits of I* and yield different cell outputs C(I) and
C (f). Stateful cells delay taint propagation like their corresponding
design cells [15], [17].

CY I, IY); =1«

. S - — [17] ey
A | T@ D) AT =0and C(I); = C(1);

The unidirectionality of the implication arrow in Equation 1 is

because it does not assume precise taint propagation for two reasons.
First, in practice, some cells are instrumented imprecisely to reduce
the overhead [17], [18]. Second, composing cells together does not
preserve the precision of the taint propagation [15].
SC notations. SC verifies the property expressed in Equation 2 for
a hardware design D with disjoint input sequence sets A and B and
output sequence o = D(A, B). The SC approach creates a circuit
that instantiates two copies of the design and compares their outputs,
as illustrated in Figure 2.

3A, A'|D(A, B) # D(A', B))

B. Correspondence between self-composition and taint tracking

We now prove that SC traces are included in TT traces.
Single-cell correspondence. Replacing D with C in Equation 2
yields Equation 1 if interpreting C*(I,I') as a solution to the
existence problem expressed in Equation 2, where A corresponds to
the bits in I for which the corresponding taint bit in I is set, and B
corresponds to the remaining input bits in . The existence of an A’
corresponds to the existence of an I'in Equation 1. This expresses the
correspondence between TT and SC for a single cell. Additionally, if
the cell is instrumented precisely, i.e., if the implication in Equation 1
is an equivalence, then the two approaches are equivalent for this cell.
Scaling to composite designs. To generalize the inclusion of SC
flows in TT flows to hardware designs made of any number of cells,
we proceed by induction.

Proof. We have already shown that the inclusion holds for a single
cell. Let us now assume that the inclusion holds for all designs with
n cells, and let us consider a design D,,+1 with n+41 cells, and let us
divide its inputs into two disjoint sets A and B and let us consider the
existence problem of A, A’ such that D,,11(A, B) # D,41(4’, B).

Let us take a cell C' that takes as input I the concatenation «,
such that « C A and 8 C B. « or 3 can be empty. For simplicity and
without loss of generality, assume that C' has a single output bit. Let
us name D, the design D,,1 without C, and let us name y the output
of C. Let us name the inputs of D, besides y, AC Aand B C B.
The single-cell inclusion of SC in TT holds for D,, consisting of one
cell. If Dn(A,B,y) #+ Dn(A’7B7y), then the inclusion holds for
D, 11. If not, then by the single-cell inclusion, C(a, 8) # C(a/, B),
hence D, 11(A, B) # Dy1(A’, B) implies D,,(A, B, C(a, B)) #
D, (A", B,C(’, 8)), which holds by induction. O
Conclusion. Detecting information flows with TT comes back to the
existence problem expressed in Equation 2. Due to TT imprecisions,
a flow detected with TT might not imply the existence of a concrete
flow, but a concrete flow detected via SC implies a taint flow. This
allows us to uniformly represent both flows as taint, as we will discuss
in Section IV-B. Because taint symbolically represents the existence
of a flow, a single trace obtained via TT carries more information
than a single trace obtained via SC. However, this difference is only
relevant when using non-exhaustive testing methodologies. Hence,
besides the potential imprecisions in the information propagation due
to the instrumentation, and shortcomings in testing methodologies,
TT and SC are equivalent in terms of their IF detection capabilities
and have the same objective. In practice, false positives are rare [5],
[17], [18], [20], [22]. In the rest of this paper, we will adopt the
point of view of taint tracking to ease the intuition and to account
for potential overtainting, which does not occur with SC.

IV. INFORMATION FLOW REPRESENTATIONS

We define Temporal Information Flow Graphs (TIFGs), and show
how Pathfinder uses them to generate Taint Graphs (TGs), the abstrac-

assign key = key i;
always @ (posedge clk)
if (Tj_Trig)
SHIFTreg <= key;
Fig. 5: TIFG generation from HDL inspired by the Hardware Trojan
case study (Section VI-C).

Hardware design _MT(LFS‘;S '] TFG [P>fpathfinder>{] TG]
(HDL)
pass

|Execution trace with IFT information |

Fig. 6: Tool flow. Pathfinder builds Taint Graphs (TGs) from the
output of our TIFG Yosys [24] pass and a trace.

tion for highlighting where, when, and why information propagates
between sources and sinks.

A. Temporal Information Flow Graph

Definition. The Temporal Information Flow Graph (TIFG) of an RTL
design encodes potential information flows [30], their temporality
and their control conditions. We define the TIFG as a directed graph
where edges can be bidirectional. Vertices (V) represent non-constant
signals of input HDL design, while edges (£) represent potential
information flows as can be deduced from the RTL description of
the design. We define a local potential flow function @ : V? —
{true, false} such that 7(z,y) is true if there exists an arbitrary
assignment of values in V \ {z,y} that makes y a non-constant
function of x. We call 7 local because it relies on local, cell-level
dependencies of signals , and the required condition on the values in
V\ {z, y} might not be achievable in the design or specific trace. An
edge (z,y) € E is annotated with a clock cycle delay that represents
after how many clock cycles the value change in x causes a value
change in y. The temporal information is essential for being able to
construct a TG, discussed in Section IV-B. Additionally, edges are
annotated with a flag ‘C’ if they represent (local) implicit flows.

Example. Figure 5 shows a TIFG obtained from the HDL snippet on
the left, taken from Hu et al. [21]. The signal key is a function of key_i
(in this case a direct assignment). Hence, there is an edge from key_i
to key. Since the assignment represents a wire, the edge is annotated
with a delay of 0. The signal SHIFTreg is implicitly influenced by
Tj_Trig, hence the edge is annotated with a ‘C’. There is a local
potential flow 7 from key to SHIFTreg. A concrete flow occurs, when
Tj_Trig equals 1. Signal key influences SHIFTreg explicitly. Since
SHIFTreg is a state element, it keeps its value between clock edges,
and information from 7j_Trig and key propagates after one clock
cycle. Therefore, its incoming edges are annotated with a delay of 1.

B. Taint Graphs

A Taint Graph (TG) visualizes a concrete information flow as
a clock-cycle-accurate propagation of taint through the design. As
illustrated in Figure 6, a TG is built from 1) the TIFG extracted
from the hardware design, and 2) a waveform representing a specific
execution trace obtained from TT or SC. By projecting this specific
trace onto the TIFG, the TG only shows IFs actually present in
the trace. The TIFG provides structural information, including the
annotations discussed in Section IV-A, while the trace provides clock-
cycle accurate design (and in case of TT taint) signal values. Figure 7
shows that delay information in the TIFG is essential to inform
Pathfinder whether taint from signal a_t in cycle 1 or 2 propagates
to signal b_t in cycle 2. If the delay in the TIFG would be O in this
example, there would be no edge in the TG for this trace.

TIFG clk 1 2 3 TG
1 at100 2
bt 010
Fig. 7: Left: Design-specific TIFG, with 1 clock cycle delay. Middle:

A trace showing corresponding taint signals a_t and b_t over three
cycles (clk). Right: Trace-specific TG. Taint propagates at clk 2.

Fig. 8: TG graphs. A top graph (red filled circles) is intersected with
a bottom graph (blue dotted borders). Their intersection (red filled
nodes with blue dotted border) represents the isolated path.

Taint tracking (TT) and self-composition (SC). In TT, information
flows are explicitly tracked through taint bits managed by specific
instrumentation [15]-[17]. In SC, information flows are derived from
the existence of differences between the two copies of design signals.
To process the IF traces in a unified manner, we translate self-
composition traces into precise taint, which is sound as explained
in Section III-B. Taint represents symbolic information, capturing
multiple traces at once, whereas a flow obtained via SC is concrete.
As m is local by definition (see Section IV-A), 7 is not more
precise than TT, itself not more precise than SC, as demonstrated
in Section III. Thus, if there is an edge in an IF trace path obtained
via SC, it will also exist in the TG, and thus in the TIFG. The same is
true for a trace obtained via TT, independent of the precision of the
TT logic. Hence, the TG representation contains all the information
that can be extracted by the underlying IFT method.

Applications. TGs are useful for a number of applications in
information flow analysis. How far information propagates from
a specific source into the design can be interesting as an initial
security assessment, e.g., to determine how close information gets
to a secret asset or output [31], [32]. Finding information sources,
e.g., microarchitectural buffers inside CPUs, from which information
leaks, often reveals the origin of timing side channels [19], [33]—
[35]. Determining the exact path that information took between a
source and a sink is indispensable for understanding the root cause
of IF property violations [5], [6], [12]. So far, verification engineers
needed to perform these analysis manually by examining waveforms.
To automate these tasks, Pathfinder introduces three taint graph types
shown in Figure 8: the top graph, bottom graph and path isolation.
We discuss these graphs next.

Spatio-temporal taint path isolation. First, we determine where
and when information propagated. The top and bottom graph serve to
automatically discover taint sinks or sources, respectively. To generate
the top graph, shown in red, Pathfinder takes a taint source (‘src’)
and extracts the taint signals from the fan-out taint logic of the source
that are part of an actual taint path in a given execution trace. It can
be constructed over a given number of clock cycles or until all sinks
are found. Similarly, the bottom graph, shown in blue, visualizes all
incoming taint paths extracted from the sink’s fan-in taint logic. Thus,
it is the backward tree that backtracks the information flows that affect
the sink. For path isolation, which is what we use for analyzing most
of the case studies discussion in Section VI-C, Pathfinder extracts all
taint paths that originate from given sources and reach given sinks. It
is constructed by intersecting the top and bottom graph, shown with

compact

@1 @2, 4-5 @3. 6. .
expanded
OROROROROROS

Fig. 9: Views. Top: Compact TG has one node per tainted signal and
aggregates multiple clock cycles on an edge. Bottom: Expanded TG

has one node per tainted signal per clock cycle.

assign ready =
~stall_id &
wb_ready;

Fig. 10: A taint graph corresponding to the waveform in Figure 3.
Signal ‘stall_id’ taints sig. ‘ready’ in cycle 1, only if ‘wb_ready’ is 1
in that cycle, i.e., if the flow control condition of ‘ready’ (‘wb_ready’
== () is false. Taint propagates via an implicit path (C) to ‘iaddr’ in
cycles 1-2, and via an explicit path to ‘PC’ in cycle 3.

blue dashed borders and red filling.

Timing representations. Information often traverses the same path
multiple times, forming loops (e.g., register data in a CPU that is
operated on and written back). Taint fades when tainted data is
overwritten by non-tainted data, and signals can get tainted again
at a later time. Temporal information is important to relate an IF
to the design states that enable it. Pathfinder can show the temporal
information propagation in two views as shown in Figure 9. First, a
compact view shows each signal on the path as one node, and labels
edges with all the clock cycles in which taint propagates to this signal.
Second, Pathfinder provides an expanded view where each signal has
a corresponding node per clock cycle in which it is tainted. While
this graph is much larger than the first, it can aid in understanding
loops by transforming them into a linear sequence of nodes. Within
a clock cycle, taint propagates through combinational logic in a
specific sequential order. In a waveform, design signals involved
in combinational circuits appear tainted in the same clock cycle,
making it impossible to discern a logical order within a cycle. TGs
fill this gap by depicting the sequential order in which information
propagates through combinational logic within a clock cycle, aiding
in understanding the IF.

C. Flow control

Now, we establish why information propagates. For understanding
the reason behind the existence of a taint path, verification engineers
need to understand which design states caused this unexpected
information flow. Considering again Figure 1, the output is only
tainted if the untainted input is 1. Similarly, a multiplexer or an
enable signal in a flip-flop can control the flow of information through
their data ports. We refer to these signals as flow control signals,
and the conditions they must satisfy to block a flow as flow control
conditions.

Definition. A flow control signal is a signal that is able to block
the propagation of taint through a path it interferes with.

We discuss the relationship between taint logic and flow control
conditions using cells [17], without loss of generality. For each cell
type, a bit-accurate condition must be satisfied for information to flow.
From this condition, it is possible to derive a flow control condition
per tainted bit that is able to block the information flow propagation

from that bit through the cell. In the toy example shown in Figure 10,
based on a case study from [5], information propagates from signal
stall_id to signal PC. The code snippet shows the usage of stall_id,
where its negation is and’ed with the wb_ready signal and assigned to
some ready signal. Taint, i.e. information, coming from stall_id can
only propagate to ready if signal wb_ready is 1. Thus, the negation of
this condition corresponds to the flow control condition fc. fc from
stall_id to ready is ~wb_ready. If this fc is true, taint propagation
from stall_id to ready is blocked, because ready is 0 regardless of the
value of stall_id. Note that taint could also reach ready if wb_ready
is tainted and 0, but in this case it is the taint of wb_ready that
propagates. Flow control conditions can be defined for all cell types.
They are defined equally when using SC, since blocking taint flows
implies blocking concrete flows (see Section III-B).

Knowing the values of flow control signals thus provides valuable
information for understanding why an information flow occurred.
Therefore, Pathfinder optionally adds signals from the TIFG that
interfere with the taint path, but are themselves not tainted, to the TG
and shows their cycle-accurate values. We will discuss an example
in Section VI-C (Figure 12 and Figure 13).

V. IMPLEMENTATION

In this Section, we describe the TIFG and TG implementations.

A. TIFG Implementation

We implemented the TIFG as a pass in Yosys. We build the TIFG
from RTLIL after executing the Yosys optimization passes, which
reduces the size of the graph while preserving its semantics. Our
TIFG pass traverses all RTLIL cells and abstracts away most of the
logic function of one or multiple cells between design signals by
connecting inputs of cells with their outputs. We only preserve the
information flow direction and timing behaviors on the taint path,
which are relevant for TG generation and the further root cause
analysis discussed in Section IV. We extract timing information by
examining the clock signal of state-elements in RTLIL. To provide
context, we augment the TIFG with local control-flow information
by marking edges from multiplexer selects to multiplexer outputs, as
well as from potential enable signals of state elements to their output.
This annotation does not influence the construction of the TG.
Decluttering the TIFG. Designs augmented with TT logic via Yosys
passes can contain many intermediate signals for connecting the
logic between shadow signals. Our pass optionally removes these
intermediate signals from the TIFG. We traverse the in- and outgoing
connections of these signals and connect all original design signals
driving them to those they drive.

B. Pathfinder

Pathfinder builds a TG from a TIFG and a VCD waveform
trace that contains information flow information (taint bits or self-
composition). Pathfinder is implemented in Python 3.12. It uses
the vcdved library [36] to load the VCD waveform and Pandas
dataframes [37] to store the TG. It then loads the TIFG, which
is stored as comma-separated values file containing node pairs,
together with the temporal and control information. Pathfinder can
generate taint paths from any information flow tracking method
(DIFT instrumentation and self-composition).

Translating self-composition to taints. To process the information
flow trace in a unified manner, we translate self-composition traces
into a taint abstraction. For each design signal, we obtain the time
value pairs for both copies of the signal via vedved. The VCD stores
an initial value for each signal, from which we initialize a new taint

< 100 4 EE Yosys front-end
o BN TIFG construction pass
£ 501
£
0 T T T T
0% Q0 o\ INING W 10
\((0(\ p\ES'A et 5(“\‘0@(c\)“"o o 300 Opeﬂc’g

Fig. 11: TIFG construction runtime performance, split between the
Yosys front-end and the dedicated TIFG construction pass.

signal with 1 if the initial values differ, and with O otherwise. Then we
iterate over all time-value pairs of the two copies in time sequential
order. Whenever one signal changes, we update the taint signal as
follows: if after the change the two signals differ, we set the taint
signal to 1, otherwise to 0. After that, TG generation continues in
the same way, regardless of the underlying IFT method.

Building the top and bottom graphs. To build the top graph,
Pathfinder finds the first clock cycle in which the user-provided taint
source is tainted in the VCD. Starting from the taint source, Pathfinder
consults the TIFG and the VCD and iteratively connects all signals
that are directly connected to the taint source without clock delay in
the TIFG and are tainted in that cycle. It repeats the process for all
newly added signals until all paths end at a clock boundary. Then it
advances one clock cycle and adds all signals that are connected with
a one clock cycle delay in the TIFG and are tainted in the next cycle.
Then it repeats the process starting with directly connected signals
again. Top graph construction ends either when a user-specified taint
sink is found, after a user-defined number of clock cycles, or, if none
of these are provided, at the last clock cycle available in the waveform
trace. The bottom graph is built analogously, but in the reversed
manner, starting with a taint sink. To isolate the path between source
and sink, Pathfinder intersects the top and bottom graph.

Flow control. We define signals that directly interfere with the path
and are not tainted in the cycles of interference as flow control signals.
For each time step Pathfinder iterates over all tainted nodes v in
the TG, consults the TIFG for finding edges with v on the right-
hand side and a flow control signal that is untainted in the same
or previous clock cycle (depending on the delay information). The
flow control signal is annotated with the design value, representing
the current value of the flow control condition within the examined
trace. Pathfinder can add design control flow signals analogously.

VI. EVALUATION

In this Section, we first evaluate Pathfinder’s performance in terms

of runtime performance (Section VI-A), then in terms of search space
reduction (Section VI-B), and finally demonstrate its practicality
through case studies (Section VI-C).
Evaluation setting. We obtained the performance results on a
machine equipped with two AMD EPYC 7413 processors at 3.6 GHz
with 128 GB of DRAM. We construct the TIFGs with 900 lines of
new code lines in Yosys 0.45 and construct the TGs with 1500 lines
of Python 3.12 and vedved 2.3.6 [36]. We use Verilator 5.029 and
Questa Sim 2022.3_1 for RTL simulation and Cadence Jasper Gold
2024.09 Formal Property Verification [38].

A. Runtime performance

The execution of Pathfinder is divided into two steps: TIFG con-
struction (once per RTL design) and TG generation (once per trace).
Hence, we evaluate the performance of these two steps separately.
Figure 11 shows the runtime for the TIFG construction for the open-
source designs listed in Table I, divided into the Yosys front-end and

TABLE I: TIFG signals and connections in original design.

Design Nr. signals Nr. connections
Kronos [5] 370 965
AES-400 [21] 1293 2°232
Ibex small [5] 1°694 9’418
Ibex custom [5] 1’728 9°493
CVAG6 [17] 11’759 69’065
Boom [17] 106’365 323’510

the dedicated TIFG construction pass. TIFG construction requires
up to two minutes per design, dominated by Yosys front-end passes.
Table II presents case studies from formal verification and simulation
using SC or various TT logics as IFT methods (see Section VI-C for
details). TG generation completes in a few minutes per trace.

B. Search space reduction

Pathfinder reduces the search space for verification engineers for
understanding where, when, and why information propagates occur,
while discarding irrelevant information. We measure the number of
signals in the TIFG and in the TG. Without having the TG, in
some cases all taint logic signals or both instances in an SC setting
(e.g. Section VI-C) would need to be manually inspected. Table |
summarizes the number of signals and connections in the TIFGs for
several open-source designs (versions as cited) before instrumentation
or self-composition. We note that the Boom CPU has more than
300 000 connections in the TIFG, i.e., as many potential information
flows 7(z,y) in the design. Table II provides statistics of reproduced
security property violation traces of several references [5], [15], [19]
that we analyze in Section VI-C. Tainted signals shows the total
number of signals that are tainted in the concrete trace. This number
is already significantly smaller than the number of signals in the
TIFG, i.e., the potential information flows that could occur, hence
the vast majority of signals are indeed discarded. Further, not all
taint that propagates through the design is necessarily caused by the
violation. Signals on path shows all signals on all taint paths between
chosen or discovered sources and sinks, which are the ones relevant
for understanding the violation. Previously, verification engineers had
to manually extract these from the Tainted signals. The reduction
factor shows how much fewer signals now need to be manually
inspected. The number of relevant signals is lower than the total
number of tainted signals by a factor of 1.6x for bottom graphs
(CVAG6, AutoCC [19]), and 1.84x (Ibex small) to 81.3x (Boom) for
path isolations. This is orders of magnitude less than the number of
potential dependency relationships, expressed in the TIFG by Table I.
For understanding why the IF occurred, flow control signals can be
optionally added.

C. Case studies

We provide a set of case studies, as mentioned in Table II, that
demonstrate the effectiveness of Pathfinder in providing context for
the root cause analysis of information flows in hardware designs.
Trojan analysis [21]. Hu et al. [21] conduct a Hardware Trojan
analysis based on the GLIFT instrumentation [15]. They propose to
inject taint into the key passed to an Advanced Encryption Standard
(AES) cryptography accelerator module (named TSC) that contains
a Hardware Trojan. A formal property asserts that the key must
not reach the Trojan’s transmission channel, implemented as a shift
register (SHIFTReq). We reproduce this study and obtain a CEX due
to the Trojan. While the original analysis was entirely manual, we use
Pathfinder to obtain the information flow paths through the design.

Fig. 12: Pathfinder’s full output for a hardware trojan violation trace
using GLIFT [21]. Information from the AES key reaches the shift
register after 1 clock cycle. The reason is shown by the flow control
signal “TSC.Tj_Trig’: Information flows if the trigger is active. The
previous value of ‘“TSC.SHIFTReg’ also interacts with the flow, but
in this example, it can not block it.

u_if.u_rf.regrd_rs1

decode_ir
0x305b0013

Fig. 13: TG excerpt showing an operand (u_if.u_rf.regrd_rsl) of
instruction addi unexpectedly flowing into the mtvec CSR register in
Kronos [5]. Clouds represent multiple signals. Signals on path: 19.

The code snippet in Figure 5 shows a simplified version of the HDL
code corresponding to the graph. Figure 12 shows the corresponding
TG, with untainted flow control signal Tj_Trig that interferes with
the taint path. The TG shows that the taint propagates from the key
to the shift register after one clock cycle, if Tj_Trig = 1, hence
highlighting where, when, and why the taint propagates.
Microarchitectural control flow integrity («CFI) [5]. In [5],
Ceesay-Seitz et al. introduce and verify the pCFI property. Such an
information flow spreads over several clock cycles across a large
portion of the CPU microarchitecture, which is abundant with control
signals. Figure 13 shows a reproduced CEX to the (CFI property for
the Kronos RISC-V CPU. Here, nCFI attempts to prove the absence
of a data flow from an operand of an addi instruction to the Program
Counter (PC), using the CellDFT instrumentation [5]. The taint graph
shows that the addi’s operand flows into the machine trap-vector base
address register (mtvec) control and status (CSR) register, which is an
integrity violation. In addition to the spatial and temporal information,
the path highlights the condition that lets taint propagate, i.e., the
inverse of the flow control condition: The decoded instruction word
(decoded_ir)’s immediate bits correspond to the mtvec register
address, which enables the buggy write.

Ibex traces in Table II reproduce CVE-2024-28365 [5] with Cel-
IIFT instrumentation. In ‘Ibex custom’, operand 1 of a remainder
instruction is tainted, in ‘Ibex small’, operand 2 of a division
instruction is tainted, and both taint the PC, causing leakage via a
timing side channel. For reference, we also constructed these paths
manually, which took several hours each.

New trace. We further simulate a new trace on CVA6 [39] (com-
mit 109f9e9e), where we perform a division with tainted operand,
which taints the PC (causing a timing side channel), because it is
implemented with data-dependent execution latency [5].

Temporal isolation violation [19]. Orenes-Vera et al. [19] present
AutoCC, which uses self-composition to track information flows.
AutoCC’s Algorithm 1 iteratively discovers microarchitectural buffers
that leak across a temporal isolation barrier instruction, fence.t, that
is intended to allow secure time multiplexing of the CPU by clearing
the microarchitectural state [19]. AutoCC constrains all buffers to

TABLE II: Variety of traces we analyze using Pathfinder from different IFT methods and Analysis types. We report Graph types, number
of Tainted signals in a given trace and the ones that lie on the path of interest (Signals on path), as well as the reduction factor (Reduct.
factor) of signals that need to be manually inspected. We also report the TG generation time (Gen. time) in seconds.

Design IFT Analysis type Graph type Tainted signals Signals on path Reduct. factor Clock cycles Gen. time [s]

AES-400 [15] TT Simulation Path 15 3 5.0 1 6.03
Kronos [5] TT Formal Path 48 19 2.5 9 0.20
Ibex custom [5] TT Formal Path 330 76 4.3 18 0.59
Ibex small [5] TT Formal Path 164 89 1.8 12 0.78
CVAG6 (new trace) TT Simulation Path 82,920 1187 769.9 144 604.0
CVAG6 [19] SC Formal Bottom 900 562 1.6 76 4.47
BOOM [17] TT Simulation Path 17,316 213 81.3 988 100.93

model relationships between signals, but edges are annotated with

the number of dependencies, not the temporality. Information flow

graphs model similar dependencies without edge annotations or

temporality [4]. Hyperflow graphs [31] are graphs showing potential

flows, annotated with information flow quantification metrics. For

e example, they highlight how often during a particular simulation

@67’72 trace an edge between two signals has been taken and propose

coverage metrics such as information flow proximity. Time and

Distance Metrics (TDM) were proposed for detecting vulnerabilities

Fig. 14: TG excerpt showing the flush operation that by estimating how far information structurally propagates into a

failed to clear the instruction cache, shown by taint in design [32]. None of these graphs capture structural signal delays

‘icache_dreqg_ o’ in clock cycle 73, which leads to an IF
to the PC (‘i_instr_queue.pc_qg’) [19]. Clouds represent
multiple signals. s1-s5 represent taint sources. Signals on path: 562.

have arbitrary values that differ between the two design copies before
the fence.t is executed. After the fence.t operation completed, it
constrains all inputs to equal their counterpart and asserts that the PCs
of both copies must be equal. If they differ, information must have
propagated across the barrier. Verification engineers had to manually
examine the CEX waveform and backtrack the differences between
the two design versions to determine the path and information
source(s) that lead to the violation. Pathfinder’s bottom graph simpli-
fies this analysis significantly by automatically discovering all infor-
mation sources that actually lead to an IF to a chosen sink. Figure 14
sketches a trace reproduced from AutoCC’s artifact’s case study
‘CEX1’ on the CVA6 RISC-V CPU. Besides providing spatial and
temporal information about the IF, Pathfinder shows that all outgoing
paths of the sources propagate through signal ‘icache_dreq_o’,
before reaching the PC signal ‘i_instr_queue.pc_qg’. Signal
‘icache_dreq_o’ exactly corresponds to the signal that had to be
additionally cleared in the proposed fix.

Spectre on Boom [17]. Solt et al. [17] present CellIFT, which
enables Spectre [1] vulnerability detection via taint tracking, yet
understanding the specific leakage path and mechanism had been
out of scope, making the implementation of a potential hardware
mitigation difficult [40]. We used Pathfinder to produce a TG from
CellIFT’s simulation trace of the Boom CPU. We choose the memory
interface as taint source, which is never accessed architecturally,
and the register file as taint sink. Speculative execution caused a
microarchitectural access of the memory, leaking through the Miss
Status Holding Registers (MSHRs), which is visible in the TG. The
number of relevant signals on the TG were only 213 out of 17,316
that had to be manually inspected in the original work.

VII. RELATED WORK

Graphs based on HDL designs are built in many varieties for differ-
ent purposes, such as coverage analysis [31], property checking [20],
[41] or fuzzing [4]. Like the TIFG, variable dependency graphs [42]

(e.g., of flip-flops), which are essential for clock-cycle accuracy
in TG construction. While there exist industrial tools for security
path verification [38], [43], [44], their debugging support, if at all
existent, cannot be reused across different tools. Furthermore, since
their underlying IFT methods are proprietary and closed source, it is
not possible to implement IFT variations (e.g., CellDFT [5]), analyze
their differences or compare their runtimes, making open source
alternatives more attractive [6], [17]-[19]. CellDFT [5] considers
paths through bit reductions and comparison cells as belonging to
the control path. As this implicitly makes assumptions about the
use of these logic elements, we take a more conservative approach
and mark only the control paths discussed in Section V-A. Our
flow control conditions differ from path conditions [45], defined for
software information flow analysis, by including data path influences
additionally to control, because, like in the example in Figure 1,
signals on the data path can block the IF.

VIII. CONCLUSION

Information Flow Tracking (IFT) has become popular for hardware
security analysis. Violation traces detected with IFT, however, often
span hundreds if not thousands of signals. Analyzing these violations
manually is time consuming and error-prone. Pathfinder is a new
solution that automates the process of analyzing these IFT violations.
To achieve this, Pathfinder first generates a Temporal Information
Flow Graph (TIFG) from an HDL design which represents poten-
tial information flows with timing and control flow annotations.
Pathfinder further takes a violation trace waveform, generated via
formal verification or simulation, using either of the IFT methods,
and converts it into a unified abstraction. Pathfinder then projects the
unified violation trace onto the TIFG to generate a Taint Graph which
contains the information needed to determine when, where and why
information propagated through the design. We show the benefits of
Pathfinder by applying it to a number of diverse scenarios spanning
different IFT methods. By extracting only the relevant signals on
a path, Pathfinder reduces the number of signals that need to be
manually analyzed between 1.6 and 769.9 times depending on the
scenario.

[2]

[3]

[4]

[6]

[7

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security, 2018.

B. Chen, Y. Wang, P. Shome, C. W. Fletcher, D. Kohlbrenner,
R. Paccagnella, and D. Genkin, “Gofetch: Breaking constant-time cryp-
tographic implementations using data memory-dependent prefetchers,”
in USENIX Security, 2024.

M. Rostami, S. Zeitouni, R. Kande, C. Chen, P. Mahmoody, J. Rajendran,
and A. Sadeghi, “Lost and found in speculation: Hybrid speculative
vulnerability detection,” DAC 2024, 2024.

K. Ceesay-Seitz, F. Solt, and K. Razavi, “ucfi: Formal verification
of microarchitectural control-flow integrity,” in Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications
Security, 2024. [Online]. Available: https://comsec-files.ethz.ch/papers/
mucfi_ccs24.pdf

M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz, “Processor
hardware security vulnerabilities and their detection by unique program
execution checking,” in DATE, 2019.

D. Trujillo, J. Wikner, and K. Razavi, “Inception: Exposing new attack
surfaces with training in transient execution,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 7303-7320.

J. Wikner and K. Razavi, “Breaking the Barrier: Post-Barrier Spectre
Attacks,” in S&P, 2025.

0. Oleksenko, C. Fetzer, B. Kopf, and M. Silberstein, “Revizor: Te-
sting black-box cpus against speculation contracts,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 226-239.
F. Solt, K. Ceesay-Seitz, and K. Razavi, “Cascade: CPU Fuzzing via
Intricate Program Generation,” in USENIX Security 2024, 2024.

S. Dinesh, M. Parthasarathy, and C. W. Fletcher, “Conjunct: Learning
inductive invariants to prove unbounded instruction safety against mi-
croarchitectural timing attacks,” in IEEE Symposium on Security and
Privacy (SP), 2024.

Z. Wang, G. Mohr, K. von Gleissenthall, J. Reineke, and M. Guarnieri,
“Specification and verification of side-channel security for open-source
processors via leakage contracts,” in ACM SIGSAC CCS 2023, 2023.
Q. Tan, Y. Yang, T. Bourgeat, S. Malik, and M. Yan, “RTL verification
for secure speculation using contract shadow logic,” in ASPLOS, 2025.
F. Restuccia, A. Meza, and R. Kastner, “Aker: A design and verification
framework for safe and secure soc access control,” in ICCAD 2021,
2021.

M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in ASPLOS, 2009.

A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
DATE, 2017.

F. Solt, B. Gras, and K. Razavi, “Cellift: Leveraging cells for scalable
and precise dynamic information flow tracking in rtl,” in 3/st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 2549-2566.

F. Solt and K. Razavi, “Hybridift: Scalable memory-aware dynamic
information flow tracking for hardware,” ICCAD, 2024.

M. Orenes-Vera, H. Yun, N. Wistoff, G. Heiser, L. Benini, D. Wentzlaff,
and M. Martonosi, “Autocc: Automatic discovery of covert channels in
time-shared hardware,” in Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, 2023, pp. 871-885.

Y. Hsiao, N. Nikoleris, A. Khyzha, D. Mulligan, G. Petri, C. W. Fletcher,
and C. Trippel, “RTL2MuPATH: Multi-upath synthesis with applications
to hardware security verification,” in MICRO, 2024.

W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang, and R. Kast-
ner, “Property specific information flow analysis for hardware security
verification,” in ACM ICCAD 2018, 2018.

J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner,
“Information flow isolation in i2c and usb,” in Proceedings of the 48th
Design Automation Conference, 2011, pp. 254-259.

[23]

[24]

[25]

[26]

(27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

Siemens AG. The 2022 Wilson Research Group Functional
Verification Study. Accessed: 2024-Nov-18. [Online]. Avail-
able: https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/

part-8-the-2022- wilson-research- group-functional- verification-study/
C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free Verilog synthesis suite,”
in Austrochip, 2013.

IEEE, “Ieee standard for systemverilog—unified hardware design, spec-
ification, and verification language,” IEEE Std 1800-2023 (Revision of
IEEE Std 1800-2017), 2024.

J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “Leveraging gate-
level properties to identify hardware timing channels,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 33, no. 9, pp. 1288-1301, 2014.

M. Guarnieri, B. Kopf, J. F. Morales, J. Reineke, and A. Sanchez,
“Spectector: Principled detection of speculative information flows,” in
2020 IEEE Symposium on Security and Privacy (SP). 1EEE, 2020, pp.
1-19.

N. Coenen, R. Dachselt, B. Finkbeiner, H. Frenkel, C. Hahn, T. Horak,
N. Metzger, and J. Siber, “Explaining hyperproperty violations,” in CAV
2022, 2022.

P. Borkar, C. Chen, M. Rostami, N. Singh, R. Kande, A.-R. Sadeghi,
C. Rebeiro, and J. Rajendran, “WhisperFuzz: White-box fuzzing for
detecting and locating timing vulnerabilities in processors,” in USENIX
Security, 2024.

W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and
R. Kastner, “Theoretical fundamentals of gate level information flow
tracking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 8, pp. 1128-1140, 2011.

A. Meza and R. Kastner, “Information flow coverage metrics for
hardware security verification,” https://arxiv.org/abs/2304.08263, 2023.
A. Ayalasomayajula, H. Li, H. Al Shaikh, S. K. Saha, and F. Farahmandi,
“Tdm: Time and distance metric for quantifying information leakage
vulnerabilities in socs,” in 2024 IEEE 42nd International Conference on
Computer Design (ICCD), 2024, pp. 130-133.

M. Ghaniyoun, K. Barber, Y. Zhang, and R. Teodorescu, “Introspectre: A
pre-silicon framework for discovery and analysis of transient execution
vulnerabilities,” in 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA). 1EEE, 2021, pp. 874-887.

A. de Faveri Tron, R. Isemann, H. Ragab, C. Giuffrida, K. von Gleis-
senthall, and H. Bos, “Phantom trails: Practical pre-silicon discovery of
transient data leaks,” in USENIX Security, 2025.

T. Kovats, F. Solt, K. Ceesay-Seitz, and K. Razavi, “Milesan: Detecting
exploitable microarchitectural leakage via differential hardware-software
taint tracking,” in Proceedings of the 2025 ACM SIGSAC Conference on
Computer and Communications Security, 2025.

vedved - Python Verilog value change dump
parser library. Accessed: 2025-08-08. [Online].
https://github.com/cirosantilli/vedved

Pandas. Accessed: 2025-08-08. [Online]. Available: https:/pandas.
pydata.org/

Jasper RTL Apps. Accessed: 2025-08-08. [Online]. Available: https:
/lwww.cadence.com/en_US/home/tools/system-design-and- verification/
formal-and-static- verification/jasper- verification- platform.html

CVA6 RISC-V CPU. Accessed: 2025-08-08. [Online]. Available:
https://github.com/openhwgroup/cva6

J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt) a comprehensive protection
for speculatively accessed data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
954-968.

V. S. Vineesh, B. Kumar, and J. Adhaduk, “Identification of effective
guidance hints for better design debugging by formal methods,” in VLSI
Design and Test, 2019.

D. Pal, S. Offenberger, and S. Vasudevan, “Assertion ranking using rtl
source code analysis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

Questa Verify Secure. Accessed: 2025-08-08. [Online]. Available: https:
/leda.sw.siemens.com/en- US/ic/questa/formal- verification/secure-check/
Cycuity Radix Technology. Accessed: 2025-08-08. [Online]. Available:
https://cycuity.com/solutions/

M. Taghdiri, G. Snelting, and C. Sinz, “Information flow analysis via
path condition refinement,” in Formal Aspects of Security and Trust,
2011.

(VCD)
Available:

https://comsec-files.ethz.ch/papers/mucfi_ccs24.pdf
https://comsec-files.ethz.ch/papers/mucfi_ccs24.pdf
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://github.com/cirosantilli/vcdvcd
https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-verification-platform.html
https://github.com/openhwgroup/cva6
https://eda.sw.siemens.com/en-US/ic/questa/formal-verification/secure-check/
https://eda.sw.siemens.com/en-US/ic/questa/formal-verification/secure-check/
https://cycuity.com/solutions/

	Introduction
	Background and Motivation
	Information Flow Tracking (IFT)
	Manual information flow trace analysis
	Open-source hardware synthesis

	Unifying information flow properties
	Notations
	Correspondence between self-composition and taint tracking

	Information Flow Representations
	Temporal Information Flow Graph
	Taint Graphs
	Flow control

	Implementation
	TIFG Implementation
	Pathfinder

	Evaluation
	Runtime performance
	Search space reduction
	Case studies

	Related Work
	Conclusion
	References

