MileSan: Detecting Exploitable Microarchitectural Leakage via
Differential Hardware-Software Taint Tracking

Tobias Kovats
tkovats@ethz.ch
ETH Zurich
Zurich, Switzerland

Katharina Ceesay-Seitz
kceesay@ethz.ch
ETH Zurich
Zurich, Switzerland

Abstract

Microarchitectural performance optimizations introduce informa-
tion flows inside CPU implementations that exceed those defined
by the Instruction Set Architecture (ISA). Microarchitectural vul-
nerabilities, such as constant-time violations and various classes
of transient execution attacks, are subsets of these excessive in-
formation flows. We observe that an exploitable microarchitectural
leakage is an excessive information flow that can affect the time
it takes for the CPU to execute a particular instruction, creating a
timing covert channel. We design MileSan, the first RTL sanitizer
that is capable of detecting exploitable microarchitectural leakage
by checking for the architecturally-observable differences between
architectural and microarchitectural information flows. For a given
program and CPU implementation, MileSan computes architectural
flows using software taint tracking and microarchitectural flows
using RTL taint tracking. Evaluating the exploitability of proof of
concepts generated by previous microarchitectural fuzzers, we find
cases that are in fact not exploitable and discover the particular
microarchitectural components that enable exploitation for the rest.

In addition to assessing exploitability, MileSan enables the gen-
eration of random test programs with strictly-defined architectural
information flows of secret data using a novel technique called
taint-aware in-situ simulation. Leveraging this capability, we build
RandOS, a new microarchitectural fuzzer that generates random
programs traversing different privilege levels and address spaces,
akin to random operating systems. Evaluation using five RISC-V
CPUs shows that RandOS not only detects known exploitable vul-
nerabilities 4.5% faster than the state of the art, but also discovers
19 new constant-time violations and transient execution vulnera-
bilities in well-tested CPUs, such as BOOM, CVA6 and OpenC910.

CCS Concepts

- Security and privacy — Logic and verification.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.

CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765066

Flavien Solt
flavien.solt@berkeley.edu
UC Berkeley
Berkeley, USA

Kaveh Razavi
kaveh@ethz.ch
ETH Zurich
Zurich, Switzerland

Keywords
Hardware security; RTL fuzzing; side-channels

ACM Reference Format:

Tobias Kovats, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. 2025.
MileSan: Detecting Exploitable Microarchitectural Leakage via Differential
Hardware-Software Taint Tracking. In Proceedings of the 2025 ACM SIGSAC
Conference on Computer and Communications Security (CCS °25), October
13-17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3719027.3765066

1 Introduction

Extensive previous work has shown that processors are affected
by microarchitectural vulnerabilities that can be exploited to leak
confidential information [1, 3, 6, 8, 9, 28, 30, 32, 34-36, 39, 40, 44,
47, 50-53, 56-58]. Detecting these vulnerabilities typically involves
first imagining a potential vulnerability and then writing complex
test programs to check for the vulnerability. Once detected, fixing
them usually carries a significant performance cost. Pre-silicon
fuzzing is a scalable alternative, but existing approaches are all
incapable of detecting exploitable information leakage in a generic
manner. This paper builds such a mechanism for the first time and
shows its applications by enabling the design of a new fuzzer that
is capable of discovering new microarchitectural vulnerabilities
in a variety of scenarios, from constant-time violations to various
classes of transient execution leakage.

The overfitting problem. Existing pre-silicon microarchitectural
fuzzers overfit in three fundamental ways. First, they overfit to par-
ticular microarchitectural structures by manually tagging the ones
where information may leak from (source components) or to (sink
components) [14, 17, 38]. Tagging source components misses out
on other leaky structures, and making assumptions on sink compo-
nents may result in detecting unexploitable cases of information
propagation. Second, they overfit to particular vulnerabilities by
bootstrapping program generation with seeds that trigger known
vulnerabilities [17, 19, 38]. Consequently, they have difficulties gen-
erating programs that sufficiently deviate from these seeds to trigger
different vulnerabilities. Third, they overfit to particular classes of
vulnerabilities by basing program generation on templates tailored
to trigger particular classes of vulnerabilities, like constant-time vi-
olations [7] or specific kinds of transient execution leakage [14, 23].
As such, they fail to generate test cases that sufficiently deviate from
these templates to trigger different classes of microarchitectural

https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3719027.3765066
https://doi.org/10.1145/3719027.3765066
https://doi.org/10.1145/3719027.3765066

CCS 25, October 13-17, 2025, Taipei, Taiwan

vulnerabilities. The crux of the overfitting problem is the lack of a
generic mechanism for detecting exploitable information leakage
without making assumptions on the information leakage path or
the shape of the programs that can trigger the information leakage.
Information flows in a CPU. The ISA defines how information
flows through programs architecturally. For example, an addition
that operates on secret data will produce a result that contains
secret information. Similarly, a branch that depends on secret data
will cause the program’s control flow to carry secret information. In
an ISA-compliant CPU, any architectural information flow defined
by the ISA will materialize in the concrete CPU implementation.
The architectural information flows are thus a subset of all microar-
chitectural information flows. The converse is not always true; in
some cases, the microarchitectural implementation of the CPU will
expose more information than defined by the ISA. Not all excess
information flows in the microarchitecture constitute an informa-
tion leakage vulnerability, however. For example, an entry in some
structure with unset validity bit may contain another security do-
main’s information. If this entry remains invisible to software, this
excess microarchitectural information flow does not constitute an
information leakage vulnerability. We make a key observation that
if an excessive microarchitectural flow affects the timing of a partic-
ular instruction, it becomes architecturally visible as software can
now measure the timing of that particular instruction (i.e., forming
a covert channel for the excessive microarchitectural flow). Hence,
if we can detect the excessive microarchitectural information flows
that affect the timing of any instruction, then we have a generic
mechanism for detecting exploitable information leakage.
MileSan. The Microarchitectural leakage Sanitizer (MileSan) is a
new mechanism that detects microarchitectural leakage for random
test programs, CPU implementations, and memory locations that
are tagged as secret. MileSan utilizes the insight that microarchitec-
tural information leakage vulnerabilities can be detected based on
the difference between architectural and microarchitectural infor-
mation flows from the secret. MileSan calculates architectural flows
with software-level taint tracking when considering the program
and secret memory locations (i.e., taint sources), and microarchi-
tectural flows through (dynamic) hardware-level information flow
tracking [2, 43, 45, 49] when executing such programs and consid-
ering the same secret memory locations. To detect whether the
excessive microarchitectural information flows can ever become
architecturally visible, MileSan checks for the propagation of such
flows to the Program Counter (PC). A tainted PC signals the exis-
tence of a secret-transmitting instruction in the test program with
secret-dependent execution timing, resulting in a covert channel
that transmits the secret information. Hence, MileSan does not
assume any microarchitecture-specific source or sink components,
enabling the detection of exploitable microarchitectural leakage
in a generic way. We have applied MileSan on Proof of Concepts
(PoCs) from previous microarchitectural fuzzers to discover that in
fact a third of them are not exploitable (i.e., there exists no covert
channel that transmits the secret information). In the remaining
cases, MileSan shows which microarchitectural component can
transmit the secret information.

RandOS. An architectural taint explosion due to a tainted pointer or
PC blinds all potentially excessive microarchitectural information

Tobias Kovats, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi

flows. In addition to enabling the detection of exploitable infor-
mation leakage, MileSan enables the generation of random test
programs by leveraging Taint-Aware In-Situ Simulation (TAISS), a
novel technique that allows arbitrarily complex computations on
tainted data to create interesting microarchitectural information
flows, while avoiding architectural taint explosions. TAISS enables
the generation of random programs with strictly-determined archi-
tectural information flows of tainted data without assuming any par-
ticular vulnerability or a class of vulnerabilities. Leveraging TAISS,
we build RandOS, an RTL fuzzer that generates fully-randomized
operating systems (without relying on any template), consisting of
randomized instructions running in randomized address spaces and
privilege levels which we collectively refer to as domains. TAISS
enables RandOS to perform computations on tainted (secret) data
in taint source domains without triggering architectural taint ex-
plosion and closing all architectural information flows of tainted
data to taint sink domains. RandOS detects microarchitectural vul-
nerabilities through taint flows to the PC, flagged by MileSan. The
mapping of taint source and sink domains flexibly captures various
classes of microarchitectural vulnerabilities, without overfitting
towards any particular case. To provide some examples, a tainted
PC in the taint source domain signals intra-domain leakage, like the
various classes of intra-domain Spectre or constant-time violations,
while a tainted PC in a taint sink domain signals the detection
of cross-domain information leakage, like cross-domain Spectre,
Meltdown or Microarchitectural Data Sampling (MDS) type vulner-
abilities [1, 3, 6, 8, 9, 28, 30, 32, 34-36, 39, 40, 44, 47, 50-53, 56-58].

We evaluate RandOS on a set of RISC-V processors of various
complexities (Kronos [29], CVA6 [59], Rocket [4], BOOM [5] and
OpenC910 [13]) and demonstrate that RandOS is effective in dis-
covering a diverse set of known and new vulnerabilities. RandOS
provides a 4.5% speedup in comparison with SpecDoctor, the state
of the art template-based microarchitectural fuzzer that finds ex-
ploitable information leakage. In addition, MileSan detects 19 new
microarchitectural vulnerabilities triggered by RandOS, including
previously undiscovered constant-time violations and Spectre-V1
on OpenC910, cross-privilege MDS and Spectre-SLS on CVA6, and
transient Meltdown though the TLB on BOOM.

Contributions. Our contributions are as follows:

e We introduce MileSan, the first microarchitectural leakage
sanitizer that is capable of detecting exploitable information
leakage. Using MileSan, we find that a third of the PoCs from
existing microarchitectural fuzzers are in fact false positives.

o Relying on MileSan for detection and program generation,
we build RandOS, a new microarchitectural fuzzer that con-
structs fully randomized operating systems for exploring
microarchitectural information flows within and across se-
curity domains.

e We evaluate RandOS on five RISC-V processors with varying
complexity and show that it is 4.5% faster than SpecDoctor
and discover a diverse set of unknown vulnerabilities, rang-
ing from constant-time violations of single instructions to
various types of transient execution vulnerabilities, includ-
ing Spectre-SLS, MDS and Meltdown-like cross-privilege
leakage through the TLB.

MileSan: Detecting Exploitable Microarchitectural Leakage via Differential Hardware-Software Taint Tracking

Ethical considerations and open sourcing. We initiated respon-
sible disclosure with the developers of affected CPUs. Additional
information including the source code of MileSan and RandOS can
be found in the following link: https://comsec.ethz.ch/milesan

2 Background

In this section, we provide background on RISC-V, information flow
tracking, microarchitectural pre-silicon fuzzing, and its overfitting
problem.

2.1 RISC-V

RandOS targets RISC-V [55], which is a free and open Instruction
Set Architecture (ISA) that is well-represented in the open-source
hardware community. RISC-V consists of a base integer ISA and ex-
tensions such as F (floating-point), D (double-precision), M (integer
multiplication and division), A (atomic), and C (compressed instruc-
tions). Compared to other established ISAs, the RISC-V ISA has
relatively few instructions. RISC-V commonly supports up to three
privilege levels: machine (M), supervisor (S) and user (U) mode.
The M mode is the only mandatory privilege level. Interrupts and
exceptions allow transitioning upward in the privilege hierarchy,
and the mret and sret instructions allow transitioning downward.
RISC-V supports virtual memory in S and U modes.

2.2 Information flow tracking

Information Flow Tracking (IFT), also known as taint tracking, mon-
itors the influence of sources on sinks, represented by taint. Dynamic
IFT (DIFT) tracks information flows at execution time depending
on the program’s (i.e., software DIFT) or hardware design’s (i.e.,
hardware DIFT) inputs. In comparison, Static IFT (SIFT) calculates
the information flows before execution. Information flows can be
explicit (e.g., the result of an addition is affected by both operands)
or implicit (e.g. a variable’s value assignment depends on which
side of a branch is taken). Certain information flows quickly lead
to the creation of more information flows in the program or design,
to the point that they can cover all possible information flows in-
side a program or a hardware design. This phenomenon is known
as taint explosion [26, 41] which typically happens when memory
pointers or control flows get tainted. Software IFT is implemented
by tracking how the information flows with respect to the instruc-
tions defined in the ISA [27, 31]. In hardware, sinks are influenced
through the circuit semantics. Hardware DIFT is implemented by
automatically inserting additional circuitry to track dependencies
dynamically [2, 43, 45, 49]; such tracking has been used in the past
for integrity and confidentiality enforcement [21, 22], timing flow
identification [33] and information flow isolation [33].

2.3 Pre-silicon microarchitectural fuzzing

Traditionally, discovering microarchitectural vulnerabilities involves
manually writing test cases and expert reasoning about the microar-
chitecture. This process is laborious and it is easy to miss cases.
Pre-silicon microarchitectural fuzzers aim to automatically uncover
such vulnerabilities and increase the confidence in the design. Mi-
croarchitectural fuzzers must consider the following aspects.

Design preparation. Before fuzzing, some microarchitectural
fuzzers require the user to prepare the design under test (DUT).

CCS ’25, October 13-17, 2025, Taipei, Taiwan

This enables instrumentation for coverage feedback [14, 23] or
monitoring particular microarchitectural structures [7, 14, 23].
Program generation. Once the DUT is set up, the fuzzers generate
programs for testing the DUT. Usually, program generation requires
templates or smart seeds derived from known vulnerabilities [17,
23]. Some fuzzers rely on coverage feedback to improve program
generation in subsequent rounds [14, 23].

Bug detection. Finally, the fuzzers might detect microarchitec-
tural vulnerabilities in the DUT when running the programs. Prior
work either relies on introspection to monitor contents of specific
microarchitectural structures [7, 14, 17] or measurements of the
execution times of specific instructions [23]. They detect a vulnera-
bility when the expected and observed behavior somehow deviate.

2.4 Overfitting in microarchitectural fuzzers

Existing pre-silicon microarchitectural fuzzers make certain as-
sumptions to make their program generation and bug detection
tractable. First, they assume that microarchitectural leakage paths
of known and unknown vulnerabilities match closely [14, 17, 38].
Based on this assumption, they tag specific microarchitectural struc-
tures where information may leak from (source components) or to
(sink components). This means that they fail to account for other
leaky structures when selecting sources, or detect false positives
when flagging leakage to selected sinks that remain architecturally
inaccessible. Second, they overfit to particular vulnerabilities, like
Spectre or Meltdown [17, 38]. They follow mutation-based ap-
proaches using seed programs that trigger particular vulnerabilities
and therefore struggle to generate programs that are sufficiently
different from these original seeds to trigger different vulnerabil-
ities. Third, they usually look for a particular class of vulnerabil-
ities, such as constant-time violation [7] or transient execution
leakage [14, 17, 23]. They therefore base their program generation
mechanisms on templates derived from PoCs that trigger partic-
ular classes of vulnerabilities and cannot generate test cases that
deviate sufficiently from these templates to trigger different classes
of vulnerabilities.

The first assumption leads to hardware overfitting, as vulnera-
bilities are assumed to leak through particular sources and sinks
in a given microarchitecture. The second and third assumptions
lead to software overfitting, as vulnerabilities are assumed to be trig-
gered by specific programs. We can alleviate hardware overfitting
using a generic mechanism that can detect any exploitable infor-
mation leakage. Furthermore, if this mechanism can be program
agnostic, then it would enable the generation of arbitrary programs,
alleviating software overfitting. Designing such a mechanism and
effectively using it bring certain challenges which we discuss next.

3 Overview of Challenges

It is not immediately clear how we can distinguish architectural
from microarchitectural information flows in a microarchitecture-
agnostic manner and detect whether the difference can be architec-
turally observed. It is also unclear how this can help us generate

https://comsec.ethz.ch/milesan

CCS 25, October 13-17, 2025, Taipei, Taiwan

random programs for fuzzing. These points lead us to our first
challenge:

Challenge 1. Design a generic mechanism for detecting ex-
ploitable information leakage and facilitating program gener-
ation.

Section 4 introduces MileSan, a microarchitectural leakage sani-
tizer that leverages differential hardware-software taint tracking to
detect exploitable information leakage. MileSan relies on the key
observation that software-level taint tracking considers expected
architectural information flows, while hardware-level taint tracking
considers all microarchitectural information flows in a given CPU
implementation. Microarchitectural information leakage emerges
as the architecturally observable difference between the two. For
a CPU that implements the ISA correctly, the difference between
the two levels of information flow is only observable if it affects
the timing of an instruction that acts as the covert channel. This
insight allows MileSan to provide a generic detection mechanism
for exploitable information leakage that only considers memory as
the taint source and the PC as the taint sink since a variable-time
instruction leads to information flows to the PC. To facilitate pro-
gram generation, MileSan employs Taint-Aware In-Situ Simulation
(TAISS), a novel mechanism that relies on software taint tracking
during program generation to avoid architectural taint explosion
that blind microarchitectural flows. Our next challenge is using
MileSan for designing an effective microarchitectural fuzzer:

Challenge 2. Employ MileSan for effective microarchitectural
fuzzing.

Section 5 introduces RandOS, a new microarchitectural leakage
fuzzer that leverages MileSan for program generation and informa-
tion leakage detection. RandOS generates random test cases with
strictly-determined architectural information flows of secret data.
A test case generated by RandOS contains randomized data and
instructions across randomized address space layouts and privi-
lege levels, interacting through system calls, exceptions and shared
memory, akin to a fully random operating system. Given that vulner-
abilities may be triggered by complex interactions between various
components of a complex test case, understanding the vulnerability
and triaging the root cause of the information leakage become a
challenge:

Challenge 3. Identify and triage information leakage.

Section 6 describes RandOS’s triaging mechanisms, which shorten
and simplify leakage-revealing test cases that originally contain up
to several thousands of instructions. These mechanisms allow us
to identify how the information is leaked and the instructions that
contribute to the leakage. As an example, using these mechanisms,
we could triage a complex Meltdown-like vulnerability that relies
on speculative execution and is (only) observable through the TLB.

Tobias Kovats, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi

add se@, a0, ail

Listing 1: An example of explicit information flows from a@
to s0@. a0 is tainted.

‘ beq a0, al, target_addr
L

1

Listing 2: An example of implicit information flow from a1
to the program counter. al is tainted.

4 MileSan

This section introduces MileSan, a microarchitectural leakage sani-
tizer that allows detection of arbitrary microarchitectural leakage
vulnerabilities. We introduce the relevant concepts, namely archi-
tectural and microarchitectural information flows and observability
in Sections 4.1 to 4.3. We then discuss taint-aware in-situ simulation,
the core MileSan mechanism for treating architectural information
flows to enable arbitrary program generation in Section 4.4. Finally,
we discuss MileSan in the context of architectural isolation domains
such as address spaces and privilege levels where information can
leak microarchitecturally in Section 4.5.

4.1 Architectural information flows

Definition. Architectural Information Flows (AIFs) are information
flows derived from the ISA. They can be either explicit or implicit.
For example, arithmetic instructions explicitly propagate informa-
tion flows from their source registers to their destination registers.
Listing 1 shows an add instruction where the source register ao is
tainted. Execution of this instruction explicitly taints the destina-
tion register s@. In contrast, the execution of a conditional branch,
like the beq in Listing 2, implicitly propagates taint from the source
register to the PC. Both for conditional and unconditional branches,
the sequence of PC values, and thus the following sequence of
executed instructions, is determined by the values of the branch’s
operand registers. Therefore, if the PC gets tainted, all subsequent
instructions also carry an implicit information flow originating in
the values of the source registers of previous branches, and are thus
tainted. This effect is a case of architectural taint explosion [26, 41],
which we need to avoid when using MileSan as we will show in
Section 4.3. Another case of architectural taint explosion which
we should avoid is tainting memory pointers, which can lead to
tainting the PC (e.g., through a possible page fault).
Implementation. To the best of our knowledge, there is no open-
source solution for tracking bit-wise information flows through
RISC-V programs. To implement software IFT for RISC-V programs,
we leverage the observation that explicit information flows of in-
structions can be directly derived from the taint propagation rules
of the corresponding RTL macro cells [43]. We provide a full list
of the correspondence between arithmetic instructions and RTL
macro cells in Table 6 in the Appendix. We leverage our imple-
mentation of software IFT when guiding program generation as
discussed in Section 4.4.

MileSan: Detecting Exploitable Microarchitectural Leakage via Differential Hardware-Software Taint Tracking

a))
Tainted Not 1 Tainted .
0 ainted ! 1 Tainted

Figure 1: An example of microarchitectural information
flow [49].

4.2 Microarchitectural information flows

Definition. Microarchitectural Information Flows (MIFs) are the
logical information flows in the CPU’s microarchitectural imple-
mentation. Figure 1 shows an example MIF through an AND gate.
Depending on actual and taint values in the design at a given time,
the gate’s output will be tainted or not. Hardware taint tracking cap-
tures these flows and can be expanded to an entire design [21, 43].
In CPUs, MIFs are a superset of AlFs, as any information flow that
is architecturally observable materializes in the microarchitecture,
which concretely implements the architectural specification.

To improve performance, the microarchitecture typically imple-
ments caches and buffers to hide memory latency, may execute
instructions out of order or speculatively, and may employ data-
dependent optimizations [12, 28, 30, 34-36, 50, 51, 53]. For example,
the latency of a load instruction depends on the contents of the
cache, which is determined by the addresses of previous memory
operations. Thus, the address of the load determines the number
of cycles that the CPU must wait until it can perform computa-
tions that depend on the requested data, introducing new MIFs to
the PC (through timing). Hence, these performance enhancements
introduce MIFs that are disjoint from AIFs.

Contrary to AIFs to the PC that determine the architectural
control flow, these MIFs to the PC determine the microarchitec-
tural valuations of the PC over time, i.e., the microarchitectural
control flow [11], and not the architectural sequence of PC values.
This results in a microarchitectural taint explosion, since the timed
sequence of instructions executed on the CPU results in the prop-
agation of the MIFs to all architecturally observable elements in
the CPU, such as registers or memory, whose sequences of val-
ues over time depend on the microarchitectural control flow. The
difference between architectural and microarchitectural taint ex-
plosions is subtle but crucial: architectural taint explosions emerge
because an instruction determines the architectural PC values based
on its tainted input. However, microarchitectural taint explosions
emerge because an instruction determines the particular points in
time when the PC takes its architectural values based on its tainted
input (i.e., forming a timing side channel). As we will soon discuss,
such microarchitectural taint explosions enable MileSan to capture
exploitable information leakage.

Implementation. We rely on recent work on hardware DIFT [43,
45] to track the MIFs in the CPU. We preliminarily instrument
the CPUs with either CellIFT [43] or HybriDIFT [45], which allow
tracking taints in the CPU automatically during program execution.

4.3 Observability

Definition. An information flow is said to be architecturally ob-
servable if it influences the valuation of some architecturally visi-
ble component at some point in time. All AIFs are architecturally

CCS ’25, October 13-17, 2025, Taipei, Taiwan

observable, as they are the expected flows from the ISA and there-
fore must materialize in the architecturally observable elements at
commit time. Yet not all MIFs are architecturally observable. For
example, a MIF in the design may be cleared by unsetting a validity
bit, without ever becoming architecturally observable. Similarly, a
MIF to a physical register might remain inaccessible as long as no
architectural register maps it.

Microarchitectural information overflows. Microarchitectural
Information Overflows (MIOs) are the architecturally observable
differences between MIFs and AIFs.

MileSan foundation: MIO = obs. [MIF - AIF]

While architectural taint explosions conceal MIOs due to the
abundance of AIFs, microarchitectural taint explosions can am-
plify MIOs. This results from the fact that only very few MIFs are
needed to trigger microarchitectural taint explosions, which can
be observed from any architectural component in the CPU, such
as memory, PC or the register file. Contrary to their architectural
counterpart, microarchitectural taint explosions can thus be lever-
aged to expose MIOs. However, in a correct CPU implementation,
there can be no MIO that violates the ISA. Hence, MIOs can only
affect the microarchitectural valuations of some architecturally vis-
ible components over time, rather than the sequence of the values
on these architecturally visible components. This is because the
architectural sequence of values is strictly determined by the ISA.
In addition, as soon as MIOs affect the commit time of some instruc-
tion, they propagate to the PC, and as such become architecturally
observable and can be measured from software through timing.
MileSan. MileSan leverages this insight, and monitors taint propa-
gation to the PC as taint sink. This ensures that any flagged leakage
is architecturally observable, contrary to prior work that detects
leakage to selected microarchitectural buffers [14, 17, 38] whose
contents might remain architecturally hidden.

4.4 Taint-aware in-situ simulation

To leverage MileSan for generating arbitrary test cases (i.e., pro-
grams), the only requirement is avoiding architectural taint explo-
sions that blind MIOs, yet involving computation on tainted data
to potentially form MIOs. We achieve this with a novel technique
which we refer to as Taint-Aware In-Situ Simulation (TAISS). TAISS
enables arbitrary computations on tainted data by providing an
interface that allows a fuzzer to query the architectural values and
taints during each step of the program generation.

First, the fuzzer selects the arbitrary memory regions it wishes
to taint. TAISS then provides a set of safe instructions (including
operands), that the application can append to the program without
triggering an architectural taint explosion. At the start of program
generation, all instructions are allowed because taint has not yet
been introduced into the data flow. Once the application chooses to
append an instruction that loads tainted data, memory operations
with tainted addresses as well as branches with tainted operands are
forbidden. TAISS then computes the architectural taint propagation
for the instructions that the application chooses to append to the
program: for memory operations, it tracks the tainted and untainted
memory regions. For arithmetic instructions, it computes the taint

CCS 25, October 13-17, 2025, Taipei, Taiwan

Figure 2: Architectural taint access control restricts access to
tainted data to taint source domains D; = (L4, Py). MIOs can
cross layout- or privilege boundaries (@) and @ respectively),
and violate those the access policies.

propagation from the source to the destination registers based
on the software IFT rules. Thus, for each instruction added to the
program, TAISS precisely tracks the information flow of tainted data
through the program. Fuzzers (or other applications) can leverage
TAISS to generate programs that avoid architectural taint explosion
by guiding architectural taint propagation.

4.5 Domain support

Modern CPUs implement isolation mechanisms such as privileges
and virtual address spaces that restrict access to architectural el-
ements, such as certain control and status registers or different
regions of memory. These isolation mechanisms allow running
untrusted software on a host system by strictly confining its ca-
pabilities, ensuring that the software cannot access any resource
that was not explicitly allocated to it. However, MIOs can cross
privilege and/or address space boundaries and thus violate these
architecturally-enforced isolation mechanisms.

To allow the users of MileSan to generate arbitrary multi-domain
programs and reason about isolation mechanisms in terms of MIOs
and taint propagation, we extend taint sources and sinks to different
ISA-defined isolation mechanisms. To this end, we define taint
address space layouts, taint source and sink privileges, and taint
source and sink domains as follows:

Definition 1: Taint layouts. Taint source and taint sink
layouts, denoted by L, (respectively L_), are sets of virtual
address space layouts that (respectively do not) map pages
containing tainted data or code that may interact with it.

Definition 2: Taint privileges. Taint source and taint sink
privileges, denoted by P, (respectively P_), are sets of privi-
leges that are granted (respectively denied) access to tainted
data.

Definition 3: Taint domains. Taint source and taint sink
domains, denoted by D, (respectively D_), are pairs of layouts
and privileges, i.e. D; = (Lj, Pr), i, j, k € {+ —} where

. {+ ifj=k=+
=

— else

Tobias Kovats, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi

BOOT— D+ — D —SS—» D_ — D_ —TERM

Figure 3: Overview of an example RandOS program. Start-
ing from the initial BB, an arbitrarily long chain of fuzzing
BBs, traversing various privileges and layouts, leads to the
terminating BB that halts execution. The colors and patterns
illustrate the taint source (D;) and sink (D_) domains, see
Figure 2.

Figure 2 illustrates the resulting access control policies at the
architectural level. MileSan can detect MIOs that remain within
the same domain (e.g., constant-time violation [7] or intra-domain
Spectre [28]) when it detects a tainted PC in the source domain,
and MIOs across domains (e.g., Meltdown [30] or cross-domain
Spectre [56, 57]) when it detects a tainted PC in the sink domain.
These concepts enable leveraging MileSan to capture arbitrary
leakage scenarios as we will demonstrate in the next section.

5 RandOS

We introduce RandOS, a microarchitectural fuzzer that leverages
MileSan for program generation and leakage detection. RandOS
produces random and unbiased test cases that traverse address
space layouts and privileges while maintaining a strictly-defined
architectural information flow of secret data, showcasing the ca-
pabilities of MileSan’s TAISS. The resulting programs are akin to
random operating systems, composed of random instructions run-
ning in different privileges and virtual address spaces. For each
test case, RandOS randomly selects a domain to be trusted (i.e.,
taint source) and others to be untrusted (i.e., taint sinks). RandOS
can automatically trigger and detect various known and unknown
microarchitectural information leakage vulnerabilities by check-
ing if the PC gets tainted in any of the sink domains (i.e., taint
sinks). This means we do not have to make any assumption on the
required sequences of instructions or involved microarchitectural
components, demonstrating the generality of MileSan.

The randomized OS structure adopted by RandOS consists of a
basic block (BB) executed in M-mode that boots the CPU, followed
by a sequence of BBs that execute in either trusted or untrusted
domains in different privilege levels and address spaces. Execution
finishes with a terminating BB that signals the CPU to halt. Figure 3
depicts an overview of the resulting chain of BBs. The BBs perform
random computations and interact across privilege levels and vir-
tual address spaces through system calls, machine calls, exceptions
and shared memory.

For a given test case, either the machine mode running in the
physical address space, or kernel or user mode, running in particular
virtual address spaces, is tagged as trusted (taint source domain) and
can operate on tainted data. Execution in taint source domain must
carefully manage the computation on taint in order to avoid archi-
tectural taint explosions. TAISS thus blocks the use of tainted data
for control-flow decisions and operations with memory pointers in
the taint source domain. Random computations overwrite tainted
registers with untainted data before entering taint sink domains
from the taint source domain. Therefore, BBs executing in taint sink

MileSan: Detecting Exploitable Microarchitectural Leakage via Differential Hardware-Software Taint Tracking

Figure 4: An example data memory mapping. The topmost
data page holds tainted data and can only be accessed by
domains in D, because only those domains have both a layout
that maps the page to it and the permissions set accordingly.
Both domains in Dy and D_ can access shared data pages if
they have appropriate layouts and permissions (), while
unshared data pages might only be accessible from a single
privilege and layout (@).

domains can never architecturally encounter tainted data as all ar-
chitectural information flows remain closed at all times, i.e., there is
no architectural information flow of tainted data from taint source
to taint sink domains. RandOS can thus leverage MileSan to detect
leakage in taint source and sink domains: if the PC gets tainted
while executing in a taint source domain, the test case has triggers
intra-domain leakage, e.g., a variant of intra-domain Spectre or a
constant-time violation. If the PC gets tainted while executing in a
taint sink domain, the test case has triggered cross-domain leakage,
e.g., Meltdown or cross-privilege Spectre.

5.1 Memory preparation

Taint sources. RandOS starts by reserving randomly chosen physi-
cal memory frames for the page tables, and booting and terminating
BBs. RandOS then distributes a set of data frames, filled with ran-
dom content, in random offsets in physical memory. Using MileSan,
RandOS taints a random subset of these data pages to later inject
taint into the data flow and track taint propagation during pro-
gram generation. The taint sources are therefore architectural only,
avoiding overfitting towards specific microarchitectural leakage
sources as discussed in Section 2.4.

Architectural isolation. To enforce architectural isolation be-
tween taint source and sink domains, RandOS relies on page tables.
RandOS iterates over the list of physical page frames and checks
for each physical frame whether it has already been reserved for
code, page tables or data. We discuss each case next.

If the frame is reserved for the booting BB, then RandOS does
not map it in any of the address space layouts as the test case
executes it in M-mode only. RandOS maps the frame that contains
the terminating BB as executable in all privilege levels in all layouts.
For the rest of the frames that contain code pages, RandOS maps
each code page randomly to one of the domains. For data pages
that are untainted, RandOS maps them to a randomized selection of
domains as shared memory. Lastly, and perhaps most importantly,
for frames that contain a tainted data page, RandOS maps it to a
D, domain. RandOS also optionally maps the tainted data page in
the L, layout and P_ privilege without permissions to detect cases
where the CPU microarchitecturally accesses tainted data without

CCS ’25, October 13-17, 2025, Taipei, Taiwan

Figure 5: BBs executing in D, have strictly separated tainted
(@) and untainted (@) data flows. The untainted data flow af-
fects the registers used by control flow instructions, creating
interdependencies between the control flow and untainted
data flow. The tainted data flow may never architecturally
spill to the untainted data flow, as this would trigger archi-
tectural taint explosions when the input register of a control
flow instruction gets tainted. Since BBs executing in D_ do
not have access to tainted data, their architectural data flows
remain untainted.

the right privilege. Figure 4 illustrates a simple example of data
page mapping in a RandOS test case. After deciding the mapping
of code and data between different domains, RandOS proceeds to
generate the randomized code in each domain.

5.2 Code generation

Starting execution. The code generation begins with the booting
BB that brings the CPU into a predefined state. It is composed of
a fixed sequence of instructions, completing with a control flow
instruction that guides execution into the first randomized fuzzing
BB. RandOS randomly chooses the target (taint source or sink)
domain that this fuzzing BB executes from and must therefore find
a free memory region that is mapped appropriately to place the BB.
After identifying a suitable memory location, RandOS generates
the BB using TAISS instruction by instruction in the taint source
domain and otherwise randomly in the taint sink domains. We
discuss both cases next.

Executing in taint source domains. The BBs executing in taint
source domains have access to tainted data. They load tainted data
from memory and involve it in their computations, thus naturally
spreading taint to microarchitectural structures, such as the register
file, caches or load and store buffers. However, control flow instruc-
tions and memory pointers should not consume tainted data, as this
would trigger an architectural taint explosion that overshadows
microarchitectural leakage that MileSan aims to detect. Therefore,
RandOS must carefully orchestrate architectural information flow
of tainted data. RandOS relies on MileSan’s TAISS to achieve this.
It thus queries MileSan during each step of the program generation
to obtain the architectural taints in memory and registers. It then
avoids architectural taint explosions by never providing tainted
registers as operands to control flow instructions or as memory
pointers, while allowing for otherwise random computations.
Executing in taint sink domains. RandOS does not grant BBs that
execute in taint sink domains architectural access to tainted data
pages, and no architecturally accessible components store tainted
data when the test case transitions from a taint source into a taint
sink domain. Therefore, the computations in the taint sink domains
remain random and unconstrained with the only restriction that
the control flow must remain valid. This means that the execution

CCS 25, October 13-17, 2025, Taipei, Taiwan

must continue at the beginning of the next BB once the current BB
has finished.

Domain transitions. RandOS test cases must be able to arbitrarily
transition between taint source and sink domains. To do so, Ran-
dOS needs to prepare registers to point to the locations of the next
BBs, considering their physical location, address space and privi-
lege. These can be general purpose registers (GPRs) used as input
operands for branches, or control and status registers (CSRs) used
by system calls and exceptions. Similar to [42], RandOS employs
a number of finite state machines (FSMs) that prepare registers to
hold these target addresses, while involving only untainted regis-
ters in their computations to ensure that the target register remains
untainted. Those FSMs run asynchronously, interleaved by other
random instructions. The random instructions that return untainted
results may affect the computations of the FSMs, as they do not risk
propagating taint to the register being prepared. Once a FSM has set
up a register, a control flow instruction can consume it and arbitrate
execution to the next BB. This essentially results in two separated
data flows: The untainted data flow, that may affect the control
flow, and the tainted data flow, that may never architecturally spill
to the untainted data flow. Figure 5 illustrates this concept.
Finally, before execution can traverse from a taint source to a
taint sink domain, we clear all tainted architectural components
that the taint sink domain could access. RandOS therefore queries
MileSan to obtain the list of tainted registers and shared memory
locations and adds random computations that overwrite them with
untainted data before allowing the transition to a BB in a taint
sink domain. Therefore, all architectural information flow paths of
secret data from taint source to sink domains remain closed at all
times.
Terminating execution. After some number of fuzzing BBs, the
test case finishes execution with the terminating BB that signals
the CPU to halt. RandOS maps the terminating BB executable to
all domains. Therefore, any BB from any domain can enter it when
RandOS has generated sufficiently many BBs.

6 Leakage Identification

RandOS produces test cases that can be hard to reason about due
to their length and random cross-domain transitions. To ease root
cause analysis, RandOS provides reduction facilities that simplify
the test cases to the minimal set of instructions and tainted data
that are required to reveal the leakage, as depicted in Figure 6.
Primer and leaker instructions. Leakage can have various root
causes. In the simplest case, single instructions with data-dependent
execution times cause information flows from their operands to
the PC [11]. However, microarchitectural optimizations that trigger
leakage might require more complex instruction patterns composed
of primer and leaker instructions, as introduced in Definition 4.

Definition 4: Primer and leaker instructions. The set of
primer instructions Iprime prepares the microarchitectural
buffers with sensitive data while the leaker instruction ije ¢
exposes the leakage architecturally through timing.

While several primer instructions might be required to prime the
CPU into a specific microarchitectural state, one leaker instruction

Tobias Kovats, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi

addi [\TENTORY CPU i

o a
o
o <
=
AN
o o
o
o <
B

=+—| NM[EMORY CPU
rem [rem

divw
blt
1b

o DI:I PC| | |owes—

o o
o
o <
=
ﬁ\

—_—

primer instructions leaker instruction

Figure 6: Program reduction overview. Some test case gener-
ates architectural and information flows
that leak secret data to the PC. Reduction starts skipping
instructions from the back to identify the leaker instruc-
tion @. It then skips instructions from the front to find the
first primer instruction @. Taint reduction then identifies
the minimal set of tainted address required to trigger the
leakage @ and dead code reduction identifies code regions
that contribute to the leakage non-architecturally @). The
result is a minimal test case, consisting of possibly multiple
primer instructions and a single leaker instruction, of which
some might contribute to the leakage non-architecturally
(e.g., through transient execution), and the minimal set of
tainted memory locations required to trigger the leakage.

BOOT D_ —»'Dy

REST

Figure 7: Control flow reduction.) skips BBs from the back
until the leakage disappears. @ replaces BBs from the front
with a restoring BB (REST). The remaining BB contains the
leaker instruction.

suffices to finally propagate the taint to the PC. In essence, the leaker
instruction acts as the covert channel that leaks the information
from the primer instructions. Having several primer instructions
hampers manual examination of the test case and calls for reduction
facilities.

Identifying the leaker instruction. Control flow reduction aims
to shorten test cases as much as possible while preserving the
microarchitectural information flow to the PC. It thus starts by
iteratively skipping BBs and replacing the last instruction in each
BB - that is the instruction that moves the PC to the next BB - with a
jump to the terminating BB, starting from the penultimate BB at the
end of the test case (@) in Figure 7), before re-simulating the RTL.
Importantly, since the terminating BB is mapped for each privilege
and layout, any BB can reach it with a jump, independent of the

MileSan: Detecting Exploitable Microarchitectural Leakage via Differential Hardware-Software Taint Tracking

domain it executes from. When the leakage disappears after RTL re-
simulation, the control flow reduction re-includes the most recently
skipped BB and continues this strategy on an instruction level,
starting with the last instruction, replacing each instruction in a BB
with a jump to the terminating BB until the leakage disappears again.
The most recently removed instruction is the leaker instruction.
If the leaker instruction is executed from a taint sink domain, the
shortened test case triggers leakage that violates the imposed access
control policies discussed in Section 4.5.

Isolating the primer instructions. To identify the first instruction
that is necessary to prime the microarchitecture, RandOS reduces
the test case further from the front. Concretely, starting with the
first BB up until the BB that contains the leaking instruction, a BB
is skipped and the initial BB jumps to a restoring BB that sets the ar-
chitectural state (including the taints) according to the skipped BBs
and resumes execution at the next considered BB (@ in Figure 7).
Software IFT provides the required information about architectural
taints and values required for restoration. We then apply the same
procedure at instruction level to find the first primer instruction
required to trigger the leakage. Since this reduction from the front
might change the leakage mechanism, RandOS checks during each
step that removing the leaker instruction removes the leakage as
well, thus ensuring its invariance.

Dead code reduction. RandOS removes code from the test case
by skipping BBs while still keeping them in the program memory.
Despite not being architecturally executed, dead code might con-
tribute to leakage, e.g., through transient execution. To identify
relevant code segments, we first check if removing all dead code
from program memory hides the leakage or not. If the leakage dis-
appears, then dead code is involved in the set of primer instructions.
The reduction then iteratively reduces dead code following a binary
search algorithm until it reveals the minimal contiguous region of
dead code required to trigger the information leakage. This dead
code snippet could correspond to a transiently-executed gadget,
hence its identification might be paramount for understanding the
vulnerability.

Taint reduction. Finally, RandOS reduces the amount of architec-
tural taints to enable a better understanding of the leakage. Initially,
a potentially large amount of taints is present in memory and can be
imported into the microarchitecture through multiple independent
loads, which can interact with each other. To identify the specific
data that is being leaked among all the initially-present tainted data,
we reduce the taint in the tainted data pages following a binary
search algorithm. Similar to dead code reduction, RandOS itera-
tively remove half of the tainted locations from memory until it
finds the minimal number of tainted memory locations required to
triggers the leakage. We thus obtain the exact memory locations of
the leaked information, further facilitating triaging by providing
the specific starting point of the path taken by the leaked data from
its initial location in memory up until the PC.

7 Evaluation

We first evaluate test case generation and execution performance of
RandOS in Section 7.1. We then analyze the performance of RandOS
in discovering known vulnerabilities in Section 7.2, and provide
an in-depth discussion of some of the newly found vulnerabilities

CCS ’25, October 13-17, 2025, Taipei, Taiwan

¥ 100

= @@ Program Generation

Q 75 Il

9 E= ELF Compilation

D50 S s B RTL Simulation

: | 8 U

[}

£

= Kronos Rocket CVA6 BOOM OpenC910
Figure 8: Fuzzing performance breakdown.

g

E 103

< ¢ 8 x ot 5 Kronos

¥ 102 80 AR o e) Rocket

o ? CVA6

>

201 BOOM

S 0OpenC910

=1

e

’_E Ok 1k 2k 3k 4k 5k 6k 7k 8k

#instr

Figure 9: Fuzzing throughput for increasing program length.

in Section 7.3. We implement an end-to-end exploit based on one
of the discovered vulnerabilities, leaking arbitrary kernel memory
from user space in Section 7.4. Finally, we use MileSan to evaluate
the exploitability of PoCs from previous microarchitectural fuzzers
in Section 7.5.

Evaluation setting. We obtained the performance results on 60
threads in a Docker environment running on a machine equipped
with two AMD EPYC 7H12 processors at 2.6 GHz with 1 TB of
DRAM. For RTL simulation, we use Verilator 5.029 and Modelsim
2022.3_1. The performance evaluation in Section 7.1 were carried
out using Modelsim.

Evaluated RTL designs. We evaluated RandOS on five different
RISC-V cores: Kronos, Rocket, CVA6, BOOM and OpenC910. Kro-
nos (commit b857643) is a simple 3-stage 32bit design optimized
for FPGA emulation. It does not support virtual memory and is
therefore only fuzzed in M-mode in a single domain. Rocket (Chip-
yard commit 004297b6) and CVA6 (commit 109f9e9e) are more
complex 5- and 6-stage respectively in-order 64-bit CPUs. BOOM
(Chipyard commit 004297b6) and OpenC910 (commit edc4ad8e)
are a 10- and 9-stage out-of-order CPUs.

Instrumentation. We instrument Kronos, Rocket, CVA6 and BOOM
using CellIFT [43] and OpenC910 using HybriDIFT [45].

7.1 Fuzzing performance

Component-wise fuzzing performance. Test program genera-
tion, compilation and execution (RTL simulation) are factors that
determine the end-to-end fuzzing performance. As illustrated in
Figure 8, the bottleneck is test-case generation for small designs,
and RTL simulation for larger designs.

Length of test programs. Figure 9 shows the fuzzing performance
for increasing program length. Fuzzing throughput increases with
program length and plateaus after around 4k instructions because
the cost of program generation amortizes over the program length,
while RTL simulation does not.

CCS 25, October 13-17, 2025, Taipei, Taiwan

o I Y N R W /\

21 ()

o 20

§1§;<#><)IK><)]'k #)F *)(4\(‘
2 I/ \V/ N4

div divu divw divuw rem remu remw remuw

Figure 10: TTE of known constant-time violations on CVAS6.

N
v

TTE [CPUN]

=N

o u o

N
1

N

v

—-—

S D

-MD Spec-V2 MDS*

o wu
2.
N

SpecV2 Spec-RSB MD Tran

Figure 11: TTE of discovered transient vulnerabilities on
BOOM. *We applied the patch provided by [14] to introduce
an MDS vulnerability into BOOM.

Vuln. Mean Median Std.Dev. Speedup i ‘
Spectre-V1 5h35m 4h12m 3h52m 4.8x
Spectre-V2 7h50m 7h56m 4h40m 3.9x
Spectre-RSB 11h28m 11h28m Oh17m /
Meltdown 6h10m 5h33m 4h33m 5.6x
Trans. Meltdown | 6h59m 7h13m 4h12m 3.8x
cp-Spectre-V2 7h4lm 8h58m 4h32m /
MDS* 6h44m 5h34m 4h33m /
Mean 7h30m 7h16m 3h49m 4.5x

Table 1: TTE statistics of known vulnerabilities on BOOM in
core hours. “MDS patch provided by [14]. TSpeedup relative
to SpecDoctor [23].

7.2 Rediscovery of known vulnerabilities

Classification. RandOS classifies known vulnerabilities based on
the minimal test case obtained during program reduction. If the
leakage is triggered by a single instruction executing with a tainted
operand in a taint source domain, it classifies it as a constant-time
violation. RandOS classifies intra-domain leakage caused by mis-
predicted conditional branches, indirect branches, returns or mis-
ordered loads followed by transiently executed gadgets as Spectre-
V1, Spectre-V2, Spectre-RSB and Spectre-V4, respectively. RandOS
classifies cross-domain leakage caused by page faults, followed by
transient gadgets, as Meltdown or MDS, which can be distinguished
based on the address where the data is leaked from: Meltdown leaks
the data that the page fault loads from, while MDS leaks from an un-
related address that S-mode previously loaded a value from. Finally,
RandOS classifies cross-domain leakage caused by a mispredicted
conditional or indirect branch followed by transient gadgets as
transient Meltdown or cross-privilege Spectre-V2, respectively.

Time To Exposure (TTE). RandOS generated exploitable test
cases for all known vulnerabilities on CVA6 and BOOM. RandOS
discovers all constant-time violations on CVA within minutes as
we summarize in Figure 10. MileSan detects constant-time viola-
tions with only a single execution of the respective instruction

Tobias Kovats, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi

60

Tsol AN A A A A A A /\
NIERVE DYERVE DY RVE DYE DYAN
SRAN VAN VN VAN VAN VAN /4 \!/ N/

o

= il
20 4
': 13 V V Y V \

div divu divw divuw rem remu remw re

Figure 12: TTE of constant-time violations on OpenC910.

with a tainted input operand, which taints the PC due to the in-
put dependent latency of the instruction. Since RandOS effectively
involves tainted data in computations using TAISS, it quickly gen-
erates such a test case. RandOS detects all known transient vul-
nerabilities on BOOM within less than 12 core hours. Figure 11
and Table 1 summarize the results. Compared to SpecDoctor, the
state-of-the-art microarchitectural fuzzer that discovers exploitable
information leakage, RandOS is between 3.8% and 5.6 faster while
detecting several additional vulnerabilities, such as Spectre-RSB,
cross-privilege Spectre-V2 and MDS.

7.3 New vulnerabilities

RandOS discovered numerous new vulnerabilities on BOOM, CVA6
and OpenC910. They include constant-time violations on OpenC910,
as well as transient vulnerabilities on BOOM, CVA6 and OpenC910.
We provide a full list of the discovered vulnerabilities, including 19
new vulnerabilities with the involved domains and covert channels
in Table 2. In the following, we discuss a few interesting cases of
new vulnerabilities.

Exploitable Meltdown on BOOM (CVE-2025-29343). RandOS
discovered a variant of Meldown [30] that allows an unprivileged
attacker in one domain to leak data from another domain by prob-
ing the Translation Lookaside Buffer (TLB) a la TLBleed [18] . The
reduced test case generated by RandOS is depicted in Listing 4 in
Appendix A.1. Concretely, the value of an operand register of a
branch is determined by a series of rem[u] and divw instructions.
The branch is predicted taken, and a gadget is executed transiently.
The gadget loads from a privileged data page and executes an-
other secret-dependent load, which primes the TLB with secret
data. A later load leaks to the PC. Analysis of the signal traces
(using Pathfinder [10]) reveals that while a page fault is triggered,
secret data is nevertheless loaded into the register file. A dependent
load uses the register holding the page-faulting data as address
and encodes the secret in the TLB. While the subsequent load from
the physically indexed cache is blocked, the state of the TLB now
encodes the secret data and leaks it during the next address trans-
lation. While the original program generated by RandOS was long
and complex, our debugging facilities reduced the program to only
a few instructions that are executed architecturally. It identified the
speculatively executed Meltdown gadget as well as the memory
location of the leaked data.

Straight-line speculation on CVA6 (CVE-2025-29340). Ran-
dOS discovered a novel case of straight-line-speculation [58] on
CVAG6 that leaks privileged data from S- to U-mode. Concretely,
while executing in S-mode, an sret instruction is encountered. The
mstatus. SPP bit is set to S-mode, and transient execution contin-
ues after the sret instruction. During the speculative window, a

MileSan: Detecting Exploitable Microarchitectural Leakage via Differential Hardware-Software Taint Tracking

CCS ’25, October 13-17, 2025, Taipei, Taiwan

Vulnerability DUT Covert Channel {P;+} {P_} Previously found by CVE H
Spectre-V1 BOOM DCACHE (S, U} (S, U} [14, 23, 38] /
Spectre-V1-TLB BOOM TLB {S,U} {S,U} [23] /
Spectre-V2 BOOM TLB {S,U} {S,U} [14, 23, 38] /
Spectre-V2-TLB BOOM TLB {S,U} {S,U} / requested
Spectre-V4 BOOM DCACHE (SSU} {SU} [14, 23] /
Spectre-V4-TLB BOOM TLB {S,U} {S,U} / requested
Spectre-RSB BOOM DCACHE (S, U} (S, U} [14, 23] /
Spectre-RSB-TLB BOOM TLB {S,U} {S, U} / requested
Meltdown BOOM TLB {S}/{U} {U}/{S} (14, 17, 23] /
Trans. Meltdown BOOM TLB {S}/{U} {U}/{S} / CVE-2025-29343
cp. Spectre V2 BOOM TLB {S}/{U} {U}/{S} / requested
MDS* BOOM TLB {SY/{U} {U}/{S} [14]% /
Spectre-SLS CVAG6 TLB (S, U} {(S.U} / CVE-2025-29340
cp-Spectre-SLS CVAG6 TLB {S}/{U} {U}/{S} / CVE-2025-29340
MDS CVA6 TLB {S}/{U} {U}/{S} / CVE-2025-46004
Trans. MDS CVA6 TLB (SH{U} {U}/{S} / CVE-2025-46004
divt CVA6 DIV (M,S,U} {M,S,U} [20] /
divut CVA6 DIV (M,S,U} {M,S,U} [7, 20] /
divw' CVA6 DIV (M,S,U} {M,S,U} [20] /
divuw? CVA6 DIV (M,S,U} {M,S,U} [20] /
rem’ CVA6 DIV {M,S,U} {M,S,U} [20] /
remu’ CVA6 DIV {M,S,U} {M,S,U} [20] /
remw! CVA6 DIV {M,S,U} {M,S,U} [20] /
remuw’ CVA6 DIV {M,S,U} {M,S,U} [20] /
Spectre-V1 OpenC910 DCACHE {S,U} {S,U} / requested
Spectre-V1-TLB OpenC910 TLB {S,U} {S,U} / requested
divt OpenC910 DIV (M,S,U} {M,S,U} / CVE-2025-46005
divut OpenC910 DIV (M,S,U} {M,S,U} / CVE-2025-46005
divw? OpenC910 DIV (M,S,U} {M,S,U} / CVE-2025-46005
divuw? OpenC910 DIV (M,S,U} {M,S,U} / CVE-2025-46005
rem’ OpenC910 DIV (M,S,U} {M,S,U} / CVE-2025-46005
remu’ OpenC910 DIV (M,S,U} {M,S,U} / CVE-2025-46005
remw’ OpenC910 DIV (M,S,U} {M,S,U} / CVE-2025-46005
remuw’ OpenC910 DIV (M,S,U} {M,S,U} / CVE-2025-46005

Table 2: Overview of all vulnerabilities discovered by RandOS including the involved leakage paths and domains. {P,} = {P_} =
{S,U} denotes intra-domain leakage both within user and supervisor space, whereas {P,} = {U}/{S},{P-} = {S}/{U} denotes
cross-domain leakage in both directions between supervisor and user space. *MDS patch provided by [14]. T Constant-time
violation triggered by the four respective instruction. #[14] detects MDS only when artificially tainting the relevant buffers.

secret-dependent memory access is executed, encoding secret data
in the TLB. Since the TLB is not flushed during privilege transitions,
a later load from U-mode recovers the secret data from the TLB
through a timing side channel. The original program that triggered
this vulnerability was long and complex, spanning over several
privileges and address space layouts. However, our reduction fa-
cilities reduced the test case s.t. only the relevant instructions and
tainted data remained, allowing us to discover the mechanisms
of the vulnerability through analysis of the signal traces [10]. We
provide the reduced test case in Listing 7 in Appendix A.4.

MDS on CVA6 (CVE-2025-46004). RandOS discovered a case of
MDS on CVA6. S-mode code loads privileged data and involves it
in its computations. At some later point during execution, U-mode
code attempts to load privileged data and triggers a page fault.
However, the privileged data that S-mode has previously loaded is

transiently returned. The speculative window is sufficiently long to
perform a dependent memory access and encode the privileged data
in the TLB. The triaging facilities in RandOS identified the relevant
instructions and the address of the leaked data in the test case.
We include the reduced test case in Listing 6 in Appendix A.3. The
relevant instructions include a load that page faults and a transiently
executed dependent load, similar to a Meltdown-like vulnerability.
However, taint reduction identified the leaked memory location,
which did not match the page faulting address, which helped us
identify the root cause of this vulnerability. RandOS also discovered
a transient version of this vulnerability through a transient window
that is caused by an ecall instruction. We include the relevant
reduced test case in Listing 5 in Appendix A.2.

Constant-time violations on OpenC910 (CVE-2025-46005).
RandOS discovered 8 new constant-time violations on OpenC910,

CCS 25, October 13-17, 2025, Taipei, Taiwan

caused by div[u][w] and rem[u][w]. The root cause is the com-
mon use of the division unit that has data-dependent execution
time.

Discussion. The reason why prior work [14, 23] fail at detecting
the transient execution vulnerabilities is twofold. First, their rigid
program structures fail to account for leakage that requires execu-
tion of architecturally secure code in privileged domains. RandOS
generates programs that actively involve secret data in their com-
putations in privileged domains, while ensuring that no secret data
can architecturally leak to the unprivileged domains. Second, their
insensitive detection mechanisms fail to detect leakage through
coarse grained side channels such as the TLB. Relying on MileSan,
RandOS can efficiently test the execution times of a given program
for all possible tainted input values in a single RTL simulation,
allowing immediate discovery of a possible covert channel that can
leak tainted data.

o la ra, secret

1 la a2, buffer

Evict the TLB, delay t@ results.

beqz t@, correct_target

1d a0, 0o(ra) # Access secret.

andi a@, a0, 1 # Mask out a single bit.

slli a@, a@, 12 # Shift secret bit by page offset.
#
#

e ® N oo

10 add a2, a2, a0 Add secret bit to buffer.
11 1d a2, 0(a2) Encode the secret bit in the TLB.
12 correct_target:

Resume at correct path.

Listing 3: Excerpt of end-to-end exploit to read arbitrary
kernel memory from user mode on BOOM.

7.4 End-to-end exploit on BOOM

To showcase the effectiveness of MileSan in detecting end-to-end
exploitable leakage, we implement a PoC exploit that leaks arbi-
trary kernel memory from user space based on our new transient
Meltdown vulnerability that leaks through TLB on BOOM. Listing 3
shows an excerpt of the exploit. We first evict all entries from the
TLB since sfence.vma cannot be used from user mode. We then
create a transient window through a sequence of floating-point
instructions that delay a subsequent branch decision. During the
transient window triggered by beqz, we access privileged data and
encode a single bit of the secret in the TLB. Probing the TLB later
reveals the secret bit. The end-to-end exploit leaks approximately
1 bit of kernel memory every 2k cycles, corresponding to a band-
width of 1IMbps when BOOM is clocked at 2GHz which is inline
with existing attacks of this nature [23].

7.5 Assessing PoCs from prior work

Using MileSan, we verified the exploitability of various PoCs pro-
vided by prior work. These include constant-time violations [7, 20],
as well as transient vulnerabilities [14, 23]. Note that we tested
for each PoC the relevant version of the CPU, therefore some of
them do not apply to the versions used in the fuzzing campaigns
by RandOS.

Constant-time violations. WhisperFuzz [7] report several constant-
time violations on CVA6. We tested the provided PoCs by Whis-
perFuzz using MileSan by tainting the operand values of the af-
fected instructions. By completeness of the underlying hardware

Tobias Kovats, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi

H Instruction(s) DUT Covert Channel {P,} {P-} H
divuw CVA6 DIV (M} {M}
remw CVA6 DIV M} {M}
c.add CVA6 X {M} {M}
c.sub CVA6 X {M} {M}
c.and CVA6 X {M}y {M}
c.or CVA6 X {M} {M}
c.xor CVA6 X {M} {M}
c.mv CVA6 X {M}y {M}

Table 3: MileSan validation of WhisperFuzz [7] PoCs.

l [Vulnerability = DUT Covert Channel {P,} {P-} [[
Boombard BOOM BPU {S} {U}
Spectre-RSB BOOM ~ DCACHE (s} {s})
Spectre-TLB BOOM TLB {S} {S}

Table 4: MileSan validation of SpecDoctor [23] PoCs.

l l Vulnerability =~ DUT Covert Channel {P;} {P-} l ‘
Spectre-V1* BOOM TLB+DCACHE {S} {S}
Spectre-V2* BOOM TLB {S} {S}
Spectre-RSB* BOOM TLB s} {s)
Spectre-V4 BOOM TLB+DCACHE {S} {S}

Meltdown BOOM TLB {S} {U}
MDs* BOOM TLB {S} (U}

Table 5: MileSan validation of Phantom Trails [14] PoCs.
*These PoCs did not encode the secret into any microarchitec-
tural structures. We therefore added dependent loads, which
the authors used in the remaining PoCs. f Can only be de-
tected when explicitly tainting the load and store buffers.

IFT mechanism [43], the PC must get tainted if the PoC indeed
triggers a constant-time violation. However, our experiments show
that this is not the case for a majority of the PoCs. As we show in
Table 3, more than half of the reported constant-time violations
are in fact false positives of WhisperFuzz. A careful analysis of
the PoCs reveals that WhisperFuzz accidentally compares pairs of
programs of different instruction counts, naturally leading to these
false positives [25].

Transient vulnerabilities. We test the manually-crafted PoCs
provided by SpecDoctor [23] and Phantom Trails [14] for their re-
ported transient leakage vulnerabilities. SpecDoctor provides PoCs
that include covert-channel transmission of the secret. However,
only some PoCs of Phantom Trails transmit the secret, while others
only load secret data into the register file. In those cases, we manu-
ally added secret-dependent loads. We tested the PoCs by tainting
the memory locations that hold secret data and observing taint
propagation to the PC. Tables 4 and 5 depict results including the
identified covert channels and affected domains.

8 Discussion

Hardware DIFT without instrumentation. Instead of a Celll[FT
instrumentation, another way of tracking microarchitectural infor-
mation flows is to repeat the execution of a program on the CPU

MileSan: Detecting Exploitable Microarchitectural Leakage via Differential Hardware-Software Taint Tracking

with many different values of the tainted data and observe whether
the PC changes. However, the state space is large, and leakage
is often related to corner cases, which are hard to encounter by
chance, but are entirely covered by CellIFT or similar instrumenta-
tions [43, 45, 49].

Precision. Hardware DIFT can theoretically induce false posi-
tives [43]. We did not encounter such a case in our evaluation.
Simulator bugs. Due to the additional hardware constructs in-
troduced by CellIFT, simulators sometimes produce incorrect re-
sults [46]. Due to a bug in Verilator, we have encountered numerous
false positives that disappeared in commercial simulators. Contrar-
ily, we have encountered a bug in commercial simulators, where
the instrumentation directly affects the valuations of the original
CPU signals. While this can also create false positives, it practi-
cally breaks the test program’s control flow in all cases. Such mis-
simulated programs can then be excluded from further analysis. We
encourage future work on RTL simulator reliability, similar to [46].
Impact of discovered vulnerabilities. The maintainers of BOOM
and CVA6 plan to fix vulnerabilities caused by meltdown-type
leakage in future generations. This includes CVE-2025-29343, CVE-
2025-29340 and CVE-2025-46004. The authors of [24] propose a
patch that blocks page-faulting data from reaching the register file
on BOOM. We experimentally verified that this patch also resolves
CVE-2025-29343.

9 Related work

We discuss related work that aims to detect microarchitectural
vulnerabilities before tapeout, namely formal and fuzzing-based
approaches.

9.1 Formal approaches

Several formal approaches focus on data-oblivious instruction exe-
cution and hence relate to RandOS. UPEC [37] leverages unique pro-
gram execution to verify speculative non-interference and requires
extensive manual effort to identify which of the alerts provided
by the tool are acceptable. Recent formal approaches introduce a
higher degree of automatization. uCFI leverages IFT to formally
prove microarchitectural control flow integrity, which demands the
absence of unspecified information flows from instruction operands
to the PC [11]. RTL2MuPATH [20] formally proves the data in-
dependent execution time property of instructions by extracting
ppaths from the RTL design. However, they often hit scalability
limitations [11, 15, 20, 48, 54].

9.2 Fuzzing-based approaches

Prior work in microarchitectural pre-silicon fuzzing predominantly
focuses on specific leakage mechanisms and the involved microar-
chitectural structures. IntroSpectre [17] observes the propagation
of magic values in the microarchitecture under transient execu-
tion, Specure [38] identifies changes of selected microarchitectural
structures during speculation and SpecDoctor [23] identifies timing
side-channels capable of revealing secret data. These approaches
all rely on targeted templates for program generation. Phantom
Trails [14] combines software taint tracking on the verilated RTL
model with program generation based on AFL++ [16] to detect tran-
sient leakage to the (physical) register file. WhisperFuzz observes

CCS ’25, October 13-17, 2025, Taipei, Taiwan

module-level timing variations to identify constant-time violations
of single instructions. Both fuzzers make assumptions on either the
kind of programs that trigger vulnerabilities or their leakage paths.
MileSan is the first generic mechanism for detecting microarchitec-
tural information leakage without making any assumptions on the
programs that trigger them or the components that carry the leak-
age, enabling RandOS to generate random and unbiased programs
that trigger various kind of leakages, from transient vulnerabilities
to constant-time violations.

10 Conclusion

We presented MileSan, the first hardware sanitizer that is capable
of detecting exploitable microarchitectural information leakage.
MileSan is based on the key insight that microarchitectural leak-
age stems from the observable difference between architectural
information flows, derived from the ISA, and microarchitectural
information flows, as observed in the concrete RTL implementation.
Since MileSan relies on fundamental properties of how informa-
tion flows inside software and hardware, it can detect exploitable
information leakage in a generic manner without making any as-
sumption on the source of information leakage and its destination
in a given CPU design. MileSan further facilitates the generation of
arbitrary test cases using Taint-Aware In-Situ Simulation (TAISS),
a novel technique for avoiding architectural taint explosions that
blind information leakage. Using TAISS, we then built RandOS,
a microarchitectural leakage fuzzer that is capable of generating
complex multi-privilege and multi-address space test cases that
are akin to randomized operating systems. Relying on MileSan
for leakage detection, RandOS effectively discovers many known
and 19 new vulnerabilities on RISC-V CPUs of varying complexity.
Some of these vulnerabilities are constant-time violations of single
instructions, while others are transient execution vulnerabilities,
where in several cases secret information flows across privilege
boundaries.

Acknowledgments

The authors would like to thank the anonymous reviewers for
their valuable feedback, Quentin Bordier for his contributions to
virtual memory management in RandOS and the maintainers of the
designs we tested for their support in understanding some of the
vulnerabilities we discovered. This work was supported in part by
the Swiss State Secretariat for Education, Research and Innovation
under contract number MB22.00057 (ERC-StG PROMISE).

References

[1] 2018. CVE-2018-3639. Available from MITRE, CVE-ID CVE-2018-3639.

[2] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan Kastner. 2017. Register
transfer level information flow tracking for provably secure hardware design. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE,
1691-1696.

[3] Arm. 2022. Speculative Processor Vulnerability.

[4] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
D. Dabbelt, J. Hauser, A. Izraelevitz, et al. 2016. The rocket chip generator. Tech.
Rep. UCB/EECS-2016-17 (2016).

[5] Krste Asanovic, David A Patterson, and Christopher Celio. 2015. The berkeley out-
of-order machine (BOOM): An industry-competitive, synthesizable, parameterized
risc-v processor. Technical Report. University of California at Berkeley Berkeley
United States.

[6] A.Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti, B. Falsafi, M.
Payer, and A. Kurmus. 2019. SMoTherSpectre: exploiting speculative execution

CCS 25, October 13-17, 2025, Taipei, Taiwan

[7

8

[10

[11

[12

(13

[14

[15

[16

(17

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[

=

]

]

]

]

]

]

]
]

]

]

]

through port contention. In ACM SIGSAC.

Pallavi Borkar, Chen Chen, Mohamadreza Rostami, Nikhilesh Singh, Rahul Kande,
Ahmad-Reza Sadeghi, Chester Rebeiro, and Jeyavijayan Rajendran. 2024. Whis-
perfuzz: White-box fuzzing for detecting and locating timing vulnerabilities in
processors. arXiv preprint arXiv:2402.03704 (2024).

JV. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,
T. F. Wenisch, Y. Yarom, and R. Strackx. 2018. Foreshadow: Extracting the keys
to the Intel SGX kingdom with transient out-of-order execution. In USENIX SEC.
C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin, D. Moghimi, F.
Piessens, M. Schwarz, B. Sunar, et al. 2019. Fallout: Leaking data on meltdown-
resistant cpus. In ACM SIGSAC.

Katharina Ceesay-Seitz, Flavien Solt, Alexander Klukas, and Kaveh Razavi. 2025.
Pathfinder: Constructing Cycle-accurate Taint Graphs for Analyzing Information
Flow Traces. In ICCAD 2025.

Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi. 2024. pCFI: Formal
Verification of Microarchitectural Control-flow Integrity. In ACM CCS.

Boru Chen, Yingchen Wang, Pradyumna Shome, Christopher W Fletcher, David
Kohlbrenner, Riccardo Paccagnella, and Daniel Genkin. 2024. GoFetch: Breaking
constant-time cryptographic implementations using data memory-dependent
prefetchers. In Proc. USENIX Secur. Symp. 1-21.

Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Donggi Liu,
Yimin Lu, Ziyi Hao, Jiahui Luo, Zhijian Chen, et al. 2020. Xuantie-910: A commer-
cial multi-core 12-stage pipeline out-of-order 64-bit high performance RISC-V
processor with vector extension: Industrial product. In ISCA.

Alvise de Faveri Tron, Raphael Isemann, Hany Ragab, Cristiano Giuffrida, Klaus
von Gleissenthall, and Herbert Bos. 2025. Phantom Trails: Practical Pre-Silicon
Discovery of Transient Data Leaks. In USENIX Security.

S. Dinesh, M. Parthasarathy, and C. Fletcher. 2024. ConjunCT: Learning Inductive
Invariants to Prove Unbounded Instruction Safety against Microarchitectural
Timing Attacks. In IEEE SP.

Andrea Fioraldi, Dominik Maier, Heiko Eif}feldt, and Marc Heuse. 2020. { AFL++ }:
Combining incremental steps of fuzzing research. In 14th USENIX workshop on
offensive technologies (WOOT 20).

Moein Ghaniyoun, Kristin Barber, Yingian Zhang, and Radu Teodorescu. 2021.
Introspectre: A pre-silicon framework for discovery and analysis of transient
execution vulnerabilities. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 874-887.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
leak-aside buffer: Defeating cache side-channel protections with {TLB} attacks.
In 27th USENIX Security Symposium (USENIX Security 18). 955-972.
Muhammad Monir Hossain, Nusrat Farzana Dipu, Kimia Zamiri Azar, Fahim
Rahman, Farimah Farahmandi, and Mark Tehranipoor. 2023. TaintFuzzer: SoC
security verification using taint inference-enabled fuzzing. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE, 1-9.

Yao Hsiao, Nikos Nikoleris, Artem Khyzha, Dominic P Mulligan, Gustavo Petri,
Christopher W Fletcher, and Caroline Trippel. 2024. RTL2Mu PATH: Multi-Mu
PATH Synthesis with Applications to Hardware Security Verification. arXiv
preprint arXiv:2409.19478 (2024).

Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. 2021. Hardware information
flow tracking. ACM Computing Surveys (CSUR) (2021).

Wei Hu, Jason Oberg, Janet Barrientos, Dejun Mu, and Ryan Kastner. 2013. Ex-
panding gate level information flow tracking for multilevel security. IEEE Em-
bedded Systems Letters (2013).

Jaewon Hur, Suhwan Song, Sunwoo Kim, and Byoungyoung Lee. 2022. Spec-
Doctor: Differential fuzz testing to find transient execution vulnerabilities. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 1473-1487.

Tobias Jauch, Alex Wezel, Mohammad R Fadiheh, Philipp Schmitz, Sayak Ray,
Jason M Fung, Christopher W Fletcher, Dominik Stoffel, and Wolfgang Kunz.
2023. Secure-by-construction design methodology for CPUs: Implementing
secure speculation on the RTL. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD). IEEE, 1-9.

jooohndoe. 2023. Github issue '[BUG] Multiple compressed instructions and
the MV instruction create time side-channels in CVA6’. Retrieved November
13,2024 from https://github.com/openhwgroup/cva6/issues/1547

Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
2011. Dta++: dynamic taint analysis with targeted control-flow propagation.. In
NDSS.

Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. 2012. libdft: practical dynamic data flow tracking for commodity
systems. In VEE.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.
Lipp, S. Mangard, T. Prescher, et al. 2019. Spectre attacks: Exploiting speculative
execution. In IEEE SP.

Kronos. 2024. Kronos RISC-v (All Cascade Fixes Integrated). Retrieved November
13,2024 from https://github.com/cascade-artifacts-designs/cascade-kronos

[30

[31

(32

[33

[34

[35

&
2

(37]

(38]

=
&

'S
&

o
=

o
&,

o
=)

[55]
[56]
(57]
(58]

[59

Tobias Kovats, Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).

LLVM. 2025. DataFlowSanitizer. Retrieved April 10, 2025 from https://clang.llvm.
org/docs/DataFlowSanitizer.html

G Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution using
return stack buffers. In ACM SIGSAC.

Jason Oberg, Sarah Meiklejohn, Timothy Sherwood, and Ryan Kastner. 2014.
Leveraging gate-level properties to identify hardware timing channels. TCAD
(2014).

H. Ragab, E. Barberis, H. Bos, and C. Giuffrida. 2021. Rage Against the Ma-
chine Clear: A Systematic Analysis of Machine Clears and Their Implications for
Transient Execution Attacks. In USENIX SEC.

Hany Ragab, Andrea Mambretti, Anil Kurmus, and Cristiano Giuffrida. 2024.
GhostRace: Exploiting and Mitigating Speculative Race Conditions. In USENIX
Security.

H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida. 2021. Crosstalk:
Speculative data leaks across cores are real. In IEEE SP. Institute of Electrical and
Electronics Engineers Inc.

Mohammad Rahmani Fadiheh. 2022. Unique Program Execution Checking: A
Novel Approach for Formal Security Analysis of Hardware. Ph.D. Dissertation.
Technische Universitit Kaiserslautern.

M. Rostami, S. Zeitouni, R. Kande, C. Chen, P. Mahmoody, J. Rajendran, and A.
Sadeghi. 2024. Lost and Found in Speculation: Hybrid Speculative Vulnerability
Detection. DAC 2024 (2024).

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and
D. Gruss. 2019. ZombieLoad: Cross privilege boundary data sampling. In ACM
SIGSAC.

M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss. 2019. Netspectre:
Read arbitrary memory over network. In ESORICS.

Asia Slowinska and Herbert Bos. 2009. Pointless tainting? evaluating the practi-
cality of pointer tainting. In Proceedings of the 4th ACM European conference on
Computer systems. 61-74.

Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. 2024. Cascade: CPU
fuzzing via intricate program generation. In USENIX Security 2024. 1-18.
Flavien Solt, Ben Gras, and Kaveh Razavi. 2022. CellIFT: Leveraging Cells for
Scalable and Precise Dynamic Information Flow Tracking in RTL. In USENIX
Security.

Flavien Solt, Patrick Jattke, and Kaveh Razavi. 2022. RemembERR: Leveraging
Microprocessor Errata for Design Testing and Validation. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1126-1143.
Flavien Solt and Kaveh Razavi. 2024. HybriDIFT: Scalable Memory-Aware Dy-
namic Information Flow Tracking for Hardware. ICCAD (2024).

Flavien Solt and Kaveh Razavi. 2025. Lost in Translation: Enabling Confused
Deputy Attacks on EDA Software with TransFuzz. (2025).

J. Stecklina and T. Prescher. 2018. Lazyfp: Leaking fpu register state using
microarchitectural side-channels. arXiv preprint arXiv:1806.07480 (2018).
Qinhan Tan, Yuheng Yang, Thomas Bourgeat, Sharad Malik, and Mengjia Yan.
2025. RTL Verification for Secure Speculation Using Contract Shadow Logic.
ASPLOS (2025).

Mohit Tiwari, Hassan MG Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T
Chong, and Timothy Sherwood. 2009. Complete information flow tracking from
the gates up. In ASPLOS.

Daniel Trujillo, Johannes Wikner, and Kaveh Razavi. 2023. Inception: Exposing
new attack surfaces with training in transient execution. In USENIX Sec.

Jo Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin, Y. Yarom,
B. Sunar, D. Gruss, and F. Piessens. 2020. LVI: Hijacking transient execution
through microarchitectural load value injection. In IEEE SP.

S. Van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze, K. Razavi, H.
Bos, and C. Giuffrida. 2019. RIDL: Rogue in-flight data load. In IEEE SP.

S. Van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom. 2021. CacheOut:
Leaking data on Intel CPUs via cache evictions. In IEEE SP.

Zilong Wang, Gideon Mohr, vom Gleissenthall, Jan Reineke, and Marco Guarnieri.
2023. Specification and Verification of Side-Channel Security for Open-Source
Processors via Lea.kage Contracts. In ACM CCS, Weizhi Meng, Christian Dams-
gaard Jensen, Cas Cremers, and Engin Kirda (Eds.).

Andrew Waterman and Krste Asanovic. 2023. The RISC-V Instruction Set Manual.
Retrieved June 4, 2023 from https://github.com/riscv/riscv-isa-manual
Johannes Wikner and Kaveh Razavi. 2022. {RETBLEED }: Arbitrary speculative
code execution with return instructions. In USENIX Sec.

Johannes Wikner and Kaveh Razavi. 2025. Breaking the Barrier: Post-Barrier
Spectre Attacks. In 2025 IEEE Symposium on Security and Privacy (SP).
Johannes Wikner, Daniel Trujillo, and Kaveh Razavi. 2023. Phantom: Exploiting
decoder-detectable mispredictions. In IEEE/ACM MICRO.

Florian Zaruba and Luca Benini. 2019. The cost of application-class processing:
Energy and performance analysis of a Linux-ready 1.7-GHz 64-bit RISC-V core
in 22-nm FDSOI technology. IEEE VLSI (2019).

https://github.com/openhwgroup/cva6/issues/1547
https://github.com/cascade-artifacts-designs/cascade-kronos
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://github.com/riscv/riscv-isa-manual

MileSan: Detecting Exploitable Microarchitectural Leakage via Differential Hardware-Software Taint Tracking CCS ’25, October 13-17, 2025, Taipei, Taiwan

RISC-V Cell IFT rule
(C)L(U) wire Al
(C.)ADD(I/W/16SP/4SP) | add | [(AAAD) + (BAB)] @ [(AV AD) + (BV B)] Vv [Al v B]
(C.)SUB(I/W) sub | [(AVAY) —(BABY)] @ [(AAAY) - (BVBY)] vV [A v BY]
(C.)SL(L/A/I/W) wire [AT << B] v {B'}
(C)SRL/A/T/W) wire [AT>> B] v {B}
(C)SLT(U/I/W) 1t [(AVAT) < (BAB)] @ [(AAAY) < (BV BY)]
(C.)XOR(I) xor Al v Bt
(C.YOR() or [(A AB) Vv (BE AA)]V [Af v Bf]
(C)AND(I) and [(ATAB) vV (BEAA)] VATV B
AUIPC(I) add [ArNAD) +Bl@ [(AV AT+ B] v Al
MUL(H/S/U/W) mul {A'}y v {B"}
DIV(U/W) div (AT} v (BT}
REM(U/W) div {AT} v {B%}
(C)SB/H/W/Q/SP)T | wire Al
(COLB/H/W/Q/SP)T | wire At

Table 6: Correspondance between RISC-V instructions, the CellIFT [43] shadow logic cells and the taint propagation rules.
A, A!, B, B! are the cell inputs and their corresponding taints. I, I’ and {I} denote the negation, taint vector and extended vector
of I. The extended vector {I} of I where I, {I} € {0,1}" is defined as {I};c[op-1] = \/;’:_01 I;. “The architectural taints of the PC is
the all-zeros vector at all times, therefore B’ = 0. tLoad and store instructions do not allow tainted addresses.

A Reduced PoCs

The following provides PoC snippets obtained through reduction
as described in Section 6.

A.1 TLBleed on BOOM (CVE-2025-29343)

0x28778: remu a2,s0,gp

0x28780: rem a2,a2,tp

0x287c8: divw ra,gp,a2

Branch below mispredicted taken.
0x287d0: blt gp,ra,0x28e00

Meltdown gadget executed transiently.
0x28e00: 1lb sp,-1587(t1)
0x28e04: 1lh s1,-1010(sp)

Listing 4: Reduced program that leaks kernel memory
through the TLB on BOOM.

A.2 Transient MDS on CVA6 (CVE-2025-46004)

Loads privileged data from S-mode.
0x301c223888: lbu ra, 757(s0)

Calls debugging environment.

0x301cl15aabc: ebreak

Transiently samples privileged data.
0x301c15aa60: lh a6, 2041(t2)

Dependent load encodes privileged data in TLB.
0x301c15aa64: lhu to, 1022(ab)

Listing 5: Reduced program that leaks kernel memory
through MDS on CVAS6.

A.3 MDS on CVA6 (CVE-2025-46004)

S-mode loads privileged data.
0x82815c5f0: lbu t2, -660(s3)

U-mode triggers page fault.
0x828138e28: lw gp, 1652(s2)
Dependent load encodes the secret in the TLB.
0x828138e2c: 1lb t1, -1384(gp)

Listing 6: Reduced program that leaks kernel memory
through MDS on CVAG6.

A.4 Cross-privilege Spectre-SLS on CVA6
(CVE-2025-29340)

Load some privileged data from S-mode.
Oxa244c: lw s2, 456(ra)

SPP=1, so we remain in S-mode.
0xa2dd8: sret

The store executes transiently
and leaks privileged data to the TLB.
Oxa2ddc: sb t@, -1338(a0)

SPP=0, so we go to U-mode.
0xdof50: sret

A store now leaks from the TLB.
0x67b50: sh to, -754(t2)

Listing 7: Reduced program that leaks kernel memory
through SLS on CVAS6.

	Abstract
	1 Introduction
	2 Background
	2.1 RISC-V
	2.2 Information flow tracking
	2.3 Pre-silicon microarchitectural fuzzing
	2.4 Overfitting in microarchitectural fuzzers

	3 Overview of Challenges
	4 MileSan
	4.1 Architectural information flows
	4.2 Microarchitectural information flows
	4.3 Observability
	4.4 Taint-aware in-situ simulation
	4.5 Domain support

	5 RandOS
	5.1 Memory preparation
	5.2 Code generation

	6 Leakage Identification
	7 Evaluation
	7.1 Fuzzing performance
	7.2 Rediscovery of known vulnerabilities
	7.3 New vulnerabilities
	7.4 End-to-end exploit on BOOM
	7.5 Assessing PoCs from prior work

	8 Discussion
	9 Related work
	9.1 Formal approaches
	9.2 Fuzzing-based approaches

	10 Conclusion
	Acknowledgments
	References
	A Reduced PoCs
	A.1 TLBleed on BOOM (CVE-2025-29343)
	A.2 Transient MDS on CVA6 (CVE-2025-46004)
	A.3 MDS on CVA6 (CVE-2025-46004)
	A.4 Cross-privilege Spectre-SLS on CVA6 (CVE-2025-29340)

