
Lost in Translation:
Enabling Confused Deputy Attacks on EDA Software with TransFuzz

Flavien Solt
ETH Zurich

Kaveh Razavi
ETH Zurich

Abstract

We introduce MIRTL, a confused deputy attack on EDA soft-
ware such as simulators or synthesizers. MIRTL relies on
gadgets that exploit vulnerabilities in the EDA software’s
translation of RTL to lower-level representations. Invisible to
white-box testing and verification methods, MIRTL gadgets
harden traditional hardware trojans, enabling unprecedentedly
stealthy attacks. To discover translation bugs, our new fuzzer,
called TRANSFUZZ, generates randomized RTL designs con-
taining many operators with complex interconnections for
triggering translation bugs. The expressiveness of RTL, how-
ever, makes the construction of a golden RTL model for de-
tecting deviations due to translation bugs challenging. To
address this, TRANSFUZZ relies on comparing signal outputs
from multiple RTL simulators for detecting vulnerabilities.
TRANSFUZZ uncovers 20 translation vulnerabilities among
31 new bugs (25 CVEs) in four popular open-source EDA ap-
plications. We show how MIRTL gadgets harden traditional
backdoors against white-box countermeasures and demon-
strate a real-world instance of a MIRTL-hardened backdoor
in the CVA6 RISC-V core.

1 Introduction

Community-driven open-source hardware development is on
the rise [3, 4, 11, 12, 30, 45, 46, 56, 71, 72, 92, 108], expos-
ing Electronic Design Automation (EDA) software used for
Register-Transfer Level (RTL) simulation and synthesis to
hardware designs from many, potentially distrusting, develop-
ers. Like standard software, RTL simulators and synthesizers
are subject to standard vulnerabilities such as buffer over-
flows. The unique nature of hardware development flows,
however, exposes EDA software to a more silent and sinister
class of vulnerabilities that we explore in this paper. These
vulnerabilities enable a hardware developer or a malicious in-
termediate EDA application to turn a seemingly benign piece
of hardware design into synthesized malicious hardware.

Translation bugs. RTL simulators are used in all hardware
development stages for testing design validity by transform-
ing the RTL, expressed in a Hardware Description Language
(HDL), into a lower-level model suitable for execution on the
designer’s system. Once the hardware design is final in the
late stages of hardware development, the HDL representation
is transformed into a gate-level netlist by a synthesizer. The
translation of the HDL by an RTL simulator or a synthesizer to
lower-level representations involves a variety of complex opti-
mizations, e.g., for performance or area. This complexity can
cause the EDA software to mistranslate the given HDL design.
We show that we can reliably use these translation bugs to cre-
ate a new class of attacks that we call MIRTL (Mistranslated
RTL). When targeting RTL simulators or other validation
EDA software, MIRTL enables certain HDL behavior not to
register during validation, but to appear in the synthesized
hardware. When targeting synthesizers, simulators register all
the values correctly, but the malicious behavior is injected by
the synthesizer. To employ MIRTL, attackers must discover
translation bugs in the target EDA software.

TRANSFUZZ. Fuzzing is a common technique to find vul-
nerabilities in software [10,17,19,34,37–40,70,78,81,94,100,
101] and hardware [14,16,53,57,88,104] by generating input
against the hardware or software interface. The input to EDA
software is an arbitrary RTL design that takes arbitrary stimuli.
Hence, our new fuzzer, TRANSFUZZ, generates randomized
RTL designs and stimulates them with randomized inputs
under different RTL simulators and synthesizer. TRANSFUZZ
ensures that the generated RTL designs are sufficiently ran-
dom to provide ample opportunities for optimizations. Gen-
erating randomized RTL at the HDL-level often results in
regular representations and interconnections of macrocells
after parsing by the EDA software. Instead, TRANSFUZZ gen-
erates randomized RTL designs at the macrocell-level which
provides maximum flexibility for randomizing the number
and type of macrocells as well as their interconnection.

TRANSFUZZ-generated designs may trigger translation
bugs, yet detecting them is not trivial. Unlike software fuzzers

that can rely on crashes [10, 17, 19, 34, 37–39, 70, 81, 94, 100,
101] or sanitizers [40, 70], and hardware fuzzers that rely
on golden models [14, 16, 53, 104] or the ISA itself [88],
there exists no golden model for HDL and constructing one
is challenging due to the expressiveness of HDLs. Instead,
TRANSFUZZ generates randomized designs in a way that a
configurable number of output signals provide a signature
of the design over an arbitrary number of cycles. TRANS-
FUZZ then compares these values across different EDA ap-
plications to detect deviations, in the spirit of differential
fuzzing [35, 65, 76]. Given the freedom in the specification
of HDLs, however, we must slightly constrain the generation
of our circuits to avoid false positives. Namely, TRANSFUZZ
avoids race conditions with respect to signals that control
state-saving elements and avoids the generation of ‘undefined’
X signals in the designs.

Our evaluation shows that TRANSFUZZ could discover 31
new bugs (25 CVEs) in 3 open-source RTL simulators: Verila-
tor, CXXRTL and Icarus Verilog, and in the Yosys synthesizer.
Of these 31 bugs, 20 are translation bugs, enabling MIRTL
attacks on all of these four popular EDA applications.

Exploiting translation bugs. The Achilles’ heel of classi-
cal RTL trojan hiding [15, 96] is the application of white-box
techniques [7–9, 50, 52, 61, 67, 69, 80, 93, 99], which can de-
tect RTL trojans despite complex triggering conditions that
are based on some specific design state. To mitigate this
unique weakness of classical RTL trojan hiding, we introduce
MIRTL gadgets, a primitive that produces 1 under normal
circumstances, and 0 under a translation bug. These gadgets
make the trojans invisible to the white-box techniques applied
by targeted EDA applications. For example, using MIRTL
gadgets, we bypass standard formal hardware-level leakage
detection techniques such as SAT solving [9,42,55,63,74,77]
and information flow tracking [2,51,89]. We further construct
a malicious version of CVA6 [108] (a RISC-V CPU) that al-
lows unprivileged software to leak supervisor memory in a
way that is undetectable by all three simulators in our study.

Contributions. The following lists our contributions:

• We explore MIRTL, a new class of confused deputy at-
tacks exploiting RTL translation bugs on EDA software.

• We design and implement TRANSFUZZ, a new fuzzer
that uncovers translation bugs by generating complex
randomized RTL designs and a differential approach for
detecting these vulnerabilities.

• We apply TRANSFUZZ on 4 popular EDA applications
to discover 31 new bugs, including 20 translation bugs.

• We instantiate MIRTL gadgets using the discovered
translation bugs and build a malicious version of a CPU
core that evades white-box trojan detection techniques
such as SAT solving.

Hardware
description (RTL)Simulator

Testbench

Synthesizer

ASIC

FPGA

Low-level
netlist

(a)
(b)

(c)
(d) (e)

(f)

Figure 1: Typical EDA flow for digital hardware.

Simulator
SystemVerilog
sources and
testbenches

Simulation
binary sources

Libraries
Environment

Testbench output

Simulation
binary

Elaboration Execution

Figure 2: Elaboration and execution in RTL simulations.

Open sourcing. TRANSFUZZ is available at
https://comsec.ethz.ch/mirtl/

2 Background
This section provides the necessary background about the
hardware development flow, RTL simulation, and fuzzing.

2.1 Digital hardware development flow

A typical hardware development flow is illustrated in Figure 1
using a sequence of EDA applications. A hardware design
(also known as circuit) is described at the RTL. Designs
at such a level are usually expressed in VHDL or Verilog.
The latter language has gained significant traction in the last
decade, to the extent that almost all significant open-source
hardware projects are written in Verilog, or in a language that
is typically compiled to Verilog [5, 24, 79, 105]. The hard-
ware design is simulated (a) with some testbench to check
that the design fulfills the intended functionality (b). The
validated design is then synthesized (c) to a lower-level netlist
(d) that is destined for a specific FPGA family (e) or ASIC
fabrication process (f). Simulation of the lower-level netlist
are often orders of magnitude slower than pre-synthesis sim-
ulations [89]. Further steps depend on the target technology
and often include steps like floorplanning, place and route.

2.2 RTL simulation

RTL simulators take hardware descriptions and testbenches,
and can produce multiple forms of outputs such as binary
pass/fail or a simulation trace. Popular open-source RTL
simulators include Verilator [86], Icarus Verilog [102] and
CXXRTL [103]. RTL simulators generally operate in two
stages, illustrated in Figure 2. First, they take a hardware
design and produce a simulation model. We call this step
elaboration. Verilator and CXXRTL translate the design
into C++ code meant to be compiled against the testbench
to produce a simulation model, while Icarus produces an
intermediate simulation model that is an input to a static
executable (vvp). Second, they take a simulation model and

https://comsec.ethz.ch/mirtl/

Simulators/
formal tools Synthesizer

Malicious
hardware

Illegitimately
mark as
validated

Simulators/
formal tools Synthesizer

Malicious
hardware

Crafted corrupted design Crafted functional designa) b)

Legitimately
mark as
validated

Figure 3: High-level MIRTL attacks exploiting (a) simulator
bugs and (b) synthesizer bugs. Red hardware is malicious.

Exceptions
Warn/format

Syntax
Tran

slati
on

Slow/hang
0

20

40

60

Nu
m

be
r o

f i
ss

ue
s

Icarus Verilog
Verilator
CXXRTL
Yosys

Figure 4: Recent public bug reports. Exceptions: crashes and
assertion failures. Warn/format: wrong warning or text/trace
formatting. Syntax: syntax-bound. Translation: translation
bugs. Slow/hang: hang or unjustified significant slowdown.

a set of input values and run the simulation to produce the
expected form of output. We call this step execution.

To simulate a design efficiently, RTL simulators perform
a series of optimizations, such as constant propagation, dead
code elimination, and common subexpression elimination.
These optimizations are intended to preserve the design’s
functionality for all synthesizable parts that are not affected
by undetermined "X" or high-impedance "Z" values.

2.3 Fuzzing
Fuzzers apply random inputs to a tested (hardware or soft-
ware) unit and observe its behavior. Often classified as white-,
gray- or black-box, they may rely on various mechanisms for
collecting feedback to generate more effective inputs [10, 14,
16,17,19,34,37–40,57,70,78,81,88,94,100,101,104]. Then,
they use crashes [37, 40], sanitizers [28, 33, 82] reference
implementation comparison [53] to detect bug occurrences.

Discussion. Existing fuzzers are not suitable for discovering
deep bugs in EDA software, particularly translation bugs. The
inputs must represent complex hardware and stimuli. For
simulators, this even requires fuzzing the simulator and the
simulation model. Furthermore, output deviations are not
covered by the capabilities of traditional fuzzers.

3 MIRTL
Classical RTL trojans [7–9, 15, 52, 61, 80, 96] are almost un-
detectable once integrated in silicon hardware, as they might
require an arbitrarily specific triggering condition to express
their effect. However, white-box techniques such as SAT solv-
ing [9,42,55,63,74,77], symbolic execution [1,29,36,84] and
information flow tracking [7–9, 52, 61, 80] can detect them in
a white-box manner. We show that exploiting bugs in EDA
software in a confused deputy scenario is a realistic and practi-

cal solution for inserting vulnerabilities that are undetectable
under normal testing conditions, as we illustrate in Figure 3.

A translation bug in a simulator or in a formal verifier en-
ables a MIRTL attack. In such an attack, an attacker-crafted
behavior in HDL is not detectable by the EDA validation
application and gets synthesized into malicious hardware (a).
A translation bug in the synthesizer enables a MIRTL attack
where the malicious behavior is not present in the HDL (hence
also undetectable by simulators or formal tools) and injected
by the synthesizer into malicious hardware (b).

We build TRANSFUZZ to find such translation bugs in de-
signs that are expressed in synthesizable Verilog, which is
nowadays arguably the most popular RTL language. Inter-
estingly, only a few of such bugs were discovered in the last
years despite the high activity around open-source EDA. In
Figure 4, we show the distribution of up to the 100 most recent
public bug reports from four popular open-source EDA appli-
cations. We provide a detailed methodology in Section 4.1.
In total, only 22 of the 322 reported bugs are translation bugs.
We provide an overview of challenges in the design and im-
plementation of TRANSFUZZ and performing MIRTL attacks
using the vulnerabilities that it discovers.

Threat Model. We consider a malicious hardware IP, an
EDA software vendor or a contributor trying to discreetly alter
a hardware design. We do not assume any property of the
victim Verilog design. In the concrete exploits that we present,
the victim uses some of the three popular open-source simu-
lators Icarus Verilog [102], Verilator [86] or CXXRTL, and
the state-of-practice open-source synthesis tool Yosys [103].

3.1 Overview of challenges
The first challenge in constructing MIRTL attacks regards the
input structure and abstractions supplied to the EDA software.

Challenge 1. Design suitable abstractions and structures
for fuzzing RTL simulators.

In Section 4, we start by analyzing the recent bug reports
from popular open-source EDA software to understand and
summarize properties of hardware that empirically tend to
reveal translation bugs. From this analysis, we deduce benefi-
cial characteristics of the inputs that we supply to the EDA
software to exert translation bugs. To comply with these re-
quirements, we introduce netlists of macro-cells as a new
preferred abstraction level. We propose a concrete way to
construct these netlists, along with random stimuli sequences
with suitable dimensions.

The second challenge regards the detection of bugs, both
for simulators and synthesizers, as they do not have a golden
model or a formal specification.

Challenge 2. Detect bug occurrences.

Figure 5: Overview of TRANSFUZZ.

In Section 5, we leverage differential fuzzing, using differ-
ent simulators or parameters, to account for the absence of
a formal model. TRANSFUZZ avoids all non-deterministic
behaviors that would occur with fully random circuits to en-
able sound differential fuzzing by slightly constraining the
input space. In Section 6, we evaluate the performance of
TRANSFUZZ and describe the vulnerabilities that it uncovers.

The final challenge regards exploitation.

Challenge 3. Exploit the newly discovered bugs.

To implement practical exploits, Section 7 introduces the
notion of MIRTL gadget, a synthesizable primitive that re-
lies on simulator or synthesizer bugs to inject a mistaken
value into the hardware design. We demonstrate that MIRTL
gadgets can be used to escape white-box trojan detection tech-
niques. We then inject a concrete kernel information leakage
trojan into the CVA6 RISC-V CPU [108] where a MIRTL
gadget protects a trojan from classical detection techniques.

3.2 Overview of TRANSFUZZ

Figure 5 summarizes the overall design of TRANSFUZZ.
TRANSFUZZ operates in four steps. (1) It generates test case
descriptions. (2) From the test case description, it generates a
testbench and a standard Verilog design. (3) It then performs
differential execution. (4) For each test case that triggered a
mismatch, it categorizes and reduces it.

Test case generation. TRANSFUZZ first generates designs
as networks of macrocells with randomized types, attributes
and connections, as we will discuss in Section 4. It further
populates asynchronous signals for state elements iteratively
(a), and adds a stimuli component (b).

HDL generation. TRANSFUZZ then transmits a description
(c) of the hardware component to an HDL generator written
as a pass in the Yosys synthesizer. The output is a standard
Verilog description of the final hardware component (d).

Test case execution. TRANSFUZZ submits the test case to
several EDA applications for differential fuzzing and records
mismatching instances (e).

Characterization and reduction. TRANSFUZZ performs
simulations with modified parameters to characterize the bug
(f) and may attempt to reduce it further in the hardware (space)

Table 1: Previous reports of translation bugs.
Report reference Title
CXXRTL #4074 bmux does not mask the result
CXXRTL #3820 incorrect result of shl operator
CXXRTL #2780 CXXRTL [...] when routing signal via module
CXXRTL #2746 In CXXRTL edge eval is before calculating value
Verilator #4536 Shift when using streaming operator on 32 bit signal
Verilator #3824 Bit OR tree misoptimization
Verilator #3773 Seemingly incorrect terms in condition in V3Tristate
Verilator #3770 Signal skips flip-flop under some circumstances
Verilator #3509 Wire tie-off causing bad logic optimization
Verilator #3470 Wrong expression evaluation results
Verilator #3445 V3Const BitOpTree optimization is incorrect
Verilator #3409 complex assign in always_comb
Verilator #3399 Incorrect tristate enable logic
Yosys #4064 Frontend/AST: signed assign to indexed part-select
Yosys #4010 Synthesis optimization error, inconsistent simulation
Yosys #3879 LEC failed after yosys synthesis
Yosys #3867 Inconsistency Issue [...] opt_expr -fine Pass in Yosys
Yosys #3848 During synthesis [...] errors in register assignment
Yosys #3748 write_smt2: bugs caused by the ’»’ operator
Yosys #3680 Possible initialization issue in Xilinx DSP48E1 cell
Yosys #3431 Wrong smt-lib model behavior since yosys v0.15
Yosys #3360 synth_xilinx [...] output bit is driven ’Z’

and stimuli (time) dimensions (g). Eventually, TRANSFUZZ
provides the reduced test case to be reported (h).

4 Input Design

We first analyze existing bug reports to understand the prop-
erties of hardware that may trigger translation vulnerabilities
in EDA software. Based on these observations, we propose a
design and implementation of these potentially bug-triggering
low-level inputs which we call subnets.

4.1 Analysis of past bug reports

We analyze previously-reported bugs in Verilator, Icarus Ver-
ilog and CXXRTL in the corresponding public issue trackers.
For each simulator, we iterate through the bug reports, in
reverse chronological order. We study the 100 most recent
relevant bug reports for Verilator, Icarus and Yosys, and all
the bug reports of the last three years for CXXRTL. We filter
out bugs denied by the maintainers and duplicates.

Results. We summarize the translation bugs from Figure 4
in Table 1. Verilator and Yosys are the most affected. On
the contrary, there has been no report of a translation bug
in Icarus in the past 100 relevant bug reports (in a period of
roughly three years), until TRANSFUZZ’s finding reported in
Section 6.5. We make a number of observations about these
bugs. First, a diverse set of operator types such as shift, bmux
and OR are required to cover some individual bugs and the
complete set of these bugs.

Observation 1. Translation bugs are triggered by a di-
verse set of specific operator types.

Second, not a single one of these bugs can be triggered
with a single-operator test case. Instead, all of them require
some non-trivial interconnection of multiple operators, and
these interconnection patterns vary from one bug to another.

Observation 2. Translation bugs require non-trivial and
diverse interconnection patterns.

Third, out of the 22 bugs that were translational bugs among
the 322 analyzed bugs, up to 21 of them can be triggered with
operators with a width between 2 and 4 bits.

Observation 3. Most translation bugs can be triggered
with narrow cells.

These observations lead us to the following requirements
for the design of TRANSFUZZ.

Requirements. The test cases produced for fuzzing a single
RTL simulator must satisfy the following requirements:

1. Operational diversity. The test case generator must pro-
duce a large diversity of basic hardware operations.

2. Relational diversity. The test case generator must pro-
duce a large diversity of interconnection patterns.

3. Operator size distribution. The distribution of opera-
tor sizes should favor narrower cells, without excluding
larger ones completely.

4. Soundness. The hardware that is produced by the test
case generator must comply with the fundamental prin-
ciples of digital hardware designs. In particular, being
exempt from combinational loops, and multi-driven nets.

5. Syntactic correctness. The hardware that is produced by
the test case generator must be syntactically correct.

The last two requirements enable TRANSFUZZ to find trans-
lation bugs in valid RTL designs.

4.2 Test case generation
The usual testing approaches systematically lack one of the
aforementioned requirements. HDL-level fuzzing, while find-
ing front-end crashes, fails at producing any non-trivial hard-
ware [27]. AST-level fuzzing guarantees syntactic correctness
but hampers relational diversity [41, 107].

Input abstraction. Given these requirements, we propose
the network of macrocells as an abstraction for fuzzing EDA
software. The macrocell abstraction corresponds to simple
synthesizable stateful (e.g., registers with enable signals) or
combinational (e.g., adders) operators, as defined in the inter-
mediate representation of EDA software like Yosys [103]. We
construct a network of diverse interconnected macrocells to

C0
C1

in_0
C2 C3in_1

in_2

out_0

out_1

Figure 6: Subnet example.

produce a sound relationally and operationally diverse hard-
ware component. We use the terms cells and macrocells
interchangeably.

4.2.1 Subnet structure and stimuli

We define subnets as hardware circuits in which the input of
each cell is a design input or the output of another cell in the
subnet. The asynchronous signals of stateful macrocells in
the network, such as reset and clock signals, are supplied by
dedicated inputs or by the output signals of other networks.

Figure 6 shows a four-cell subnet with three 32-bit input
words and two 32-bit output words. The cells may individu-
ally be of any synthesizable combinational or stateful type.

Constructing sound subnets. Sound netlists require no
combinational loops and require all wires to have a single
driver. We enforce these rules at no computational cost
by assigning specific roles to wires and ensuring that cells
never output any signal that may impact their own input. Ap-
pendix A provides further details about enforcing these rules.

Stimuli specification. Stimuli values are lists of binary
words. We define stimuli as a (temporal) sequence of pairs
(subnet_id, input_values), where subnet_id identi-
fies the subnet or asynchronous wire, and input_values
is a (spatial) list of values to be applied to the inputs to this
entity. Stimuli pairs are applied sequentially to the respective
inputs without any explicit form of reset in between, to let the
hardware component enter subsequent states.

4.2.2 Implementation

Wire concatenations. In accordance with relational diver-
sity, TRANSFUZZ allows cell inputs to be concatenations of
multiple wires. Wire concatenation is necessary for connect-
ing a cell’s output to a wider input of another cell.

Input selection. Always selecting the subnet’s input words
as cell inputs would impair relational diversity. So would
always selecting the output of the previously generated cell
in the subnet, which would underwhelm optimizations that
exploit parallelism in the circuit. TRANSFUZZ embeds an
algorithm that selects the inputs of a cell as a potential con-
catenation of previous cell outputs and favors wires that have
not been connected to a cell input yet. Algorithm 2 in Ap-
pendix B provides additional detail.

Cell width selection. Following an earlier requirement on
cell widths, when generating each cell, we select the width of
the cell’s inputs and outputs following an offsetted geometric

Test case
(HW+SW)

Sim A
Sim B

Testbench A + opt flags

Testbench B + opt flags

=?Test case
(HW+SW)

Sim A
Sim A

Testbench A + opt flags

Testbench A + no-opt flags

=?

Test case
(HW+SW)

Synth A (opt)
Synth A (no-opt) Testbench

Sim

Sim

=?

a) b)

c)

Figure 7: Differential fuzzing (DF). (a) Simulator (internal).
(b) Simulator (external). (c) Synthesizer (internal).

law with parameter p = 1/8: P(W >= x) = (1− p)x−2. This
leaves a 2% chance for cells of at least 32 bits, while two
thirds of the widths will be below 10 bits.

Verilog backend. EDA software generally operates on Ver-
ilog sources, not on netlists of macrocells. To output networks
of macrocells, TRANSFUZZ relies on the Yosys Verilog back-
end, which is a mature and well-tested implementation of a
Verilog netlist generator. Hence, TRANSFUZZ’s input genera-
tor, implemented in Python, produces a serialized netlist. A
TRANSFUZZ pass in Yosys, written in C++, then translates
this description into a Yosys’s internal representation. The
Yosys backend eventually produces a Verilog source.

5 Differential Fuzzing for Bug Detection

EDA software does not generally have a formal specification
or a golden model. Additionally, translation bugs usually do
not produce obvious signals like error messages or crashes.

Naively, one could observe all intermediate values of a
given design in space and time, e.g., by instrumenting it with
many probes, or by enabling tracing. However, this approach
has two drawbacks. First, monitoring all values is expensive
in terms of time and memory, while fuzzing is generally
performance-sensitive. Second, intermediate acquisitions
may prevent some optimizations by EDA applications and
may hence prevent triggering certain bugs. To address this
challenge, we propose to employ differential fuzzing [35, 65,
76] to detect bugs in EDA software. Differential fuzzing
requires the selection of variants for fuzzing and a way to
compare these variants.

5.1 Enabling differential fuzzing
Variant selection. We find that differential fuzzing (DF)
can be applied in two ways. In internal DF, the test cases
are executed differentially between two parameter settings of
the same application, like optimizations or tracing, while in
external DF, two distinct applications are used, as illustrated
in Figure 7. TRANSFUZZ uses external DF for the simulators
and internal DF for the synthesizer.

Note that differential fuzzing does not, per se, specify
which variant is incorrect. The most straightforward and
classical solution is majority voting, yet the majority could be

d q
en

a) b)

d q

c)

d qd qd q

Figure 8: Examples of race conditions. a) Incoming data
and clock are connected. b) Enable and clock signals are
connected. c) The input and clock of the central register
change simultaneously.

wrong, especially when it comes to misinterpretations of the
Verilog standard. Another approach is to disable all optimiza-
tions and see how the behavior evolves. We could attribute
all the bugs found by TRANSFUZZ and listed in Section 6.5
using a combination of these two methods.

Cumulative signature. Differential fuzzing requires the
ability to compare variants’ outputs. TRANSFUZZ relies on a
few explicit hardware output signals that it cumulates over the
required number of cycles, resulting in a cumulative signature
that can then be compared across variants. For assisting the
propagation of unexpected values, we bias the macrocell input
selection towards macrocell outputs that are not yet used. This
reduces occurrences of cases where a bug is not observed due
to the absence of a path between an erroneous value and the
output.

5.2 Ensuring consistency
The Verilog standard offers slack on some aspects, such as
the ordering of some events, or the precision of X propaga-
tion. Hence, even when simulating the same RTL, legitimate
divergences between two simulators may exist. To avoid false
positives when comparing variant outputs, we must slightly
constrain test-case generation as discussed next.

Avoiding X propagation. Verilator and CXXRTL do not
explicitly support X (undefined value) propagation, yet Icarus
does. Additionally, simulators may support X propagation
with various levels of precision [58, 73, 95, 98]. We avoid
the generation of X values by using constructs that do not
generate X values and constraining the input signals to cer-
tain operators. Appendix C provides additional details on
how TRANSFUZZ precisely prevents X propagation in the
generated circuits.

Unordered asynchronous events. Asynchronous signals
could cause race conditions that would impair cross-EDA
software consistency. Figure 8 summarizes some examples
of race conditions. They have in common that multiple input
ports of some register can simultaneously toggle. In such
cases, like for eventual hardware implementations, the Verilog
standard does not specify the event ordering.

To overcome the race conditions in a generic way, we im-
pose the following safety invariant on the test case hardware:
two inputs of a register will never toggle at the same time. We

SN0

SN1

SN2

SN3
SN0

SN1

SN2

SN3

clk0
clk1

rst0 clk3

en0

clk2a) b)
clk0

rst0

Figure 9: Examples of (a) valid and (b) invalid (race condition
prone) network of subnets (SN). The input and output words
of each subnet are omitted in the figure.

guarantee this invariant at a subnet level, by distinguishing
two wire types. Asynchronous wires belong to the sensitivity
list of some stateful cell. The others are called synchronous
wires. We assimilate synchronous wires to data signals pro-
duced inside the same subnet, and asynchronous wires to data
signals produced outside the subnet, as illustrated in Figure 9
(a). Concretely, when TRANSFUZZ generates a subnet, this
subnet creates a set of requests for asynchronous wire con-
nections (e.g., clock, reset or enable signal). Each of these
requested asynchronous values is produced either by another
subnet, or by a new asynchronous input wire.

To guarantee the absence of asynchronous race conditions,
TRANSFUZZ imposes that the network of subnets, seen as an
undirected graph, must be acyclic, and that the set of fanout
subnets of the set of toggling asynchronous signals is always
disjoint. Figure 9 (b) illustrates a violation of this constraint.

Summary. TRANSFUZZ operates at the level of cell netlists
to satisfy the requirements formulated in Section 4.1. TRANS-
FUZZ ensures that designs are valid by constructing sound
subnets and allows splitting and merging wires to maximize
diversity. Furthermore, differential fuzzing allows the de-
tection of translation bugs, at the condition that all legiti-
mate divergences between EDA applications are alleviated.
TRANSFUZZ achieves this by preventing X propagation and
unordered events. TRANSFUZZ then uses cumulative signa-
tures to compare the outputs of different EDA applications.
Cumulative signature mismatches indicate translation bugs.

6 Evaluation

We evaluate TRANSFUZZ in terms of raw performance (Sec-
tion 6.1) and cell output coverage (Section 6.2). From these
measurements, we deduce an optimal duration for the stimuli
after which the circuit must be regenerated (Section 6.3), and
find circuit sizes for optimal differential fuzzing performance
(Section 6.4). We then describe the 31 new bugs found by
TRANSFUZZ in Verilator, Icarus Verilog, CXXRTL and Yosys
and evaluate the time to find each one of them (Section 6.5).
We finally compare TRANSFUZZ with the state-of-the-art in
synthesizer testing [48] (Section 6.6).

Evaluation setting. We obtain the performance results on
a machine equipped with two AMD EPYC 7H12 processors
at 2.6 GHz with 256 logical cores and 1 TB of DRAM.

0.0

0.1

Generation performance
TransFuzz circuit generator

0

20

40

Du
ra

tio
n

(s
)

Build performance

Verilator
Icarus Verilog

CXXRTL
Yosys

0 200 400 600 800 1,000
Number of cells

10−4

2 ⋅ 10−5

Execution performance

Verilator
Icarus Verilog

CXXRTL

Figure 10: Raw performance evaluation. Generation repre-
sents the construction of the test case by TRANSFUZZ. Build
represents the process that transforms TRANSFUZZ’s test case
representation until the simulation model. Note the logarith-
mic scale on the execution plot, which represents a single
stimulus execution (averaged over 1000 stimuli).

For measuring performance, we use the following tool ver-
sions: Verilator 5.021 g6b8531f0a, Icarus Verilog
g77d7f0b8f and Yosys/CXXRTL 0.37+21 3d9e44d18
with all optimizations enabled and tracing disabled by default.
TRANSFUZZ is implemented as roughly 5000 lines of Python
and 1000 lines of C++ code.

6.1 Raw performance

We evaluate the performance of TRANSFUZZ in terms of
generation, elaboration and execution of test cases.

Methodology. To evaluate the performance of the test case
generation and build, we generate 1000 test cases for each
circuit size and average the resulting performance. To mea-
sure the execution time per stimulus, we measure the average
time to execute 1000 stimuli on each of the 1000 test cases
and obtain an average execution time per stimulus.

Results. We summarize the results in Figure 10. The gener-
ation time is generally small compared to the build time. Dif-
ferent simulators have vastly different behaviors. Yosys and
Icarus Verilog do not build an executable simulation model
(Yosys is a synthesizer and Icarus is an interpreter), hence
yield faster build times. Verilator’s build time is remarkably
flat over circuit sizes. Note that this is not a general bench-
mark of the three simulators, as the inputs are not typical
simulator inputs. We will show how these results impact the
overall performance of TRANSFUZZ in Section 6.3.

0 20 40 60 80 100
Number of stimuli

0

500

1000

Cu
m

ul
at

ed
 to

gg
le

s

10 cells
100 cells
250 cells
500 cells

Figure 11: Cumulated toggle coverage of cell outputs.

0 50 100 150 200 250 300
0

100

200

Verilator

10 cells
100 cells

250 cells
500 cells

0 50 100 150 200 250 300
0

2000

4000

Ce
ll

ou
tp

ut
 b

it
to

gg
le

s p
er

 se
co

nd

Icarus Verilog

10 cells
100 cells

250 cells
500 cells

0 50 100 150 200 250 300
Number of stimuli per circuit

0

50

CXXRTL

10 cells
100 cells

250 cells
500 cells

Figure 12: Toggle performance for each simulator in function
of simulation length and circuit size.

6.2 Cell output toggling

Intuitively, fuzzing the same circuit with more stimuli brings
diminishing returns as increasingly fewer new cell behaviors
will be explored over time.

Methodology. We measure the effectiveness of inputs over
time by measuring the bit toggles at the cells’ outputs. We use
this metric to reflect the different behaviors of the cells being
explored. This measurement is independent of the target EDA
software. We execute 1000 test cases for each circuit size
over 1000 stimuli and measure the average cell output toggle
coverage by analyzing the execution traces over time.

Results. We summarize the results in Figure 11. The con-
sidered toggle coverage increases rapidly for the first tens of
stimuli, and then the rate of progress decreases. This obser-
vation complies with the intuition of diminishing coverage
returns for increasing stimuli lengths. The increase in cov-
erage past 100 stimuli, not illustrated in the figure, is small.
From 100 to 1000 stimuli, the coverage increases by less
than 6% for all circuit sizes. Toggle coverage also increases
sublinearly with the circuit size. Next, we combine this cov-
erage with raw performance to converge on the goodput of
TRANSFUZZ over arbitrary stimuli and circuit sizes.

6.3 Stimuli’s length

We intend to set the parameters of TRANSFUZZ in a region
that will maximize its efficiency. Under the hypothesis that
strong toggle coverage of cell outputs indicates effective
fuzzing, we want to maximize the number of cell output tog-
gles per second to maximize the effective performance of the
fuzzer. The first question that we address is how many stimuli
to execute per circuit. Concretely, given the diminishing re-
turns of the stimuli shown in Section 6.2, we expect that after
a certain number of stimuli, it will be more advantageous to
start a new circuit by paying the fixed generation and build
costs again, instead of fuzzing the same circuit further.

Methodology. For each simulator, we calculate the average
number of cell output toggles achievable per second for a
given circuit size and stimuli duration. For a fixed circuit size,
this value is given by Equation 1, where prep_time is the av-
erage time to produce a circuit of a given size, i.e., generation
and build times, and exec_time is the average time to exe-
cute a stimulus for this size, as measured in Section 6.1, and
cumul_toggles is illustrated in Figure 11. The simulation
length (simlen) that maximizes the toggle performance is the
number of stimuli after which to regenerate a fresh circuit.

toggles/sec(simlen) =
cumul_toggles(simlen)

prep_time+ exec_time · simlen
(1)

Results. We summarize the results in Figure 12. Icarus
Verilog’s performance declines after tens of cells. The other
simulators’ performance stabilizes at this point to increase
by less than 5% to reach peaks for simulation lengths be-
tween 124 and 2420 stimuli before decreasing. We make
three observations. First, always renewing the test case after
a single stimulus would be inefficient. Second, the diversity
in the raw performance detailed in Section 6.1 translates into
diversity in the toggle performance. Icarus Verilog, whose
marginal execution cost per stimulus is the highest, meets
its peak throughput between 38 (10 cells) and 52 (250 cells)
stimuli per circuit, and is the most efficient to fuzz in absolute
numbers. Verilator is the most efficient when it comes to
larger circuits because of its flat performance plot but high
build cost for small circuits. Finally, after around 20 stimuli,
the performance is remarkably stable. We choose a simula-
tion length of 70, which is in bounds with 95% of the peak
performance in all configurations. With optimal stimuli size
per simulator known for different circuit sizes, we measure
the optimal selection of circuit sizes for differential fuzzing.

6.4 Circuit size for differential fuzzing

When differentially fuzzing two simulators, we must choose
a circuit size that maximizes the global performance given
the simulators that are involved.

0 200 400 600 800 1,000
Circuit size (number of cells)

102

103

Di
ffe

re
nt

ia
l

pe
rfo

rm
an

ce Icarus & Verilator
Icarus & CXXRTL
Verilator & CXXRTL
Icarus & Yosys

Figure 13: Differential toggle performance. Maximizing
this abstract metric maximizes the performance (cell output
toggles per second) for differential fuzzing.

Methodology. We aim to maximize the metric m = (Pa ·
Pb)/(Pa +Pb), where Pa and Pb are the respective toggle per-
formances. We hence measure m for different circuit sizes
and 70 stimuli per circuit (as measured in Section 6.3).

Results. Figure 13 shows the performance of differential
fuzzing for each pair of simulators. These results show that
we should fuzz Verilator against Icarus Verilog for circuits of
800 to 1000 cells, Icarus against CXXRTL for 100 cells or
less, and Yosys against Icarus for approximately 200 cells. In-
terestingly, this advocates for separate fuzzing circuit sizes for
each differential pair, instead of fuzzing all simulators alike.
To the best of our knowledge, in the domain of differential
fuzzing, this is a unique finding.

6.5 Discovered bugs
TRANSFUZZ discovered 31 new bugs in 4 popular EDA ap-
plications. Table 2 summarizes them and highlights the 20
discovered translation bugs. We first analyze the new bugs,
then evaluate TRANSFUZZ’s performance in finding them.

6.5.1 Bug descriptions

Translation bugs. TRANSFUZZ found translation bugs in
all four tested EDA applications. Some occur in particularly
complex cases. For example, I2 is the first reported translation
bug in Icarus for at least 3 years, corresponding to the last 100
relevant bug reports analyzed in Section 4.1. The mistransla-
tion I2 causes some arithmetic operations to produce wrong
outputs when supplied with inputs which are specific patterns
of concatenations of specific constant bits and X (unknown)
bits. With the multiple concatenations, this bug particularly
benefits from TRANSFUZZ’s netlist-level abstraction, which
eases fractioning and concatenating wires.

Verilator and CXXRTL are particularly affected by transla-
tion bugs, potentially because of more aggressive optimiza-
tions. We observe, indeed, their better marginal runtime ex-
ecution performance in Section 6.1. In total, TRANSFUZZ
found respectively 9 and 6 translation bugs in Verilator and
CXXRTL, involving a large diversity of cell types (opera-
tional diversity) and interconnection patterns (relational di-
versity). Fixing these bugs has sometimes been challenging.
For example, V10 and V12 are similar in their expression, as

Table 2: Bug reports for Icarus Verilog (I), CXXRTL (C), Ver-
ilator (V) and Yosys (Y). Translation bug IDs are underlined.

Id Bug Description
I1 Segfault when using out-of-scope variable in slices
I2 Arithmetics deviation in specific circumstances
I3 Performance issue for a design with xor reductions
C1 Shifts consider signed operand in some cases
C2 Bad assignment under specific conditions
C3 Bug with modulo when operands intersect
C4 Both left shifts sometimes overflow the output signal
C5 Incorrect division
C6 Clock edges sometimes require 2 evaluations
C7 Performance issue with many concatenations
C8 Elaboration fails for some stateful cells in some cases
V1 Evasive malloc failure in some instances
V2 Segfault during evaluation
V3 Segfault in traceInit
V4 Segfault with many parallel operators
V5 Segfault in Vtop___024root__trace_init_sub__TOP__0
V6 Wrong not when checking (n)eq under and/or tree
V7 Wrong simulation result with add and xor gates
V8 Optimization error for 5 optimization types
V9 Sometimes wrong conversion to 32-bit integers
V10 Under some conditions, 0 power 0 gives 0
V11 Evasive compilation-sensitive mis-simulation
V12 Pow operator supplied with wide constants
V13 Incorrect bit-op-tree not optimization
V14 Bit-op-tree should not touch some subtrees
V15 Incorrect widthMin in replaceShiftOp
V16 Ignore if eq/ne is under shiftr
V17 VCD corruption for 5 optimization types
V18 Compiler sees empty input due to file system races
Y1 opt_muxtree wrong if twice the same mux
Y2 Misoptimization of wide shifts

they can both be expressed through exponentiation cells. Yet
they affect different internal structures, hence after fixing V10,
V12 was still detected by TRANSFUZZ, enabling the eventual
of fix this bug regarding representations of wide numbers.

The two translation bugs Y1 and Y2 found in Yosys con-
cern uncommon cell interconnections and internal represen-
tations. Y1 arises because of redundant multiplexers in a
specific configuration involving signal concatenations ahead.
In that case, Y1 mistranslates one of these concatenations by
replacing one input with a constant value, while the input is
free to toggle. Somehow similar to V10, Y2 misrepresents
wide constants in shift operations.

Other bugs. TRANSFUZZ found a segmentation fault in
Icarus (I1) and 5 in Verilator (V1-V5). It additionally found
exceptions in CXXRTL (C8) and Verilator (V18), as well
an issue that eventually causes tracing issues (V17). Finally,
TRANSFUZZ found two confirmed performance bugs (C7 and
I3). The former is sensitive to circuit depth and would require
splitting operations into smaller pieces for speeding up. The
latter happens with concatenations of many inputs, which,

0 2 4 6 8 10 12
Time(h)

0

10

20

30

Cu
m

ul
at

ed
 b

ug
s

New Icarus bugs
New CXXRTL bugs

New Verilator bugs
New Yosys bugs

Figure 14: Cumulated time to bug. Translation bugs are
colored in red.

themselves, share bits. The evaluation time was exponential
in the number of shared bits. This bug I3 has been fixed by
deferring their evaluation to the end of the evaluation call.

CVEs. Given the security relevance of the discovered bugs,
25 CVEs were assigned, as listed in Table 4 of Appendix D.

6.5.2 Time to bug discovery

We fuzz each pair Verilator/Icarus Verilog, Icarus Ver-
ilog/CXXRTL and Icarus Verilog/Yosys on 128 processes
for 24 hours and summarize the time to discover each bug in
Figure 14. We note that generally, translation bugs require
more time to be discovered than other bugs.

6.6 Comparison with Verismith

We now compare TRANSFUZZ with Verismith, the state-of-
the-art synthesizer tester [48]. Verismith generates hardware
designs at the HDL level, as opposed to TRANSFUZZ, which
generates cell-level netlists. Another fundamental difference
between the two approaches is that Verismith uses formal
verification to check the equivalence of the generated designs,
while TRANSFUZZ fuzzes them in simulation to detect bugs.
We use the Verismith open-source tool to generate circuits
and verify their equivalence using Yosys.

Performance. Comparing the performance of the two tools
is delicate as they offer slightly different guarantees. TRANS-
FUZZ complies with the heuristic that testing more circuits,
each with relaxed guarantees, will yield more bugs. On the
other hand, Verismith proves the equivalence of a design with
the synthesized output. However, we measure that 46% of the
Verismith tests time out, hence Verismith provides no guar-
antee for these circuits. Note that the timeouts are necessary
in Verismith as our experiments show that individual proofs
would often not terminate even in 48 hours.

To compare the performance of the two approaches, we test
Yosys with Verismith and with TRANSFUZZ. We measure the
single-threaded time for testing 100 input designs provided by
both TRANSFUZZ and Verismith, and normalize this duration
by the total number of tested cells reported by Yosys. As a
result, TRANSFUZZ spent 2.6 ms per cell, while Verismith
spent 604 ms per cell on average. Hence, the number of cells
tested per second by TRANSFUZZ is 232× higher. Note that
this raw performance comparison is not a general benchmark,
as the guarantees over a given input design are different.

1-
5

5-
10

10
-1

5

15
-2

0

20
-2

5

25
-3

0

30
-3

5

35
-4

0

40
-∞

0

20

40

Pr
op

or
tio

n
(%

)

Transfuzz
Verismith

Figure 15: Distribution of cell widths generated by TRANS-
FUZZ and Verismith.

$a
dd

$a
df

f
$a

dl
at

ch
$a

nd $d
ff

$d
iv

$d
iv

flo
or

$e
q

$e
qx $g
e

$g
t

$l
e

$l
-a

nd
$l

-n
ot

$l
-o

r
$l

t
$m

od
$m

od
flo

or
$m

ul
$m

ux $n
e

$n
eg

$n
ex

$n
ot $o
r

$r
-a

nd
$r

-b
oo

l
$r

-o
r

$r
-x

no
r

$r
-x

or
$s

hi
ft

$s
hl

$s
hr

$s
sh

l
$s

sh
r

$s
ub

$x
no

r
$x

or

0

10

Pr
op

or
tio

n
(%

)

Transfuzz
Verismith

Figure 16: Cell types generated by TRANSFUZZ and Veri-
smith. "r-" or "l-" are respectively reduction and logic cells.

Memory usage. Our experiments show that a single Veri-
smith instance can exceed 64 GB of resident memory usage
for equivalence testing which is a significant barrier for par-
allel testing. On the other hand, TRANSFUZZ uses less than
1 GB of resident memory per process, enabling it to to saturate
the server’s computing resources.

Cell diversity. Optimizations usually happen at the interme-
diate representation level made of cells [103], as observed in
Section 4.1 and Section 6.5, hence the operational diversity is
a key factor in finding bugs in EDA tools. However, operating
at the HDL level impairs controlling exact properties of the
cells that will compose the design, may it be widths or types.

Figure 15 shows the distribution of cell widths. Many bugs
are reproducible with narrow cells, as observed in Section 4.1
and Section 6.5, yet Verismith does not seem to leverage this
observation. Figure 16 shows the distribution of cell types
generated by TRANSFUZZ and Verismith. We observe that
Verismith-generated designs are composed by a large propor-
tion of multiplexers and boolean reductions to the detriment
of operational diversity as discussed in Section 4.1.

Generated design structure. Verismith is implemented in
Haskell and generates designs at the HDL level. We observe
its bias towards generating tree-like expressions, which re-
duces the diversity of the operator interconnections, to the
detriment of relational diversity as discussed in Section 4.1.

In comparison, the netlist approach idiomatically produces
diverse interconnection patterns. In particular, TRANSFUZZ’s
netlist approach tends to often slice and recombine non-trivial
wire and register segments. This has been critical for finding
bugs in EDA applications, as slices and concatenations were
involved in bugs I1, I2, C2, C3, C7, V13, V16, Y1 and Y2.
Such constructs are rare in Verismith since they are complex
to express at the HDL level.

Target scope. Limited by the formal equivalence aspect,
Verismith can only find bugs in synthesis tools. While Veri-

And
And

And
And

!= OrA[64]A[43]
A[72]

Cat

Cat

Cat
1'b0

Cat
b

x clk

x

a 2

2 3

3

x
Sub 3 Xor

w

32'hf f f f f f f 8
32'h40e831aa Or

Cat
Cat

a
b

2

2 c
0
1

0
1

Cat
Cat

a
b

2

2 c
0
1

0
1

1
1

a)

b) c)

d)

e) f)

With A[93:0] = 1 << 43

Figure 17: MIRTL gadgets. Cat are concatenations. (a)
Verilator gadget (V6). (b) Icarus Verilog gadget (I2). (c)
Primitive for X injection, useful for the Icarus gadget. (d)
CXXRTL gadget (C1). (e) Yosys gadget (Y1). (f) Yosys
gadget once mistranslated.

smith reports 1 issue in the Icarus Verilog simulator [47], this
bug is reported to have been found coincidentally during the
development of Verismith. Hence, Verismith could, at best,
find two out of the 31 new bugs discovered by TRANSFUZZ.
In practice, in 24h of testing, Verismith did not find any of the
new bugs discovered by TRANSFUZZ.

7 End-to-End Attack

To enable the exploitation of translation bugs, we intro-
duce MIRTL gadgets, which are primitives that produce pre-
dictable inverted values when processed by a targeted EDA
application. We then show how MIRTL gadgets complement
traditional hiding techniques to create stealthy hardware tro-
jans by bypassing classical white-box RTL trojan detection
techniques. For example, we use MIRTL gadgets to intro-
duce a kernel data leakage trojan that exposes supervisor data
to user-mode processes in the CVA6 CPU in a manner that is
undetectable in all three simulators in our study.

7.1 MIRTL gadgets

We design MIRTL gadgets to produce 1 under normal cir-
cumstances, and 0 when exploiting a translation bug. First,
such gadgets must be non-intrusive, i.e., must not alter the
functionality of the design under normal circumstances. Sec-
ond, they must have a negligible impact on area, power and
timing. Third, they should not trigger warnings.

Trigger
conditionOriginal

circuit

Payload

(1)
(2)

(3)

Figure 18: Structure of a classical RTL trojan and potential
insertion points of a MIRTL gadget.

Individual simulator gadgets. From the bugs discovered
by TRANSFUZZ, we construct a suitable gadget for each
simulator illustrated in Figure 17 (a)-(d), respectively building
on the translation bugs V6, I2, C1.

Compatibility. To build a gadget compatible with all three
simulators, we connect the three gadgets as the three inputs
of a new 3-input and. This way, the gadget will produce the
mistranslated 0 value if any of the three simulators is used.

Synthesizer gadget. Figure 17 shows a gadget for the Yosys
synthesizer (e), and how it is mistranslated during the de-
fault opt_muxtree Yosys optimization pass (f). By setting
a=c=1’b0, the gadget will mistakenly produce an output
value of 0 in the synthesized version of the design.

Head register. MIRTL gadgets take specific input con-
stants. Yet, these constants cannot be hardcoded directly
in the design, as gadgets usually require them to be unknown
at elaboration or synthesis time. Instead, we find that insert-
ing a register between the input constant and the gadget is
sufficient to make the gadget work in all cases, as the EDA
software does not see a fixed value. This register takes X as
the initial default value and uses the design’s global clock.

Tail register. It may happen that the end of the gadget gets
optimized together with this logic before the MIRTL trait
appears, which would disarm the gadget. Another issue of
the following logic is that together with the gadget, it may
form a critical path. Therefore, we terminate the gadget with
a flip-flop to mitigate these side effects. This flip-flop is
also connected to a global clock. While tail registers were
compatible with all the translation bugs that we tested, there
is no guarantee that they will never disarm a gadget, hence
the gadgets must always be tested before use.

7.2 Empowering RTL trojans with MIRTL
Classical RTL trojans can be very stealthy once inserted into a
design, but they are subject to white-box detection, which can
reveal RTL trojans by not requiring blindly guessing their ar-
bitrarily specific triggering conditions. We show how MIRTL
gadgets harden classical RTL trojans against white-box de-
tection techniques by erasing the trojan during translation,
before the verification operations happen.

Classical RTL trojans. Classical RTL trojans are generally
made of a trigger condition and a payload [15, 96] which
both connect to the original design, as illustrated in Figure 18.
The payload is activated only when the trigger condition is

Public
data

Secret
data

s

Public
data

Secret
data

 OR

q q

s
r c

0 1 0 1

Public
data

Secret
data

 OR

q

s

r c
0 1

Classical
trojan

AND

a) b) c) Classical
trojan

MiRTL
gadget

Figure 19: Example classical RTL trojan and MIRTL hardening in access control logic. The signal s represents whether the
design is currently operating in high-privilege mode. a) Original logic. b) Classical trojan inserted, where r is some rare
attacker-controllable condition on the design’s state or inputs. c) MIRTL gadget insertion to prevent white-box detection.

met, which can be an arbitrarily specific condition on the
design’s state or inputs. This condition is typically designed
to be easy to reach if known, but very hard to guess otherwise.
For example, it might be based on specific values in some
specific registers. The payload then tampers with the design’s
behavior, for example by allowing unauthorized access to
privileged resources or data, or by denying some functionality.

While blindly guessing the trigger condition is an arbi-
trarily difficult task, extensive previous research has shown
that white-box techniques can detect the trojan by multiple
ways without requiring guessing the trigger. First, SAT solv-
ing [9, 42, 55, 63, 74, 77] or symbolic execution [1, 29, 36, 84]
can assert the correctness of the affected functionality, which
will result in the functionality being proven incorrect when the
trojan is active. Second, the triggering condition is generally
based on design state and inputs that should not influence the
affected functionality [7–9, 52, 61, 80]. Hence, this creates an
information flow from these points to the payload anchor. Pre-
vious research has shown that such breaches can be detected
by standard information flow techniques [2, 50, 67, 69, 93, 99].
Finally, the rise in hardware fuzzing that involves various cov-
erage metrics [16, 53, 57, 59, 97, 104] will also vastly improve
the trigger guessing capabilities in RTL simulation.

MIRTL-based hardening. MIRTL gadgets can prevent
white-box detection techniques from detecting RTL trojans.
The key point is to insert MIRTL gadgets so that they cancel
the trojan’s effect. In practice, this offers a large flexibility
in the insertion location of MIRTL gadgets. As illustrated
in Figure 18, the MIRTL gadget can be inserted at any point
in the RTL trojan, may it be in its design state sampling (1),
in its trigger condition (2), or in its payload (3). In any of
these cases, the MIRTL gadget must cancel the trojan’s effect
completely. Practically, MIRTL gadgets are best inserted
along with an and gate that will filter out a signal critical to
the trojan to deactivate it.

A concrete trojan example. Figure 19 (a) illustrates a sim-
ple example access control circuit, and Figure 19 (b) the
insertion of a classical trojan in this circuit. The access logic
is designed to prevent user-mode software from accessing
kernel memory, and the trojan is inserted to allow such ac-
cess under some specific condition r that is extremely rare in
normal operation, but that the attacker can easily control.

Translation to
intermediate

representation (IR)

Validation on the
translated design

RTL
design

IR Validation
result

Figure 20: Internal operation of a white-box validation EDA
application. Mistranslation gadgets affect the translation front-
end, hence are agnostic of the applied validation technique.

In a black-box setting, detecting the trojan is as hard as
guessing the condition r, but the aforementioned white-box
techniques [2, 7–9, 16, 50, 52, 53, 57, 59, 61, 67, 69, 80, 93, 97,
99, 104] can detect it. First, one can formally ensure that the
condition c (circled in cyan) that controls the multiplexer is
never true when the design is in user mode by constraining the
privilege level signal s to zero and proving that the control in-
put c is always zero, by the means of SAT solving or symbolic
execution. Second, information flow tracking, when tainting
secret data and proving, under the constraint that the privilege
s is zero, proves whether taint can reach the output q of the
multiplexer (vertical cyan arrow). Information flow tracking
can also be used to taint all design states that do not have
anything to do with the access control condition (horizontal
cyan arrow). Given that r is a condition on these states that
should not directly influence the access control such as the
values in registers, taint flowing from these registers to the
control condition, and hence to the output of the multiplexer
will reveal a confidentiality breach. Third, simulation-based
white-box techniques such as coverage-based fuzzing might
jeopardize the trojan. In particular, covering the multiplexer
control [59], control registers [53] or toggling wires [16, 57]
will eventually trigger the trojan.

Figure 19 (c) shows the insertion of a MIRTL gadget that,
when mistranslated, filters the condition r out to prevent val-
idation methods from detecting the RTL trojan. Any EDA
software affected by this MIRTL gadget would see the tro-
jan as provably always inactive and would then successfully
demonstrate or prove the absence of any unexpected behavior,
as it is hidden under cover of the MIRTL gadget.

Affected EDA software. All white-box techniques affected
by translation bugs can be confused into analyzing a falsified
version of the design that does not contain the trojan. The
key, as shown in Figure 20, is that MIRTL gadgets affect
the translation front-end of the EDA application that is used

Listing 1: User-accessible bit check in CVA6’s MMU.
daccess_err = en_ld_st_translation_i && ((

ld_st_priv_lvl_i == S && !sum_i &&
dtlb_pte_q.u) || (ld_st_priv_lvl_i == U
&& !dtlb_pte_q.u));

for validation, hence the hiding is agnostic of the white-box
validation technique. Experimentally, we confirm, for exam-
ple, that when the MIRTL gadget based on Y1 is inserted,
Yosys-based SAT solving that aims at proving the integrity
of c in Figure 19 (c) fails to detect the trojan, and that the
information flow tracking logic generated by the state-of-the-
art information flow tracking tool CellIFT [89, 91], confused
by the MIRTL gadget, mistakenly proves the absence of the
trojan.

7.3 Hiding a trojan in CVA6 wtih MIRTL

To show the practicality of MIRTL gadgets, we inject a trojan
into the CVA6 RISC-V CPU [108], also known as Ariane,
that allows an attacker in user mode to read the content of
kernel memory (CWE-118). Such a gadget can be inserted
by a contributor with malicious intents, or by a compromised
version an intermediate RTL flow tool such as sv2v [85].

Background. In the Sv39 virtual memory system specified
by RISC-V and supported by CVA6, the bottom-most bits
of a page table entry are, in increasing index order, V: valid,
R: readable, W: writable, X: executable, U: user accessible.
When virtual memory is enabled, user software attempting to
access a page with U = 0 will trigger an exception.

7.3.1 Strategy

Classical trojan. We aim to alter the functionality of CVA6
to allow user software to load data from a page with attribute
U = 0 if, arbitrarily, the operand of the last FMV.X.D instruc-
tion was 0x12345678badcable. We then harden this trojan
with a MIRTL gadget to prevent white-box detection.

Gadget insertion location. We insert the MIRTL gadget at
the location where the U bit is checked. We find that this check
is located in the i_cva6_mmu module instance in the load-
store unit. We report the exact check operation in Listing 1
when it comes to data accesses. We propose to and the gadget
output bit together with the !dtlb_pte_q.u signal and with
the test whether the operand of the last FMV.X.D instruction
was 0x12345678badcable. Hence, the RTL trojan will be
activable only if the MIRTL gadget produces a 1.

Scenarios. We introduce two exploitation scenarios. In the
first, the adversary compromises the design immediately but
relies on the combined simulator gadget to hide the bug from
all three simulators. In the second, the attacker submits a
design that contains no vulnerability, but relies on the synthe-
sizer gadget to introduce the vulnerability at synthesis time.

Table 3: Design metric deviations caused by gadget insertion.

Area Power Registers Timing
Scenario 1 +0.1% +0.07% +0.02% +0%
Scenario 2 +0% +0% +0% +0%

In both cases, the eventually-synthesized design is vulnerable,
which is invisible or absent in the preceding RTL.

7.3.2 Evaluation

We first evaluate the functional correctness of the exploit. We
then evaluate its impact in terms of area, power and timing.

Functional correctness. To validate the correctness of both
scenarios, we design a simple compliance test including a
basic operating system taken from the RISC-V compliance
test suite [87], where we integrate a user application attempt-
ing to read from a page with U = 0 after executing FMV.X.D
with the right operand. We observe that the simulators do not
see access exceptions when MIRTL gadgets are inserted. By
successfully executing the RISC-V compliance tests [87], we
ascertain that the overall CPU functionality is unaffected.

Area, power and timing. To evaluate the impact of the
exploit on design metrics, we synthesize Yosys’s output in a
popular 12 nm technology using Synopsys Design Compiler
2022.03, targeting a 1 GHz clock. Table 3 summarizes the
deviations with the unaffected CVA6 design. In particular,
any variation in timing would be problematic for the attacker,
as it would make the gadget obvious. We observe that the
evaluated MIRTL exploits negligibly impact all metrics.

Stealthiness. It is beneficial for gadgets to be discreet in
front of code inspection. Typical gadgets require around 10
lines of Verilog code. While this is few lines, they can be
intertwined into the design sources on a case-by-case basis to
look innocuous. If the design is programmed in a hardware
construction language (HCL) [5, 24, 79, 105] (then automati-
cally compiled into Verilog), a gadget inserted into the Verilog
representation, e.g., through a malicious HCL compiler, is
unlikely to be obvious in the complex Verilog output.

8 Discussion

Mitigations. A straightforward solution against MIRTL at-
tacks is to sure that EDA software remains free of bugs. We
encourage further fuzzing work against EDA software, yet
it is still unclear how to guarantee bug-freedom of simula-
tors. Furthermore, we observe that many of the bugs rely
on operational diversity. Hence, reducing the design to the
gate level early in the development stages would mitigate
some of the bugs, but this is known to incur significant per-
formance loss [2, 89]. While rarer, translation vulnerabilities
could also occur at gate level. Finally, one could check the
equivalence of the design before and after synthesis [75], but
this approach has two shortcomings. First, it has challenging

scalability issues as we showed in Section 6.6. Second, anal-
ysis approaches that rely on EDA software themselves, such
as DIFT, remain vulnerable to MIRTL attacks, even if they
offer formal guarantees as we demonstrated in Section 7.2.
Finally, manual inspection, with known limitations [32], will
be mostly ineffective against MIRTL attacks. Synthesizer
MIRTL gadgets describe valid functionality and hence can
only be detected by their potential shape in RTL until they
are processed by the victim synthesizer. Worse, if a MIRTL
gadget is inserted by some corrupted EDA preparation soft-
ware like bender [25] or sv2v [85], then humans must inspect
the output of these tools, which is prohibitively hard to read,
and already contains many complex patterns, hampering the
identification of suspicious potential gadget patterns.

Syntactic limitations. TRANSFUZZ uses the Yosys Verilog
backend to generate the final design representation. This
backend does not produce behavioral blocks, and has its own
flexible output structure. Hence, TRANSFUZZ is currently
unable to find some syntax-dependent bugs. A dedicated
backend would overcome this limitation. Currently, the bugs
found by TRANSFUZZ are syntactically simple, simplifying
exploitation as we showed in Section 7. It is unclear whether
practical exploitation would be possible if the bug requires
a more complex syntax. For example, compromised EDA
preparation software like sv2v cannot inject complex syntax,
as its goal is generally to reduce the language spectrum.

FPGA testing for ASIC validation. FPGA testing is gener-
ally powerless against MIRTL attacks. First, this is because
classical hiding techniques can be combined with MIRTL
gadgets as demonstrated in Section 7.2. This also renders
post-silicon detection ineffective. Given that many natural
bugs already escape validation in commodity hardware as
of today [90], voluntarily hidden bugs would likely be even
harder to detect than most natural bugs. Second, FPGA and
ASIC flows are often completely distinct, from the synthesis
on. Let us assume that an attacker wants to insert a bug in the
ASIC design but not in the FPGA design. In a scenario where
simulator bugs are exploited to hide a vulnerability, a transla-
tion bug in the FPGA synthesis tool (e.g., Xilinx Vivado [21])
could be exploited to remove the vulnerability in the FPGA
target. In another scenario where a translation bug in an ASIC
synthesis tool (e.g., Synopsys DC [23]) would be exploited
for injecting the bug, the bug would only be injected into the
ASIC implementation and not into the FPGA.

Open-source EDA. In this paper, we focused on open-
source EDA software, which is increasingly popular. For
example, on the ASIC fabrication side, Yosys is used, among
others, by qflow [26] and the OpenLANE flow [83], whose re-
sults are becoming increasingly competitive with commercial
flows [49]. On the FPGA side, Yosys is used by popular flows
such as SymbiFlow [66] and PRGA [60]. On the simulation
side, open-source simulators are nowadays used for complex
SoCs [20] and diverse designs such as BLE MAC [43].

9 Related Work
We first discuss compiler fuzzing. We then cover other work
that aims at compromising pre-silicon hardware designs.

Compiler fuzzing and bugs. Compilers share similarities
with synthesizers. The confused deputy problem was initially
demonstrated in a compiler and some backdoors were demon-
strated using some of their bugs [6, 22, 31, 44]. Previous work
advertises multi-variant execution against such attacks [13],
but we show the limitation of this proposal by compromising
three simulators at a time in Section 7. Compiler fuzzing
has been shown to be effective at finding bugs in compil-
ers [18, 54, 62, 64, 68, 106], mostly by relying on differential
fuzzing [35, 65, 76]. Yet fuzzing and differential testing differ
in the context of EDA applications. We show in Section 6
that inputs of non-trivial lengths boost performance, while
compiler outputs are generally executed only once [62, 106].
Additionally, fuzzing with software programs shares no clear
similarity with fuzzing with hardware circuits.

Fuzzing simulators. From GitHub issues [27], we observe
that there have been simulator fuzzing campaigns with tradi-
tional approaches of HDL file content manipulations. While
this approach could find crashes in the simulator’s frontend,
it is unlikely to find bugs in the simulator’s backend where
the translation bugs may lurk.

10 Conclusion
MIRTL is a new class of confused deputy attacks on EDA
software that relies on translation bugs. We presented TRANS-
FUZZ, the first fuzzer dedicated to finding such translation
bugs in simulators and synthesizers using pairs of hard-
ware designs and stimuli. By creating netlists of macrocells,
TRANSFUZZ creates particularly complex hardware designs.
In addition to some new unsafe crashes, TRANSFUZZ found
20 new translation bugs causing wrong runtime values in
three major open-source RTL simulators and in the Yosys
synthesizer, among the 31 new bugs that it found. We showed
concrete MIRTL attacks that exploit these translation bugs
by corrupting the behavior of the CVA6 CPU to leak kernel
memory to user mode and bypassing the white-box analysis
techniques. Facing these newly demonstrated security risks
based on yet undiscovered EDA bugs, we encourage further
research in the direction of discovering and fixing bugs in
EDA software.

Ethical considerations. We reported all bugs to their re-
spective maintainers and provided support when required.

Acknowledgements
The authors would like to thank the anonymous reviewers
and Katharina Ceesay-Seitz for their valuable feedback. This
work was supported in part by the Swiss State Secretariat for
Education, Research and Innovation under contract number
MB22.00057 (ERC-StG PROMISE).

References

[1] Alif Ahmed, Farimah Farahmandi, Yousef Iskander,
and Prabhat Mishra. Scalable hardware trojan activa-
tion by interleaving concrete simulation and symbolic
execution. In ITC, 2018.

[2] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and
Ryan Kastner. Register transfer level information
flow tracking for provably secure hardware design. In
DATE, 2017.

[3] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer,
D. Biancolin, C. Celio, H. Cook, D. Dabbelt, J. Hauser,
A. Izraelevitz, et al. The rocket chip generator. UC
Berkeley, 2016.

[4] K. Asanovic, D. A. Patterson, and C. Celio. The
berkeley out-of-order machine (boom): An industry-
competitive, synthesizable, parameterized risc-v pro-
cessor. UC Berkeley, 2015.

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yun-
sup Lee, Andrew Waterman, Rimas Avižienis, John
Wawrzynek, and Krste Asanović. Chisel: Construct-
ing hardware in a scala embedded language. In DAC,
2012.

[6] Scott Bauer, Pascal Cuoq, and John Regehr. Deniable
backdoors using compiler bugs. https://mcfp.f
elk.cvut.cz/publicDatasets/pocorgtfo/con
tents/articles/08-03.pdf. [Online; accessed
6-Feb-2024].

[7] Shivam Bhasin and Francesco Regazzoni. A survey on
hardware trojan detection techniques. In ISCAS, 2015.

[8] Swarup Bhunia, Michael S Hsiao, Mainak Banga, and
Seetharam Narasimhan. Hardware trojan attacks:
Threat analysis and countermeasures. Proceedings
of the IEEE, 2014.

[9] Swarup Bhunia and M Tehranipoor. The hardware
trojan war. Springer, 2018.

[10] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi,
S. Schumilo, S. Wörner, and T. Holz. Grimoire: Syn-
thesizing structure while fuzzing. In USENIX Sec,
2019.

[11] Jérémy Bonvoisin, Robert Mies, Jean-François Boujut,
and Rainer Stark. What is the “source” of open source
hardware? Journal of Open Hardware, 2017.

[12] Jérémy Bonvoisin, Jenny Molloy, Martin Häuer, and
Tobias Wenzel. Standardisation of practices in open
source hardware. arXiv:2004.07143, 2020.

[13] Cristian Cadar, Luís Pina, and John Regehr. Multi-
version execution defeats a compiler-bug-based back-
door. https://blog.regehr.org/archives/1282.
[Online; accessed 6-Feb-2024].

[14] S. Canakci, C. Rajapaksha, L. Delshadtehrani,
A. Nataraja, M. B. Taylor, M. Egele, and A. Joshi.
Processorfuzz: Processor fuzzing with control and sta-
tus registers guidance. In HOST, 2023.

[15] Rajat Subhra Chakraborty, Seetharam Narasimhan, and
Swarup Bhunia. Hardware trojan: Threats and emerg-
ing solutions. In HLDVT, 2009.

[16] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming
Andersen, Aakash Tyagi, Ahmad-Reza Sadeghi, and
Jeyavijayan Rajendran. Hypfuzz:formal-assisted pro-
cessor fuzzing. In USENIX Sec, 2023.

[17] H. Chen, Y. Li, B. Chen, Y. Xue, and Y. Liu. Fot: A
versatile, configurable, extensible fuzzing framework.
In ACM FSE, 2018.

[18] Junjie Chen and Chenyao Suo. Boosting compiler
testing via compiler optimization exploration. TOSEM,
2022.

[19] P. Chen and H. Chen. Angora: Efficient fuzzing by
principled search. In IEEE SP, 2018.

[20] Yuan Chi, Xian Lin, and Xin Zheng. Design of high-
performance soc simulation model based on verilator.
In ACAI, 2022.

[21] Sanjay Churiwala and I Hyderabad. Designing with
xilinx® fpgas. In Circuits & Systems. 2017.

[22] Tim Clifford, Ilia Shumailov, Yiren Zhao, Ross Ander-
son, and Robert Mullins. Impnet: Imperceptible and
blackbox-undetectable backdoors in compiled neural
networks. arXiv:2210.00108, 2022.

[23] Synopsys Design Compiler. Synopsys design compiler.
Pages/default. aspx, 2016.

[24] Clash contributors. Clash: A modern, functional,
hardware description language. https://clash-lan
g.org/. [Online; accessed 25-Jan-2024].

[25] PULP contributors. Bender dependency management
tool. https://github.com/pulp-platform/bend
er. [Online; accessed 16-May-2024].

[26] Qflow contributors. Qflow 1.3: An open-source digital
synthesis flow. http://opencircuitdesign.com/
qflow/. [Online; accessed 30-January-2024].

[27] Verilator contributors. Fuzzer-related verilator issues.
https://github.com/verilator/verilator/iss
ues?q=Fuzzer. [Online; accessed 30-January-2024].

https://mcfp.felk.cvut.cz/publicDatasets/pocorgtfo/contents/articles/08-03.pdf
https://mcfp.felk.cvut.cz/publicDatasets/pocorgtfo/contents/articles/08-03.pdf
https://mcfp.felk.cvut.cz/publicDatasets/pocorgtfo/contents/articles/08-03.pdf
https://blog.regehr.org/archives/1282
https://clash-lang.org/
https://clash-lang.org/
https://github.com/pulp-platform/bender
https://github.com/pulp-platform/bender
http://opencircuitdesign.com/qflow/
http://opencircuitdesign.com/qflow/
https://github.com/verilator/verilator/issues?q=Fuzzer
https://github.com/verilator/verilator/issues?q=Fuzzer

[28] C. Courbet. Nsan: a floating-point numerical sanitizer.
In ACM SIGPLAN CC, 2021.

[29] Ruochen Dai and Tuba Yavuz. A symbolic approach
to detecting hardware trojans triggered by don’t care
transitions. ACM Transactions on Design Automation
of Electronic Systems, 28(2), 2022.

[30] Fisher Daniel K and Gould Peter J. Open-source hard-
ware is a low-cost alternative for scientific instrumen-
tation and research. Modern instrumentation, 2012.

[31] Baptiste David. How a simple bug in ml compiler
could be exploited for backdoors? arXiv:1811.10851,
2018.

[32] Ghada Dessouky, David Gens, Patrick Haney, Gar-
rett Persyn, Arun Kanuparthi, Hareesh Khattri, Ja-
son M Fung, Ahmad-Reza Sadeghi, and Jeyavijayan
Rajendran. {HardFails}: Insights into {Software-
Exploitable} hardware bugs. In USENIX Sec, 2019.

[33] LLVM Developers. Undefinedbehaviorsanitizer. ht
tps://clang.llvm.org/docs/UndefinedBehavio
rSanitizer.html. [Online; accessed 4-June-2023].

[34] Martin Eberlein, Yannic Noller, Thomas Vogel, and
Lars Grunske. Evolutionary grammar-based fuzzing.
In SSBSE, 2020.

[35] Robert B Evans and Alberto Savoia. Differential test-
ing: a new approach to change detection. In ES-
EC/FSE, 2007.

[36] Farimah Farahmandi, Yuanwen Huang, and Prabhat
Mishra. Trojan localization using symbolic algebra. In
2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), 2017.

[37] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse.
Afl++ combining incremental steps of fuzzing research.
In WOOT, 2020.

[38] V. Ganesh, T. Leek, and M. Rinard. Taint-based di-
rected whitebox fuzzing. In ICSE, 2009.

[39] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-
based whitebox fuzzing. In ASPLOS, 2008.

[40] Google. American fuzzy lop. https://github.com
/google/AFL. [Online; accessed 25-Jan-2024].

[41] Yann Herklotz Grave. Fuzzing verilog. https:
//yannherklotz.com/docs/fpga2020/verismith
_thesis.pdf. [Online; accessed 30-January-2024].

[42] Syed Kamran Haider, Chenglu Jin, Masab Ahmad,
Devu Manikantan Shila, Omer Khan, and Marten van
Dijk. Hatch: A formal framework of hardware trojan

design and detection. University of Connecticut Cryp-
tology ePrint Archive Technical Report, 943, 2014.

[43] Eunkyung Ham, Yujin Jeon, Jaeyun Lim, and Ji-Hoon
Kim. Verilator-based fast verification methodology for
ble mac hardware. In ICEIC, 2023.

[44] Norm Hardy. The confused deputy: (or why capa-
bilities might have been invented). ACM SIGOPS
Operating Systems Review, 1988.

[45] J Piet Hausberg and Sebastian Spaeth. Why makers
make what they make: motivations to contribute to
open source hardware development. R&D Manage-
ment, 2020.

[46] ITS Heikkinen, Hele Savin, Jouni Partanen, Jukka
Seppälä, and Joshua M Pearce. Towards national
policy for open source hardware research: The case of
finland. Technological Forecasting and Social Change,
2020.

[47] Yann Herklotz. Expression evaluates to 1’bx instead
of expected 1’b0. https://github.com/steveic
arus/iverilog/issues/283. [Online; accessed
16-May-2024].

[48] Yann Herklotz and John Wickerson. Finding and
understanding bugs in fpga synthesis tools. In FPGA,
2020.

[49] Sarah Hesham, Mohamed Shalan, M Watheq El-
Kharashi, and Mohamed Dessouky. Digital asic im-
plementation of risc-v: Openlane and commercial ap-
proaches in comparison. In MWSCAS, 2021.

[50] Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner.
Hardware information flow tracking. CSUR, 2021.

[51] Wei Hu, Dejun Mu, Jason Oberg, Baolei Mao, Mohit
Tiwari, Timothy Sherwood, and Ryan Kastner. Gate-
level information flow tracking for security lattices.
TODAES, 2014.

[52] Zhao Huang, Quan Wang, Yin Chen, and Xiaohong
Jiang. A survey on machine learning against hardware
trojan attacks: Recent advances and challenges. IEEE
Access, 2020.

[53] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee.
Difuzzrtl: Differential fuzz testing to find cpu bugs. In
IEEE SP, 2021.

[54] Raphael Isemann, Cristiano Giuffrida, Herbert Bos,
Erik van der Kouwe, and Klaus von Gleissenthall.
Don’t look ub: Exposing sanitizer-eliding compiler
optimizations. PACMPL, 2023.

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/google/AFL
https://github.com/google/AFL
https://yannherklotz.com/docs/fpga2020/verismith_thesis.pdf
https://yannherklotz.com/docs/fpga2020/verismith_thesis.pdf
https://yannherklotz.com/docs/fpga2020/verismith_thesis.pdf
https://github.com/steveicarus/iverilog/issues/283
https://github.com/steveicarus/iverilog/issues/283

[55] Akira Ito, Rei Ueno, and Naofumi Homma. A formal
approach to identifying hardware trojans in crypto-
graphic hardware. In ISMVL, 2021.

[56] Shunning Jiang, Peitian Pan, Yanghui Ou, and Christo-
pher Batten. Pymtl3: A python framework for open-
source hardware modeling, generation, simulation, and
verification. MICRO, 2020.

[57] R. Kande, A. Crump, G. Persyn, P. Jauernig, A. R.
Sadeghi, A. Tyagi, and J. Rajendran. {TheHuzz}:
Instruction fuzzing of processors using {Golden-
Reference} models for finding {Software-Exploitable}
vulnerabilities. In USENIX Sec, 2022.

[58] Christian Krieg, Clifford Wolf, Axel Jantsch, and Tanja
Zseby. Toggle mux: How x-optimism can lead to
malicious hardware. In DAC, 2017.

[59] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen.
Rfuzz: Coverage-directed fuzz testing of rtl on fpgas.
In ICCAD, 2018.

[60] Ang Li and David Wentzlaff. Prga: An open-source
framework for building and using custom fpgas. In The
First Workshop on Open-Source Design Automation;
Florence, Italy, 2019.

[61] He Li, Qiang Liu, and Jiliang Zhang. A survey of
hardware trojan threat and defense. Integration, 2016.

[62] Vsevolod Livinskii, Dmitry Babokin, and John Regehr.
Random testing for c and c++ compilers with yarpgen.
PACMPL, 2020.

[63] Faiq Khalid Lodhi, Syed Rafay Hasan, Osman Hasan,
and Falah Awwad. Formal analysis of macro syn-
chronous micro asychronous pipeline for hardware tro-
jan detection. In NORCAS, 2015.

[64] Michaël Marcozzi, Qiyi Tang, Alastair F Donaldson,
and Cristian Cadar. Compiler fuzzing: How much
does it matter? PACMPL, 2019.

[65] William M McKeeman. Differential testing for soft-
ware. Digital Technical Journal, 1998.

[66] Kevin E Murray, Mohamed A Elgammal, Vaughn Betz,
Tim Ansell, Keith Rothman, and Alessandro Comodi.
Symbiflow and vpr: An open-source design flow for
commercial and novel fpgas. MICRO, 2020.

[67] Adib Nahiyan, Mehdi Sadi, Rahul Vittal, Gustavo Con-
treras, Domenic Forte, and Mark Tehranipoor. Hard-
ware trojan detection through information flow security
verification. In ITC, 2017.

[68] Yannic Noller, Corina S Păsăreanu, Marcel Böhme,
Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske.
Hydiff: Hybrid differential software analysis. In ICSE,
2020.

[69] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Tim-
othy Sherwood, and Ryan Kastner. Information flow
isolation in i2c and usb. In DAC, 2011.

[70] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida.
Parmesan: Sanitizer-guided greybox fuzzing. In
USENIX Sec, 2020.

[71] Joshua M Pearce. Building research equipment with
free, open-source hardware. Science, 2012.

[72] Joshua M Pearce. Quantifying the value of open source
hardware development. Modern Economy, 2015.

[73] Lisa Piper and Jin Zhang. Don’t let the x-bugs bite:
Conquer elusive x-propagation issues early! get them
before they get you! In ASICON, 2011.

[74] Kushal Kumar Ponugoti. Formal Verification for Hard-
ware Trojan Detection. PhD thesis, North Dakota State
University, 2023.

[75] eInfochips Priyambada Mishra. Understanding logic
equivalence check (lec) flow and its challenges and
proposed solution. https://www.design-reuse
.com/articles/51622/understanding-logic-e
quivalence-check-lec-flow-and-its-chall
enges-and-proposed-solution.html. [Online;
accessed 8-Feb-2024].

[76] Rong Qu, Jiangang Huang, Long Zhang, Tianlu Qiao,
and Jian Zhang. Scope-based compiler differential
testing. In QRS, 2023.

[77] Michael Rathmair, Florian Schupfer, and Christian
Krieg. Applied formal methods for hardware trojan
detection. In ISCAS, 2014.

[78] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos. Vuzzer: Application-aware evolutionary
fuzzing. In NDSS, 2017.

[79] Katharina Ruep and Daniel Große. Spinalfuzz:
Coverage-guided fuzzing for spinalhdl designs. In
ETS, 2022.

[80] Hassan Salmani, Mohammad Tehranipoor, and Jim
Plusquellic. A novel technique for improving hardware
trojan detection and reducing trojan activation time.
VLSI, 2011.

[81] S. Sargsyan, S. Kurmangaleev, M. Mehrabyan,
M. Mishechkin, T. Ghukasyan, and S. Asryan.
Grammar-based fuzzing. In IVMEM, 2018.

https://www.design-reuse.com/articles/51622/understanding-logic-equivalence-check-lec-flow-and-its-challenges-and-proposed-solution.html
https://www.design-reuse.com/articles/51622/understanding-logic-equivalence-check-lec-flow-and-its-challenges-and-proposed-solution.html
https://www.design-reuse.com/articles/51622/understanding-logic-equivalence-check-lec-flow-and-its-challenges-and-proposed-solution.html
https://www.design-reuse.com/articles/51622/understanding-logic-equivalence-check-lec-flow-and-its-challenges-and-proposed-solution.html

[82] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. Addresssanitizer: A fast address sanity
checker. https://clang.llvm.org/docs/Addres
sSanitizer.html. [Online; accessed 25-Jan-2024].

[83] Mohamed Shalan and Tim Edwards. Building open-
lane: a 130nm openroad-based tapeout-proven flow. In
ICCAD, 2020.

[84] Lixiang Shen, Dejun Mu, Guo Cao, Maoyuan Qin,
Jeremy Blackstone, and Ryan Kastner. Symbolic ex-
ecution based test-patterns generation algorithm for
hardware trojan detection. computers & security, 78,
2018.

[85] Zachary Snow. sv2v: Systemverilog to verilog. http
s://github.com/zachjs/sv2v. [Online; accessed
16-May-2024].

[86] Wilson Snyder. Verilator and systemperl. In NASCUG,
2004.

[87] RISC-V Software. riscv-tests. https://github.c
om/riscv-software-src/riscv-tests. [Online;
accessed 5-Feb-2024].

[88] Flavien Solt, Katharina Ceesay-Seitz, and Kaveh
Razavi. Cascade: Cpu fuzzing via intricate program
generation. In USENIX Sec, 2024.

[89] Flavien Solt, Ben Gras, and Kaveh Razavi. {CellIFT}:
Leveraging cells for scalable and precise dynamic in-
formation flow tracking in {RTL}. In USENIX Sec,
2022.

[90] Flavien Solt, Patrick Jattke, and Kaveh Razavi. Re-
memberr: Leveraging microprocessor errata for design
testing and validation. In MICRO, 2022.

[91] Flavien Solt and Kaveh Razavi. Hybridift: Scalable
memory-aware dynamic information flow tracking for
hardware. In ICCAD, 2024.

[92] SpinalHDL. Vexriscv. https://github.com/Spina
lHDL/VexRiscv. [Online; accessed 25-Jan-2024].

[93] Suriya Srinivasan and Ranga Vemuri. Trojan localiza-
tion using information flow tracking properties in soc
designs. In VLSID, 2024.

[94] P. Srivastava and M. Payer. Gramatron: Effective
grammar-aware fuzzing. In ISSTA, 2021.

[95] Stuart Sutherland. I’m still in love with my x! In
DVCon, 2013.

[96] Mohammad Tehranipoor and Farinaz Koushanfar. A
survey of hardware trojan taxonomy and detection.
IEEE design & test of computers, 2010.

[97] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly,
D. Rizzo, and M. Hicks. Fuzzing hardware like soft-
ware. In USENIX Sec, 2022.

[98] Mike Turpin. Solving verilog x-issues by sequentially
comparing a design with itself. you’ll never trust unix
diff again! SNUG, 2005.

[99] Haoyi Wang, Chenguang Wang, Yici Cai, and Qiang
Zhou. A high-level information flow tracking method
for detecting information leakage. Integration, 69,
2019.

[100] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion:
Grammar-aware greybox fuzzing. In ICSE, 2019.

[101] P. Wang, X. Zhou, K. Lu, T. Yue, and Y. Liu. Sok:
The progress, challenges, and perspectives of directed
greybox fuzzing. arXiv:2005.11907, 2020.

[102] Stephen Williams and Michael Baxter. Icarus verilog:
open-source verilog more than a year later. Linux
Journal, 2002.

[103] C. Wolf, J. Glaser, and J. Kepler. Yosys-a free verilog
synthesis suite. In Austrochip, 2013.

[104] Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Ya-
jin Zhou, and Cong Wang. {MorFuzz}: Fuzzing
processor via runtime instruction morphing enhanced
synchronizable co-simulation. In USENIX Sec, 2023.

[105] Xiao-lang Yan, Long-li Yu, and Jie-bing Wang. A
front-end automation tool supporting design, verifica-
tion and reuse of soc. Journal of Zhejiang University-
SCIENCE A, 2004.

[106] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in c compilers. In
Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation,
2011.

[107] YosysHQ. Vloghammer. https://github.com/Y
osysHQ/VlogHammer. [Online; accessed 30-January-
2024].

[108] F. Zaruba and L. Benini. The cost of application-
class processing: Energy and performance analysis of
a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi
technology. In VLSI, 2019.

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/zachjs/sv2v
https://github.com/zachjs/sv2v
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://github.com/YosysHQ/VlogHammer
https://github.com/YosysHQ/VlogHammer

+
-

in_0
DFF Muxin_1

in_2

out_0

out_1

Figure 21: Concrete subnet example. DFF represents a flip-
flop (the clock signal is implicit) and Mux is a multiplexer.

Algorithm 1: Non-combinational loop insertion.
Data: An input port of a given cell C
Result: An eligible cell C′ whose output will be

connected to C’s input
1 reds = /0;
2 redfanout = {C} greens = /0;
3 greenfanout = /0;
4 whites = allCells - {C};
5 currcolor = red;
6 while redfanout ̸= /0 or greenfanout ̸= /0 do
7 if redfanout ̸= /0 then
8 D = redfanout.pop();
9 currcolor = red;

10 else
11 D = greenfanout.pop();
12 currcolor = green;

13 whites.remove(D);
14 if stateful(D) or currcolor == green then
15 greens.add(D);
16 greenfanout.addmultiple(D.fanout ∩ whites);

17 else
18 reds.add(D);
19 redfanout.add(D.fanout ∩ whites);

20 return pick(greens) if greens ̸= /0 else ⊥

A Sound Subnet Construction

Figure 21 shows a concrete subnet example. To enforce the
single-driver rule, we ensure that a wire only takes one of
the following roles: a design input, a cell output, or a de-
sign output. To enforce the loop-free rule, we build subnets
as sequences of cells, in which each cell can only be driven
by the subnet input ports or by the output of a previous cell.
For maximizing relational diversity, TRANSFUZZ inserts non-
combinational loops through the following algorithm (Algo-
rithm 1): for a cell C, color all cells in its subnet in white
(non-successor), red (combinational successor) or green (non-
combinational successor). All cells start white. Only green
cells are eventually eligible for loop insertion.

B Cell interconnection

Algorithm 2 specifies the input selection algorithm that con-
nects the cells together, as described in Section 4.

Algorithm 2: Input selection algorithm sketch. The
function pickcell selects some previous cell, with
some bias toward the yet unused output bits.

Data: port_width
Result: Inputs for the next macrocell input port

1 in_offset = 0; remaining_bits = input_bits;
2 while remaining_bits > 0 do
3 C = pickcell(cell_id);
4 out_offset = C.out.width; conn_width =

min(remaining_bits, C.out.width-out_offset);
5 connect(port_width-remaining_bits, out_offset,

conn_width);

6 return connections

Table 4: CVEs assigned for bugs found by TRANSFUZZ.
Id CVE-2024- CVSS Id CVE-2024- CVSS
I1 25470 7.1 V6 25493 7.1
I2 25471 7.1 V7 25485 7.1
I3 - - V8 - -
C1 26522 7.1 V9 25486 7.1
C2 28720 7.5 V10 25488 7.1
C3 25472 7.1 V11 25491 7.1
C4 - 7.1 V12 25490 7.1
C5 28719 7.1 V13 28721 7.1
C6 25478 7.5 V14 25489 7.1
C7 - - V15 25492 7.1
C8 - - V16 25495 7.1
V1 25481 7.5 V17 25494 7.5
V2 25480 7.5 V18 25496 7.1
V3 25482 7.5 Y1 25479 7.1
V4 - - Y2 25477 7.1
V5 25484 7.5 - - -

C Consistency Across EDA Applications

While Verilog specifies 4 levels of logic (0, 1, X: "don’t
care", Z: "high impedance"), we use the special bit construct
that only supports 2 levels (0, 1). However, the Verilog stan-
dard specifies divisions and modulo by zero as a special case
where X propagates through bit signals, and then propagates
through the design. We therefore enforce that all divisors and
modulo divisors have at least one bit constantly tied to VCC.
We cannot exclude that propagating X would reveal bugs, but
no existing bug was related. Yet as shown in Section 6.5,
some unused bits in wires are X and revealed bug I2.

D Common Vulnerabilities and Exposures

In this Appendix, we summarize the CVEs corresponding to
bugs found by TRANSFUZZ in Table 4.

	Introduction
	Background
	Digital hardware development flow
	RTL simulation
	Fuzzing

	MiRTL
	Overview of challenges
	Overview of TransFuzz

	Input Design
	Analysis of past bug reports
	Test case generation
	Subnet structure and stimuli
	Implementation

	Differential Fuzzing for Bug Detection
	Enabling differential fuzzing
	Ensuring consistency

	Evaluation
	Raw performance
	Cell output toggling
	Stimuli's length
	Circuit size for differential fuzzing
	Discovered bugs
	Bug descriptions
	Time to bug discovery

	Comparison with Verismith

	End-to-End Attack
	MiRTL gadgets
	Empowering RTL trojans with MiRTL
	Hiding a trojan in CVA6 wtih MiRTL
	Strategy
	Evaluation

	Discussion
	Related Work
	Conclusion
	Sound Subnet Construction
	Cell interconnection
	Consistency Across EDA Applications
	Common Vulnerabilities and Exposures

