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Abstract
Rowhammer attacks and defenses are constantly evolving.
Recent attacks rely on hammering multiple banks or keeping
rows activated for long durations. On the defense side, the
DDR5 standard requires memory controllers to send Refresh
Management (RFM) commands when a specific DRAM bank
receives too many activations. Are advanced Rowhammer
attacks adequately exploiting their target features and do
memory controllers send RFM commands adequately?

This paper answers these questions by building an auto-
mated software platform, called McSee, on top of a high-
frequency oscilloscope to study the behavior of DDR4 and
DDR5 memory controllers under Rowhammer attacks. Lever-
aging a series of hardware and software optimizations, McSee
is capable of reliably capturing and efficiently decoding single-
cycle DDR4 and multi-cycle DDR5 traffic on the DRAM bus.
We make a number of key discoveries using McSee. First,
we show that hammering too many banks in parallel can
actually be detrimental to the performance of Rowhammer
attacks. Second, rows remain active far shorter than assumed
when considering the recent Rowpress attack. Third, we show
that neither Intel nor AMD CPUs send RFM commands even
though a third of the DDR5 devices in our test pool require
RFM to properly mitigate Rowhammer. Fourth, we uncover
that instead of RFM, the memory controllers of Intel plat-
forms rely on additional mitigative activations, which we
characterize for the first time. We conclude by discussing the
implications of our findings on the landscape of Rowhammer
attacks and defenses.

1 Introduction

Rowhammer has been threatening systems security for more
than a decade [1, 2], with numerous practical attacks exem-
plified in various scenarios [3–15]. Recent attacks rely on
specific features of the underlying DDR protocol, such as par-
allel access to DRAM banks [15] or the possibility of keeping
a DRAM row active for a long time [16]. To combat such

attacks, the latest DDR5 standard requires the CPU memory
controller to issue Refresh Management (RFM) commands
to DRAM when certain conditions are met. Given the closed
nature of memory controllers, it is unclear whether recent
attacks effectively exploit the intended features or whether
memory controllers correctly manage CPU-side mitigations.
In this paper, we explore these aspects.

McSee. Previous work has used timing side channels to re-
verse engineer the bank addressing functions of memory con-
trollers [12, 17]. Timing attacks, while conveniently launched
from software, are unable to distinguish between the differ-
ent commands that the memory controllers may send on the
DRAM bus. As we shall soon see, this capability is crucial
in understanding the effectiveness of advanced attacks and
deployed mitigations. General-purpose oscilloscopes have
been used in the past to reverse engineer DRAM addressing
functions by probing one bit at a time [12, 17]. Studying the
precise behavior of memory controllers, however, requires ob-
serving multiple command and address bits simultaneously to
distinguish between specific commands and row addresses. To
address this gap, we build McSee, a new software platform on
top of a custom-built interposer connected to an oscilloscope,
providing us with the required capabilities for automated anal-
ysis of DRAM traffic. Building McSee requires addressing
several challenges related to the management, storage, and
processing of the large amount of data captured on the DRAM
bus. In particular, McSee features a parallel command filter-
ing and decoding that is capable of handling both single-cycle
DDR4 and multi-cycle DDR5 commands in a matter of sec-
onds. McSee’s efficient and automated analysis capabilities
enabled us to investigate recent attacks and defenses.

Analyzing advanced attacks. Recent Rowhammer and
Rowhammer-like attacks rely on particular features of the
DDRx protocol. As an example, Sledgehammer [15] relies
on the possibility of keeping multiple rows active at the same
time to increase the number of banks that can be hammered in
parallel. Investigating this attack with McSee, we notice that
going beyond hammering six banks in parallel significantly
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decreases the number of activations per bank, which is detri-
mental to Rowhammer attacks that require a large number of
activations to decoys to bypass the in-DRAM TRR [18, 19].
Another recent Rowhammer-like attack is Rowpress, which
triggers a different type of read-disturb error by keeping the
DRAM rows active for long periods [16]. The system-level
version of Rowpress accesses multiple columns to keep the ag-
gressor rows activated. Using McSee, we measure — for the
first time — the actual duration where the aggressor rows re-
main active. We find that the current implementation achieves
only a fraction of what is possible according to the standard
and there is significant room for better system-level Rowpress
attacks in the future.

Analyzing recent mitigations. The DDR5 RFM extension
requires the memory controller to keep counters for the num-
ber of activations sent to different banks. If these activations
exceed a certain threshold, the memory controller is expected
to send RFM commands to provide additional time for the
DRAM device to perform mitigations. Our investigation of
29 DDR5 UDIMMs shows that 16 of them support RFM com-
mands (i.e., RFM is optional) while four of them require RFM,
i.e., RFM commands must be issued by the memory controller
to ensure data integrity. Using McSee, we observe that nei-
ther Intel nor AMD CPUs send any RFM commands under
a Rowhammer attack, even if the device requires such com-
mands. These results are significant; fragmenting Rowham-
mer mitigations between CPU and DRAM creates deployment
challenges that can negatively impact security. Although we
do not find evidence of RFM, the commands decoded by Mc-
See show that under a Rowhammer workload, the memory
controller on Intel CPUs switches to fine-granularity refresh
mode and sends additional activations that were not triggered
by software. Further reverse engineering shows that these
additional activations are caused by a probabilistic TRR miti-
gation (instead of RFM) with certain parameters that we could
reverse engineer using McSee.

These findings have a number of implications for future
Rowhammer attacks and defense. In particular, future reverse
engineering efforts should focus on understanding the behav-
ior of in-DRAM TRR under fine-granularity refresh instead
of RFM. Future Rowhammer attacks may require tighter syn-
chronization in their access patterns due to the increased re-
fresh command rate, and they must consider additional CPU-
triggered refreshes on top of hidden in-DRAM mitigative
refreshes. Furthermore, future in-DRAM Rowhammer mitiga-
tions should be able to operate securely even when the CPUs
do not always respect the standard when it comes to security
features.

Contributions. We make the following contributions:
1. We present McSee, an oscilloscope-based platform for

automated DRAM traffic analysis.
2. Using McSee, we show the shortcomings of recent ad-

vanced Rowhammer(-like) attacks and how they can be
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Figure 1: DDR5 DIMM architecture. DRAM chips are placed
on one (single-) or both sides (dual-rank) of the DIMM. DRAM
chips contain banks organized into bank groups, and each bank
is comprised of rows and columns. The DIMM is split into two
subchannels.

improved.
3. Using McSee, we find that although new DDR5 modules

advertise RFM values in their SPD chips, current Intel
(Alder Lake, Raptor Lake) and AMD (Zen 4) desktop
CPUs do not yet send any RFM commands.

4. Using McSee, we show that the Intel DDR5 CPUs use
fine-granularity refresh mode and a memory controller-
based mitigation, which we reverse engineer.

5. We discuss the implications of our findings on Rowham-
mer attacks and defenses.

Open sourcing. The McSee platform is fully open source,
including the decoder software and the PCB interposer design:
https://github.com/comsec-group/mcsee.

2 Background

We explain the architecture of DRAM devices and the changes
introduced with DDR5 (§2.1). We then discuss the current
state of Rowhammer attacks and mitigations (§2.2).

2.1 DDR5 DRAM Devices
Today, dynamic random access memory (DRAM) is the most
widely used memory in computing systems. Unbuffered dual
inline memory modules (UDIMMs) are equipped with mul-
tiple DRAM chips. We can find these chips on either one
(single-rank) or both sides (dual-rank) of the DRAM module.
DIMMs are connected through channels to the memory con-
troller in the CPU. Each DRAM chip consists of banks and
bank groups, enabling parallel data operations for efficient
access. Within each bank, a grid of rows and columns is made
of capacitors to store data.

Subchannels. Compared to DDR4, the architecture of the
DDR5 DIMM (Fig. 1) was redesigned to allow for a higher
device density and frequency. A DDR5 DIMM is divided
into two 32-bit subchannels. Due to the smaller bus width,
certain commands now require two clock cycles instead of
one (DDR4) to transmit their command and address (C/A)
data, e.g., activate (ACT), read (RD), and write (WR).

On-die ECC. Besides rank-level ECC on most server (regis-
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tered) DIMMs, the DDR5 standard mandates that all “DDR5
devices shall implement internal Single Error Correction
(SEC) ECC” [20, p. 280]. This on-die ECC is implemented
on the DRAM chip by storing parity bits along with the data
and is opaque to the memory controller [21, 22].

New DRAM commands. Refresh Management (RFM) is a
new DRAM command that gives DRAM devices more time
to refresh rows during periods of high DRAM activity (e.g.,
Rowhammer attacks). The new same-bank REF/RFM/PREsb
commands allow operating on a specific bank of all bank
groups only, rather than targeting all banks. However, this
requires that the device is in fine-granularity refresh (FGR)
mode, which halves DDR5’s default refresh rate (tREFI) of
3.9 µs. In FGR mode, REFsb commands must be issued every
1.95 µs, in a round-robin fashion to all banks, followed by a
REFab command [20, p. 172]. The memory controller can
toggle the FGR mode by writing into the MR4 OP[4] mode
register.

2.2 Rowhammer

The DRAM vulnerability Rowhammer [1] is a hardware fault
caused by leaking capacitor charges. It allows inducing bit
flips in adjacent victim DRAM rows by quickly and repeat-
edly activating and precharging DRAM rows. The number
of activations required to trigger bit flips is known as the
Rowhammer threshold, which has dropped drastically from
DDR3 to the newer DDR4 devices [23]. This vulnerability can
be exploited to break memory isolation and compromise sys-
tem integrity, as many practical attacks have shown [3–14,24].

In-DRAM TRR and its bypass. The original single- and
double-sided [1, 3] Rowhammer patterns were rendered in-
effective after in-DRAM mitigations known as Target Row
Refresh (TRR) were introduced with DDR4 [25]. In 2020, TR-
Respass showed that increasing the number of aggressors can
still trigger bit flips on roughly every third of the 40 DDR4
devices tested [25]. Later, all 40 tested DDR4 devices were
shown to be vulnerable to Rowhammer by Blacksmith (2022)
using non-uniform patterns [26].

Exploiting DRAM features for advanced attacks. Typically,
Rowhammer attacks are based on interleaving fast activations
of different aggressor rows. As the aggressor rows are ad-
jacent to the victim, they reside in the same bank and their
activation rate is limited by tRC (~45 ns) [27]. The tRC limit
includes the minimum time that a row must be kept active
(tRAS, ~32 ns) and the time to precharge the row (tRP, ~13 ns).
However, in 2023, Rowpress showed that the Rowhammer
threshold can be reduced by increasing the row open time [16].
In other words, if the aggressor rows are kept active for much
longer than tRAS, fewer activations are required to induce bit
flips in the victim row. Although activations that target the
same bank are limited by tRC, DRAM is designed to improve
performance through bank parallelism. In particular, activa-

tions targeting different banks only require a delay of tRRD
between them (~5 ns for the same group to ~3 ns for different
bank groups). Sledgehammer (2024) exploited this insight
to issue a higher rate of activations to the DRAM device,
consequently increasing the number of total bit flips [15].

DDR5 devices. Zenhammer [12] is the first experimental
work considering DDR5 DIMMs. They showed bit flips on
DDR5, albeit only one of the ten tested devices was shown
to be vulnerable. The authors attribute the lack of bit flips to
improved Rowhammer mitigations, on-die ECC, and a higher
refresh rate.

Mitigations. A plethora of different mitigations have been
proposed to stop Rowhammer attacks: software-based mitiga-
tions [5,7,28–30], memory controller-based mitigations [1,31–
39], and in-DRAM mitigations [18, 40–43]. Intel announced
in 2014 that they would mitigate Rowhammer on servers
using a memory controller-based mitigation named pseudo-
TRR (pTRR) [44, 45]. In 2020, pTRR’s existence was exper-
imentally confirmed on an Intel Xeon server CPU (Sandy
Bridge EP, DDR3), but it was proven absent on desktop
CPUs [25]. Later, in 2021, reverse engineering efforts re-
vealed more details about how proprietary DDR4 in-DRAM
mitigations work [19, 26].

RFM. In-DRAM TRR uses the slack of the REF command
to refresh victim rows of an attack [18, 41, 46]. As this pe-
riod may be insufficient on some devices, DDR5 introduced
RFM [22] to provide additional time for mitigative refreshes.
For this, rolling accumulated ACT (RAA) counters keep track
of the ACT count received per bank. Whenever a counter
reaches the maximum management threshold (RAAMMT),
ACTs to that bank are no longer allowed until an RFM or REF
decreases the counter by the initial management threshold
(RAAIMT) or 0.5–1.0×RAAMMT, respectively. DDR5 de-
vices must advertise the RFM values in their SPD chip, as
Rowhammer mitigations may rely on it [47, 48]. Later, the
directed RFM (DRFM) command was introduced [20] to
account for the increasing blast radius of Rowhammer by
refreshing up to four rows surrounding an aggressor row.

3 Overview

The first DDR5 bit flips in recent work [12] immediately
raise the question of whether vendors use RFM — or if they
configure it incorrectly, rendering it ineffective in protecting
against Rowhammer. However, timing side channels alone
would not allow one to distinguish whether the memory con-
trollers are issuing RFMs, REFs, or other commands (e.g.,
back-to-back mitigative ACTs). Therefore, we need a plat-
form that allows us to record and analyze what the memory
controller (MC) sends to the DRAM device. Such a platform
can further be leveraged to study recent attacks that utilize
specific features of the DDR protocol [15, 16]. Unfortunately,
it is unclear how to build such an analysis platform using
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standard oscilloscopes. Existing work [12, 17, 49] that uses
oscilloscopes examined only a single address bit at a time,
which is insufficient to decode DDR5 commands. This raises
our first research question (RQ):

RQ1. How to build a scalable analysis platform that
allows us to investigate the command/address traffic from
the memory controller to the DRAM device?

We present in §4 the design of McSee: a platform based on
a general-purpose, high-speed oscilloscope that allows one
to fully automate the capture and analysis of both the DDR4
and DDR5 command/address (C/A) bus traffic. McSee is
backed by customized hardware and a software pipeline that
we developed and optimized, including a command decoder.

Equipped with McSee, we aim to improve the understand-
ing of recent Rowhammer(-like) attacks. In particular, these
attacks rely on assumptions about the memory controller’s
behavior which are crucial but often not verified sufficiently
or at all. Therefore, we aim to answer the question:

RQ2. Do advanced Rowhammer attacks adequately ex-
ploit the underlying DRAM features they target?

To answer this question, we validate two modern Rowham-
mer techniques in §5: multi-bank hammering by Sledgeham-
mer [15] and row open time extension by Rowpress [16]. Our
results show that hammering banks in parallel is only benefi-
cial for up to six banks, after which the per-bank activation
rate strongly drops. We reveal that the Rowpress system eval-
uation achieves row open times that are only a fraction of
what the original work considers highly effective.

Next, on the defensive side, we aim to understand if RFM
is advertised by DRAM devices and actually used by memory
controllers of today’s commodity CPUs. More precisely, we
want to answer the following research questions:

RQ3. Is RFM advertised by DDR5 DRAM devices and
is it supported by commodity AMD and Intel CPUs? Are
there any other in-CPU mitigations in place?

Our investigations in § 6 show that the majority of our
test devices report valid RFM values. However, this does not
necessarily mean that the memory controllers actually respect
it. To investigate this, we first reverse engineer the secret
DRAM functions on recent Intel and AMD CPUs using a new
systematic bit-flipping technique enabled by McSee. Using
these functions, we carefully design experiments that show
that none of our test systems issues any RFM commands.

Instead, we find additional activations to the victim rows
on Intel Raptor Lake CPUs, which we show are part of a
memory controller-based mitigation based on pTRR [25, 50].
This is the first report of such mitigations in consumer
CPUs; previously, they were reported only on Intel server
CPUs [25, 44, 45, 50]. This probabilistic mitigation makes

Table 1: Hardware of McSee. We list all the hardware components
with their exact model names.

Pos. Component Model
Teledyne Article Name

1 Oscilloscope SDA 806Zi-B
2 Digitizer HDA125-18-LBUS
3 Diff. probe (8 GHz) DH08-PB2
4 Analog probe (500 MHz) PP021
5 18x Solder-in leads (kit) HDA-DLS-18QL
6 DDR5 UDIMM interposer n/a (custom PCB)

Rowhammer attacks more difficult, as we demonstrate by re-
verse engineering and analyzing it. We further demonstrate
that Intel CPUs, by default, employ the fine-granularity re-
fresh mode under Rowhammer workloads, which can compli-
cate Rowhammer attacks as refresh commands are triggered
more often and are likely to alter the behavior of in-DRAM
TRR mitigations. Overall, these changes seem to protect re-
cent Intel-based systems against the current generation of
Rowhammer attacks. We conclude this paper by discussing
the implications of our findings on future Rowhammer attacks
and defenses in §7.

4 McSee

This section describes the DDR4 and DDR5 memory bus
analysis platform McSee that we built to investigate the traf-
fic from the memory controller to the DRAM device. To
our knowledge, oscilloscopes have only been used so far in
DRAM research to analyze individual signals (i.e., address
bits) of the memory bus [12, 17, 49]. The McSee platform is
the first open-source project that can capture DDR4/5 buses to
exactly record which DRAM commands were issued to which
DRAM address and when.

We now describe the hardware (§4.1) and then the core
of our software, the DRAM decoder, which takes the traces
and decodes them into DDR4 or DDR5 commands (§4.2).
We then provide a more detailed description of the software
components and how we optimized them (§4.3). Subsequently,
we describe the validation of our platform (§4.4). We conclude
by discussing the extensibility of our platform (§4.5).

4.1 Hardware Components

Before we acquired the hardware of the platform, we com-
pared potential solutions from six different vendors (JKI,
Keysight, R&S, Rigol, Tektronix, Teledyne). We did not con-
sider the Keysight logic analyzer further due to the high price
($ 450 K) and low versatility, as we describe in §8. The Tele-
dyne solution, which costs roughly half of the Keysight solu-
tion (i.e., $ 175 K), is the only one that provided a sufficient
number of channels and a sample rate fast enough for the high
speed of both DDR4 and DDR5 memory buses, which is at
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Figure 2: McSee hardware setup. The oscilloscope and digitizer
are connected to the experiment host’s DDR5 bus via an interposer,
and an analog probe is used to trigger the recording.

Figure 3: Our custom DDR5 passthrough interposer with solder-
ing points in the center and labels for C/A bus signals next to them.

least 4000MT/s. In §8, we discuss how the costs for McSee
can be further reduced. The complete setup, explained in the
following, is composed of the hardware components listed in
Tbl. 1 and depicted in Fig. 2.

Oscilloscope & digitizer. The selected oscilloscope is a serial
data analyzer (SDA), a high-speed oscilloscope that supports
decoding common protocols such as USB and Ethernet. It
is equipped with four analog 8 GHz channels and a serial
interface (LBUS) to connect the digitizer.

The digitizer provides 18 channels with a sample rate of
12.5 GS/s each, enough to cover the command and address
bits of the DDR4/5 buses. A configurable threshold voltage
in the oscilloscope software defines the voltage level to be
considered as logical “0” and “1”. The leads connected to the
digitizer are also compatible with the analog probes.

Interposer & leads. Like previous work [52–54], we use an
interposer to connect the oscilloscope to the memory bus.
As UDIMM interposers for oscilloscopes (e.g., DDR5-A-
UDM-288 from Nexus Tech.) are expensive ($ 9’800) and
off-the-shelf DIMM extenders (e.g., JET-5661AC from M-
FACTORS) make soldering more challenging, we designed
our own PCB (Fig. 3). Our interposer has soldering points,
similar to the commercial interposer, but is much more afford-
able (approx. $ 100).

In Tbl. 2, we summarize the pins of the DDR5 DIMM for
different DRAM commands that we capture from one of the
two subchannels. For example, physical pin no. 61, which is
CA bit 2 (CA2) of subchannel A, is used for row bit 0 (R0)
and row bit 6 (R6) in the first and second cycle of the ACT

Table 2: Connected pins in our oscilloscope setup. We show for
different DRAM commands the information provided (Sym.) by dif-
ferent pins (Pin #) on the command/address bus or the required volt-
age levels: low (▽), high (▲), or valid (V). We use two columns for
two-cycle commands and abbreviate bank group (BG), bank (BA),
row (R), column (C), and clock (CK0).

DRAM Commands
Pin # Sym.† ACT RD WR PREsb REFsb

60 CA0 ▽ R4 ▲ C2 ▲ V ▲ ▲
204 CA1 ▽ R5 ▽ C3 ▽ C3 ▲ ▲

61 CA2 R0 R6 ▲ C4 ▲ C4 ▽ ▽
205 CA3 R1 R7 ▲ C5 ▲ C5 ▲ ▽

63 CA4 R2 R8 ▲ C6 ▽ C6 ▽ ▲
207 CA5 R3 R9 - C7 - C7 - -

64 CA6 BA0 R10 BA0 C8 BA0 C8 BA0 BA0
208 CA7 BA1 R11 BA1 C9 BA1 C9 BA1 BA1

66 CA8 BG0 R12 BG0 C10 BG0 C10 V V
210 CA9 BG1 R13 BG1 V BG1 V V ▲

67 CA10 BG2 R14 BG2 ▲ BG2 ▲ ▲ ▲
211 CA11 - R15 - V - - - -

69 CA12 - R16 - V - V - -
58 CS0 ▽ ▲ ▽ ▲ ▽ ▲ ▽ ▽
72 CK0

† Subchannel A pins, e.g., CA0 is CA0_A in the UDIMM std. [51].

ts_sec ,cmd ,bg ,bk , row ,col
2.209e −05 , act ,000 ,00 ,0010000000110100 ,
2.210e −05 , ref_sb , ,10, ,
2.211e −05 , rd ,000 ,00 , ,001000
2.214e −05 , pre_pb ,000 ,00 , ,
2.225e −05 , ref_sb , ,11, ,

Listing 1: Example of a decoded trace. The trace shows for each
decoded DRAM command (cmd), its timestamp (ts_sec), and its
address. The address depends on the command, and can include the
targeted bankgroup (bg), bank (bk), row (row), or column (col).

command, respectively. Similarly, our setup on DDR4 devices
allows us to capture the required command and address bits.

Probes & triggering. We use the differential probe to verify
the quality of the soldered connection and to determine the
digitizer’s threshold voltage by measuring the signal’s ampli-
tude. To programmatically initiate data acquisition, we utilize
a USB-FTDI cable connected to the experiment machine. To
trigger data capture from software, we toggle the Request-
to-Send (RTS) pin of the FTDI cable. Its voltage variation is
detected by the oscilloscope via an analog probe and is used
as a signal to start the acquisition.

4.2 DDR4 and DDR5 Command Decoder
An essential part of our software setup is the DRAM de-
coder, which converts CSV traces into DDR4 and DDR5
commands. As there is no open-source decoder available,
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we have developed our own software from scratch, based
on the DDR4/5 standards [20, 27]. Our decoder supports all
25 commands specified in the standards, including ACT, RD,
WR, PRE(ab|sb|pb), REF(ab|sb), and RFM(ab|sb). The
decoder also extracts the full DRAM address from the traces
(e.g., bank group, bank, row, column), as shown in Listing 1.

Oversampling. As sampling on the oscilloscope cannot be
synchronized with the DRAM clock, we need to oversam-
ple the signals to capture enough information to reconstruct
the DRAM commands. As a consequence, the same DRAM
command may be captured in multiple (consecutive) samples.
Because of this, we cannot simply match captured samples
against the DDR4/5 command truth tables, as it would cause
duplicate commands. Furthermore, data signals do not all
change simultaneously; therefore, it is essential to determine
the correct point at which the DRAM device evaluates the
signals. For this, our decoder carefully analyzes the traces to
determine when the signals become stable. To handle this,
we divide the decoding process into three stages (S): I) fil-
tering for significant samples, II) mapping bit combinations
to DRAM commands, and III) augmenting commands by
address data. We explain these steps in more detail next.

S-I: Filtering for significant samples. The goal of this first
step is to determine which samples are relevant to decode
DRAM commands. This is necessary as the oscilloscope sam-
ples at a fixed rate (e.g., 12.5GS/s) which is independent of
the DRAM clock. Hence, this oversampling creates multiple
identical samples if sampling is faster than the DRAM com-
mand bus, and thus leads to more data than actually needed
to reconstruct the DRAM bus traffic. Using all samples in
the subsequent steps would drastically increase the decoding
time and lead to DRAM commands being detected multiple
times. Therefore, we filter our collected data for samples si
where the clock signal (CK0) changed, i.e., for which a previ-
ous sample si−1 exists such that CK0 at the previous sample
si−1 has a different value compared to CK0 from the current
sample si. As we found that the various DRAM signals do not
change all at the same time, we encountered cases where the
clock-changing sample si appeared to either (i) have unstable
address signals that changed later, or (ii) the sample did not
correspond to any DRAM command. We avoid such cases by
requiring a valid DRAM command to be stable across mul-
tiple samples, i.e., si = si+1 = .. = si+N . Therefore, instead
of considering only the clock-changing sample, we apply a
majority voting approach: we collect all samples where CK0
is asserted and take the sample that is most common.

S-II: Mapping bit combinations to DRAM commands. In
this step, we match the captured signals to the truth tables of
the DDR4 [27, p. 29] and DDR5 [20, p. 103] standards, which
we implemented in our decoder. As in DDR5 part of the com-
mands require two cycles to be fully transmitted, we designed
a state machine in the decoder to correctly identify DRAM
commands. To distinguish between one-cycle and two-cycle

commands, our decoder checks the chip select signal (CS_n),
which is always low during the first cycle and high during the
second cycle. By default, the bus uses the 2N mode to provide
larger setup and hold time margins. In this mode, the second
half of a two-cycle command is transmitted two clock cycles
after the first half [20, p. 276].

S-III: Augmenting DRAM commands by address data. In
this final step, we augment the detected DRAM commands
with their corresponding addresses, as shown in Tbl. 2. For
example, from an ACT, we extract the bits of the bank group,
bank, and row. As bits may be spread across different cycles
(e.g., R0–R3 in the first half and R4–R16 in the second half
of a ACT command), we need to collect and combine the bits
in the correct order. Depending on the command type, the
address bits are encoded in different signals. Therefore, this
step occurs in parallel to Step II.

4.3 Software

Given the digitizer’s sampling rate of 12.5 GS/s (i.e., 12.5×
109 samples/second), taking multiple acquisitions quickly ag-
gregate a very large amount of data — hundreds of megabytes
per capture. As such, we need a solution that allows us to
store data efficiently and in a timely manner. This represents
our first challenge (C):

C1. Acquired data must be stored in a space- and time-
efficient way to allow long acquisition campaigns and
minimize the time between consecutive acquisitions.

There are different options to process the captured traces:
on the oscilloscope itself, on the experiment host, or on an-
other (more powerful) multicore server. As neither the os-
cilloscope nor the experiment host is well suited to process
large amounts of data, we aim to move data processing to a
dedicated server. However, this requires that we can move the
data quickly from the oscilloscope over the network, which
represents our second challenge.

C2. Acquired data must be made available to the server
quickly to enable efficient server-side data processing.

Lastly, we also envision interactive analysis sessions in
addition to long-running, unattended experiment campaigns.
These interactive sessions could, for example, involve tweak-
ing the workload code before a longer-running experiment or
verifying that certain changes in the experiment appear as in-
tended in the decoded trace. Such interactive sessions become
laborious if getting the decoded trace after running an experi-
ment takes a long time. Hence, we address this requirement
in our last challenge:

C3. Captured traces must be efficiently processed to
minimize turnaround time for interactive analysis.
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Figure 4: Data acquisition using McSee. After the oscilloscope
is configured ( 1 ), the experiment workload is executed while trig-
gering the oscilloscope acquisition ( 2 ). Once the RAM disk is
full ( 3 ), the data is copied to the decoding server. After acquiring
sufficient traces ( 4 ), the remaining files are copied, converted into
CSV files, and decoded into DRAM commands ( 5 ).

After giving a brief overview of how our final software
setup works, we explain how we addressed the challenge (C1–
C3) involved in building and optimizing our processing
pipeline to make it around 16x faster.

Overview. To enable unattended experiments, we fully auto-
mated the execution, data transfer, and decoding of the exper-
iments using Bash and Python scripts. The scripts run on the
experiment host and perform the tasks visualized in Fig. 4:

1 Load a configuration file in the scope containing digitizer
thresholds, capture duration, and output format.

2 Run the experiment workload while starting the cap-
ture (triggering) to acquire samples that are written into
XMLdig [55] files on the RAM disk.

3 Once the scope-local RAM disk is full, copy the acquired
data to the decoding server through the Ethernet network.

4 After sufficient acquisitions, copy the remaining files to
the server and perform the XMLdig-to-CSV conversion.

5 Decode the acquired data into DDR4/5 DRAM com-
mands with their corresponding address.

We benchmarked our McSee data processing pipeline in Fig. 5
using ten traces of 2 ms each. In the following, we explain
how we improved our platform to reduce the processing time
from 898 seconds initially down to 55 seconds.

Efficient data storage. The oscilloscope provides an option
to directly save captured traces as CSV files, which we re-
quire for our DRAM decoder. Unfortunately, writing them
takes a long time (around 9 minutes) and generates large files:
more than 11 GiB for ten 2 ms captures. Therefore, we use the
oscilloscope’s proprietary XMLdig binary format, described
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Figure 5: Performance improvements of our McSee processing
pipeline. We measure the performance of our processing pipeline
over ten traces of 2 ms each, repeated ten times, after each optimiza-
tion that we implemented.

in its manual [55], which encodes three bytes in four ASCII
characters. Writing XMLdig files is considerably faster and
creates smaller files than CSVs, making it more suitable for
continuous data acquisition. For example, for a 2 ms acquisi-
tion, we measured that writing XMLdig is 27x faster than di-
rectly writing CSV files while generating around 10% smaller
files. However, conversion of XMLdig files with the vendor’s
WaveStudio1 is slow, and in fact, made our processing pipeline
less efficient (932 ms). Since conversion of XMLdig files is
further not scriptable, we developed our own XMLdig con-
verter, which reduced the processing time of the ten traces
from around 932 to 432 seconds (i.e., about 54% faster).

File transfer. The oscilloscope is equipped with an integrated
1 Gbit/s Ethernet PCIe adapter, which we discovered to be
the bottleneck when copying gigabytes of data to the server
for processing. As the oscilloscope hardware cannot easily be
upgraded without undergoing an expensive recalibration, we
acquired a USB 3.1 NIC that supports up to 5 Gbit/s, which
is practically around 3x faster and reduced our overall pro-
cessing time to 400 seconds. As data is now only temporarily
stored on the oscilloscope, we use a fast RAM disk to buffer
acquisitions before transferring them to the server.

Conversion and decoding. We identified conversion and de-
coding as reasons for the slowdown in our pipeline. As our
analysis showed that the workload is CPU-bound, we moved
the conversion to a more powerful 256-core server that re-
duced the initial 932 seconds to 55 seconds for ten XMLdigs,
corresponding to a 16x speedup. To achieve this, we process
multiple trace files simultaneously and also parallelize cer-
tain steps of the pipeline, such as XMLdig-to-CSV conversion
and decoding. Our highly optimized converter significantly re-
duces the debugging and experiment turnaround time, making
McSee much more efficient and convenient to work with.

Acquisition size. We found that long acquisitions take con-
siderably longer to process than short ones. To quantify and

1https://www.teledynelecroy.com/support/
softwaredownload/wavestudio.aspx
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Figure 6: End-to-end processing time for different acquisition
sizes over ten captured traces and averaged over ten repetitions.

compare the performance of our processing pipeline, we mea-
sured the end-to-end time for different acquisition sizes in
Fig. 6. As the processing time increases non-linearly with the
acquisition size, we find that 2 ms is a good trade-off between
acquisition length and processing time. The results are based
on DDR5 traces; however, we get similar results for DDR4
as our decoding logic is similar.

4.4 Platform and Decoder Validation

To ensure that our platform works correctly, we designed
the following validity checks based on the expected device
behavior derived from the DDR4/5 standards [20, 27].

Uniform address bit distribution. We read from uniformly
randomly selected addresses while capturing traces using our
analysis platform. After decoding, we count the frequency
of all decoded DRAM address bits, e.g., how often row bit
0 (R0) is 0 and 1 across all traces. Due to random addresses,
we expect to see both values roughly 50%; otherwise, the
digitizer threshold is likely wrong, or there exists an issue
with the physical (soldered) connection of the interposer.

Regular REF commands. We capture traces during idle sys-
tem operation and expect to see REF commands issued regu-
larly, on average every tREFI. If any ACT command has been
sent to a bank before, we expect to see a PRE(ab|sb|pb)
command before any REF command targeting that bank.

Complete read/write transactions. We generate memory bus
traffic with MemTest86 [56]. We expect to see complete read-
/write transactions consisting of ACT–RD/WR–PRE sequences.
For this, we must take the address bits into account to deter-
mine which DRAM address is targeted and keep track of the
state of each bank to detect missing commands. Incomplete
transactions indicate that the decoder is not working correctly,
in which case a manual analysis of the CSV files is required.

We will further validate our platform and decoder in §6.2,
where we reverse engineer the address mappings and compare
them to previous work.

4.5 Extensibility to Other DRAM Devices
Instead of a specialized analysis device, McSee is based on a
general-purpose high-speed oscilloscope. This makes it possi-
ble to extend McSee to other types of DRAM (e.g., RDIMMs)
or protocols (e.g., LPDDR5). As an example, we illustrate the
changes that would be required to support RDIMMs.

Hardware. As the key notch alignment of RDIMMs is differ-
ent from that of UDIMMs, we require a different interposer.
However, there are off-the-shelf RDIMM interposers avail-
able (e.g., JET-5662AE from M-FACTORS for $ 28) that fully
meet our requirements. Since RDIMMs only use seven pins
for the C/A bus, we need to solder half as many pins compared
to UDIMMs. However, as we discussed in §4.1, designing a
custom interposer with dedicated soldering points, similar to
Fig. 3, makes soldering significantly easier.

Software. We also need to adjust the decoder, as all DRAM
commands are typically transmitted over more clock cycles in
RDIMMs compared to UDIMMs. In particular, single-cycle
commands on UDIMMs (e.g., REFab) are transmitted over
two cycles on RDIMMs, and two-cycle commands (e.g., ACT)
are transmitted over four cycles. This could be implemented
by a logic similar to the one that is already used for the two-
cycle commands on UDIMMs.

5 Analyzing Advanced Attacks

We now use McSee to investigate whether recent attacks prop-
erly exploit the underlying DRAM feature that they target. In
particular, we evaluate the activation throughput in Sledge-
hammer’s multi-bank hammering [15] (§5.1); and the row
open time (tAggON) in Rowpress [16] (§5.2). For the following
experiments, we rely on McSee’s DDR4 decoder.

5.1 Sledgehammer: Activation Throughput
Sledgehammer [15] relies on bank-level parallelism to in-
crease the system’s ACT throughput and consequently the
number of Rowhammer bit flips by 7x. Their assumption is
that, compared to targeting a single bank, the ACT throughput
can be increased by more than 10x when activations are inter-
leaved across different banks. We aim to validate this claim
by measuring the activation throughput for both single-bank
and multi-bank hammering.

Experiment. We perform our experiments on an Intel Coffee
Lake (i7-8700K) system. We use the open-source implemen-
tation of Sledgehammer [57] and modify it to use the known
Intel Coffee Lake DRAM addressing functions [26]. To eval-
uate the effectiveness of bank-level parallelism, we capture
a 1 ms trace while hammering a fixed number of banks, re-
peating the experiment up to targeting all banks in the system.
Finally, we measure the ACT throughput when targeting dif-
ferent numbers of banks.
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Figure 7: Sledgehammer – average activation throughput per
tREFI, per bank (line) and over all banks (bar), for different numbers
of hammered banks (x-axis).

Results. We present the results of our experiments in Fig. 7,
where we consider ACT throughput as the number of ACTs
within consecutive refresh commands (i.e., tREFI). The figure
includes both the throughput per bank (line) and the total
ACT throughput (bars). The results are in line with what has
been reported by Sledgehammer: hammering more banks is
beneficial for up to six banks. Although the total throughput
steadily increases from 140 ACTs (1 bank) up to 715 ACTs (6
banks), it mostly plateaus around 500–600 ACTs when more
banks are used. At the same time, the activation rate per bank
decreases as the ACT bandwidth is divided between more
banks. The ACT rate per bank drops from 140 ACTs (1 bank)
to 119 ACTs (6 banks), down to 30 ACTs (16 banks).

O1. Hammering more banks is beneficial for up to six
banks, after which the per-bank ACT rate strongly declines.

Reordering. The Sledgehammer authors conjecture that due
to multi-bank hammering, fewer accesses get reordered. They
assumed that more buffered commands reduce the opportu-
nities for reordering. To validate this claim, we measure the
ACT-to-ACT distance of the same aggressor row for different
numbers of hammered banks.

Our results in Fig. 8 show that the authors’ hypothesis is
wrong and that reordering is happening more frequently when
hammering more banks. On average, an aggressor’s access
is shifted 11 times when hammering one bank only, and in-
creases to 74 times when hammering seven banks. We found
that some aggressors are regularly reordered. For example,
when hammering 10 aggressors on each of 7 banks (i.e., 70
aggressors in total), the ACT-to-ACT distance of some ag-
gressors is always 20 ACTs instead of the expected 69 ACTs.

O2. Increasing the number of hammered banks from one
to seven causes, on average, 6.7x more reordering of ACTs.

Implications. In conclusion, the effectiveness of Sledgeham-
mer in inducing a higher rate of Rowhammer bit flips depends
on the deployed TRR mitigation. Although attacking multiple
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Figure 8: Sledgehammer – ACT-to-ACT distance distribution of
all aggressors for different numbers of hammered banks. Some ag-
gressors are regularly reordered, as indicated by the clusters outside
the violin bodies.

banks in parallel leads to a higher number of total bit flips,
reducing the activation rate per bank may make bypassing
TRR more difficult [12]. In other words, the lower the ACT
rate needed to bypass the mitigation, the more banks can be
hammered in parallel, and the higher the total number of bit
flips. However, if the ACTs per bank remaining for hammer-
ing are too low, the attack might fail to reach the Rowhammer
threshold and not trigger any bit flips. This is probably why
Sledgehammer has only been shown to be effective with up
to six banks in the original paper (Figure 6) [15]. Regardless,
our results confirm that multi-bank hammering is an easy and
effective way to improve future Rowhammer attacks. This is
particularly beneficial when patterns are near the Rowhammer
threshold — where parallel row testing accelerates templat-
ing — and when the TRR mitigation is not sensitive to the
order of accesses in the pattern.

5.2 Rowpress: Row Open Time

Rowpress [16] characterized a novel disturbance effect in
which rows that are kept active for a long time (tAggON) induce
bit flips in adjacent victim rows. Rowpress allows an attacker
to significantly reduce the number of activations needed to
trigger a bit flip. Although the characterization is performed
via an FPGA, which allows full control over the DRAM com-
mands, the original study includes a real system evaluation of
Rowpress. In that evaluation, the aggressor row is kept open
by reading up to 128 cache blocks, which corresponds to the
row size (128 x 64 B = 8 kB).

Using McSee, we aim to measure the aggressor tAggON
time while reading from the row, which could not be verified
in the original study. We aim to compare the resulting row
active time to what is required by Rowpress.

Experiment. We use an Intel Coffee Lake (i7-8700K) sys-
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Figure 9: Rowpress – average row open time (tAggON) measured
over 1 ms captures for different numbers of cache block reads (y1-
axis, dot), compared to ACmin (y2-axis), the min. number of activa-
tions to trigger the first bit flip as reported in [16] from an FPGA.

tem and the same DIMM as used in the system-level study
(Samsung M378A2K43CB1-CTD) of Rowpress [58]. We
verified that we can trigger bit flips on our system using the
proof-of-concept Rowpress code, reproducing Figure 19 of
the original work [16]. Rowpress uses 1 to 128 cache block
reads to keep aggressor rows open. We measure the effective
tAggON resulting from each of these configurations.

Results. For the first time, we demonstrate in Fig. 9 how the
average tAggON of the aggressor rows varies with different
numbers of cache block reads. For the resulting tAggON, we
report the minimum activation count (ACmin) to trigger a bit
flip using data from the Rowpress paper [59]. As this data
reports ACmin for specific tAggON values only, we translate
the tAggON values using linear interpolation (of our data) to
the number of cache block reads. Our results show that the
average tAggON time (for 128 cache block reads), for which we
successfully reproduced Rowpress bit flips, is 292.95 ns. This
is in the range where Rowpress shows little effect: ACmin only
decreases by around 2x, unlike the reported 17.6x average
decrease for the most effective Rowpress pattern with tAggON
of 7.8 µs (tREFI) in the original study.

O3. Rowpress’ ability to reduce ACmin on commodity sys-
tems is significantly lower (2x) than for the most effective
pattern (17.6x) reported in the original work.

Implications. These results show that building an effective
system-level Rowpress attack is more challenging than ex-
pected. However, the results also demonstrate that there is
room for improvement by increasing tAggON further. This
could be achieved, for example, by exploiting refresh post-
ponement, which has recently been shown to make Rowham-
mer attacks more effective in bypassing TRR [60].

6 Analyzing Deployed Mitigations

The new RFM feature on DDR5 devices (§2.2) requires sup-
port from both the memory controller and the DRAM device.
We investigate the RFM support of our DDR5 devices by
reading out their SPD chips (§6.1). As some devices advertise
RFM, we analyze their communication with the memory con-
troller. But before that, we need to reverse engineer the secret
DRAM addressing functions (§6.2), which were reported for
AMD Zen 4 [12] but not for any Intel DDR5 system. Using
these functions, we can precisely address the rows and check
for potential RFM commands (§6.3).

6.1 RFM on DDR5 Devices
Unlike on-die ECC, RFM is not prominently advertised by
any DRAM vendor, for example, in their datasheets [61–63].
Hence, it is unclear a priori whether current DDR5 devices
advertise RFM support to the memory controller.

Reading SPD data. We found that existing tools such as
decode-dimms2 do not parse the complete SPD data from
DDR5 devices. In particular, the RFM values are not sup-
ported. To address this, we obtained the raw bytes using
i2cget and built an SPD decoder following the DDR5 SPD
standard [64]. In addition to the RFM values (RAAMMT,
RAAIMT, and RFM required), we also decode other fields
related to the DIMM’s organization (e.g., #banks, #bank
groups), addressing (e.g., #row bits), and supported timings.
We open source this decoder at https://github.com/
comsec-group/mcsee.

Results. We tested 29 DDR5 devices from all three major
DRAM vendors: Micron (11x), SK Hynix (10x), Samsung
(7x), and an Unknown vendor (1x). We present the results per
device in Tbl. 7, located in Appendix C.

First, we checked the device datasheets to see if on-die
ECC (ODECC) is present, as mandated by JEDEC, which
we confirmed for 81% of them. For 19% of the DIMMs, it is
unclear as the datasheets do not mention ODECC.

O4. Almost all DDR5 devices follow JEDEC and inte-
grate on-die ECC into the DRAM chips.

We found that 16 of 29 devices (55%) advertise valid RFM
values but only four of them (14%) report that they require
RFM for their device. This is our first observation (O):

O5. The majority of today’s off-the-shelf DDR5 devices
report valid RFM values, but only a few require RFM.

Yet, the question remains: do current DDR5-supporting In-
tel and AMD CPUs issue RFM commands? To investigate
this, we leverage our McSee analysis platform to analyze the
DDR5 C/A bus.

2https://git.kernel.org/pub/scm/utils/i2c-tools/
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Table 3: Reverse engineered address mappings and offsets of our test systems. All memory configurations are single-channel, single-DIMM,
with the tuple indicating the DIMM’s geometry (#ranks, #bank groups, #banks per bank group). The hex values describe the bits involved in
the XOR functions. For example, 0x410000 in the Rank (RK) column means that bits 16 and 22 from the physical address are combined by
XOR to calculate the rank address bit.

Sys. Geom.
#(R,G,B)

Size
[GiB]

Offt.
[MiB]

DRAM Addressing Functions

Subchan. (SC) Rank (RK) Bank Group (BG) Bank Address (BA)

iAL 1, 4, 4 8 0 0x0000c3200 n/a 0x000081100, 0x049224000 0x092448000, 0x024910000
/iRL 1, 8, 4 16 0 0x0000c3200 n/a 0x000081100, 0x088844000, 0x111108000 0x222210000, 0x044420000

2, 8, 4 32 0 0x0000c3200 0x410000 0x000081100, 0x444208000, 0x222104000 0x088820000, 0x111040000

aZ4 1, 4, 4 8 2048 0x1fffe0040 n/a 0x088880100, 0x111100200 0x022220400, 0x044440800
1, 8, 4 16 2048 0x3fffc0040 n/a 0x084200200, 0x108401000, 0x042100100 0x210840400, 0x021080800
2, 8, 4 32 2048 0x7fff80040 0x40000 0x084200100, 0x108400200, 0x210801000 0x421080400, 0x042100800

Table 4: Our DDR5 test systems. We report for each system the
CPU microarchitecture, its release date, and model.

System CPU (Rel. Date) Model

iAL Intel Alder Lake (11/2021) i7-12700K
iRL Intel Raptor Lake (10/2022) i7-13700K
aZ4 AMD Zen 4 (09/2022) Ryzen 7 7700X

6.2 DRAM Addressing Functions

We aim to study whether the memory controllers in our three
test systems (iAL, iRL, aZ4 in Tbl. 4) issue RFM commands
to the DRAM devices. To verify that our McSee platform
works correctly and later filter the traces more effectively,
we first reverse engineer the DRAM addressing functions of
these systems.

Experiment setup. Using McSee, we can precisely deter-
mine the relation between the physical address bits and the
DRAM address components. Unlike earlier uses of oscillo-
scopes for this purpose [12, 17], which involved laborious
manual probing, our setup allows us to look at all DRAM
address components at the same time and is fully automated.

Systematic bit flipping. We design an experiment based on
Alg. 1. In line with previous work [12,17,49,65], our approach
assumes XOR-based hashing functions and the availability
of 1 GiB superpages such that the least significant 30 bits
between virtual and physical addresses are identical. First, we
allocate as many 1 GiB superpages as possible and randomly
pick an address from it. We then access the original address
multiple times while capturing the data with the oscilloscope.
After that, we systematically flip a bit and repeat the last
step with the flipped address. For each iteration, we store the
accessed physical address with the captured traces.

We repeat this process for all bits of the address and for
a total of 100 different initial addresses. This takes around
5.5 hours for each system and memory configuration. By
comparing the DRAM address components (e.g., bank ad-
dress bits) of the original address with those of the flipped
address in the decoded traces, we can clearly see if the value

Algorithm 1: Systematic bit flipping experiment. We hammer
and record each possible bit flip of a randomly picked address
and check for changes in the DRAM address components.

for addr = 0, ..., 99 do
addr_original← get_random_address();
dbits_org← hammer_rec(addr_original);
for bit = 0, ..., 63 do

// flip the i-th bit of the address
addr_flipped← addr_original ⊕ (1≪ bit);
dbits_flipped← hammer_rec(addr_flipped);
// extract bit differences
dbits_diff[bit]← dbits_org ⊕ dbits_flipped;

end
end

of any (or multiple) DRAM address component changes. If a
component changes, the flipped bit is part of the addressing
function of this address component. Using this approach, we
can precisely reconstruct all DRAM addressing functions and
also see if a physical address bit is overlapping, i.e., used in
different DRAM functions.

Results. The recovered DRAM addressing functions for the
three platforms are presented in Tbl. 3. For the AMD Zen 4
system, we found the same functions as reported earlier [12].
Furthermore, we found that Intel Alder Lake and Raptor Lake
CPUs use the same DRAM addressing functions.

O6. The DRAM addressing functions of current Intel
Raptor Lake CPUs involve up to 6 bits each and bits above
bit 30.

6.3 RFM on Memory Controllers

Given the DRAM addressing functions, we can precisely
address specific DRAM rows, which we use to filter out noise
in the captured traces more efficiently. In the next step, we
investigate if memory controllers of recent DDR5 desktop
CPUs, Intel Alder Lake and Raptor Lake, and also AMD Zen
4, issue RFM commands to DRAM devices.
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Figure 10: Activations to aggressor-adjacent rows on the Intel
Alder Lake system while hammering aggressor rows 146 and 137.

Experiment setup. We use the device H5 (SK Hynix) for
this experiment, which advertises RFM support (see Tbl. 7).
We then hammer two aggressor rows consecutively while
capturing traces of 5 ms using McSee. We try various patterns,
such as single-sided or double-sided patterns, which should
all trigger RFM since it does not rely on any specific memory
access pattern.

Results. We have not found any RFM commands in the cap-
tured traces of the three tested systems, i.e., iAL, iRL, and aZ4.
We also tested another DIMM (M3 from Micron) that sets the
“RFM required” bit, but could not observe RFM commands
on any of the three systems either. From this experiment,
we conclude that most DDR5 DIMMs support RFM, but the
memory controllers of current DDR5 CPUs do not issue RFM
commands. We believe that CPU vendors might have decided
against employing RFM due to requiring expensive per-bank
counters in the memory controller or the performance penalty
of using RFM [18].

O7. Intel Alder Lake/Raptor Lake, and AMD Zen 4 sys-
tems do not issue RFM commands to DDR5 DIMMs.

FGR Mode. Instead of RFM, we observed that both Alder
Lake and Raptor Lake CPUs seem to use the fine-granularity
refresh (FGR) mode by default (see §2.1). In this mode, the
memory controller sends REFsb and PREsb commands to re-
fresh and precharge one bank in all bank groups, respectively.
As it halves the refresh rate (tREFI) from 3.9 µs to 1.95 µs,
we argue that Rowhammer attacks become harder because
there is less time to hammer in between refreshes and more
opportunities for TRR to refresh victims. As described in the
JEDEC standard [20, p. 172], we observed that REFab com-
mands are sent along with REFsb commands (see §2.1). We
observed that while the FGR mode remains inactive on Intel
CPUs during system idle states, it becomes active after a few
memory accesses. On the Zen 4 system, we never observed
the FGR mode.

O8. Intel Alder Lake and Raptor Lake systems use FGR
mode by default. AMD Zen 4 systems do not use it.

pTRR mitigation. On the Intel Raptor Lake systems, we
found that the victim rows next to our hammered aggressor
rows (i.e., rows 147/146 and 138/136) were occasionally acti-
vated, as we visualize in Fig. 10. We observed this behavior

whenever ACTs were being sent, regardless of the number of
aggressor rows or their distance from each other. This behav-
ior looks similar to the pTRR mitigation reported earlier on
an Intel Xeon server CPU (Xeon E5-2620 v2, Ivy Bridge EP)
with DDR3 DRAM [25]. We have not observed this behavior
on the Intel Alder Lake system. We conclude from this that
Intel has deployed a memory controller-based Rowhammer
mitigation on their latest consumer CPUs for the first time.

O9. Intel Raptor Lake CPUs use a memory controller-
based mitigation (pTRR) to protect against Rowhammer
attacks.

Row remapping. We repeated the same experiment with
different Micron DIMMs, which are known to employ row
remapping [66]. To correctly apply the mitigation, the mem-
ory controller must be aware of the row remapping. We always
observed mitigative refreshes to rows that are physically ad-
jacent to the aggressor rows, i.e., the memory controller is
aware of row remapping for particular devices from the differ-
ent vendors. This is supported by our finding of “Micron row
swizzling” in the pTRR-related code of the leaked Intel UEFI
firmware [67]. However, we cannot exclude the possibility of
further DRAM-internal row remapping.

As pTRR is a probabilistic mitigation, we aim to investigate
the probability of pTRR events on the Intel Raptor Lake sys-
tem in the next section.

6.4 Reverse Engineering Intel’s pTRR

The memory controller-based mitigation we discovered looks
similar to what has previously been reported as pseudo-TRR
(pTRR) [2, 25, 44, 45]. Every time a DRAM row is accessed
(i.e., activated and precharged), some adjacent row is subse-
quently accessed with a low probability p. As the probability
p decides the mitigation’s security and overhead, it is de-
termined based on the device’s vulnerability level and other
protection mechanisms (e.g., on-die ECC).

Goal. To better understand the guarantees of the deployed
mitigation, our objective is to experimentally reverse engineer
the probability p used in the implementation. Assuming that
mitigation events are stochastically independent and follow
the same probability p for all events, we would expect a bi-
nomial distribution with probability p. As pTRR also affects
benign workloads, we expect the probability p to be very low
to minimize the overhead of mitigative refreshes.

Experiment design. In each experiment round, we hammer
two aggressor rows in a loop for 8192 times while flushing
(clflush) and fencing (mfence) in between hammering the
aggressor rows. We choose 8192 loop rounds, as we found in
preliminary experiments that it is sufficient to trigger pTRR
(i.e., activations in nearby rows). We run the experiment for
512 repetitions to capture as much data as possible. After
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Figure 11: Distribution of Intel pTRR mitigation events on Rap-
tor Lake while hammering the aggressor pair 8192 times, collected
over four captures with each 512 repetitions. The result corresponds
to a binomial distribution with a probability p = 0.00091 (0.091%).

each repetition, we sleep for 20 microseconds to be able to
split and analyze the data more easily later.

Results. The histogram in Fig. 11 shows the frequency count
(x-axis) for different numbers of pTRR mitigation events (y-
axis) collected over blocks of 8192 double-sided hammer
accesses. As the data fits well to a binomial distribution with
p = 0.00091, we can conclude that the mitigation events are
stochastically independent and confirm that it is indeed pTRR
that we observe. We find that the probability of the distribu-
tion p is 0.00091, which means that the rows adjacent to the
aggressor are refreshed with a probability of 0.091%.

We repeated the same experiment, but with hammering
(consecutively) two aggressor rows of each of the four banks.
Similarly to before, we found that the distribution of pTRR
events fits to a binomial distribution with a probability p per
bank between 0.00094 and 0.00095. This means that pTRR
acts on a per-bank basis, and hammering multiple banks in
parallel does make an attack time-wise more efficient, but does
not reduce the probability of a victim row being mitigated.

Security Analysis. We calculate the probability that a
Rowhammer attack against a pTRR-protected DIMM will suc-
ceed for different Rowhammer thresholds. We take the PARA
model from previous work [68] and calculate the probability
of attack success over one hour, one day, and one week. We re-
port the success probability as a function of the Rowhammer
threshold in Fig. 12. The results show that devices protected
with pTRR with a Rowhammer threshold of 13200, 16700,
and 18800 activations can be bypassed with roughly 50%
attack success probability in less than an hour, one day, and
one week, respectively. From this, we conclude that pTRR
alone is insufficient to protect devices in the long term due to
decreasing Rowhammer thresholds [23].

Blacksmith port. We ported the state-of-the-art Blacksmith
fuzzer [69] to the iRL system to test if it can trigger bit flips
despite the presence of pTRR. We integrated the recovered
DRAM addressing functions (see Tbl. 3) and adapted the
refresh synchronization, which we verified using McSee. As
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Rowhammer Threshold

0

0.5

1.0
Success Probability
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Figure 12: Rowhammer attack on pTRR. Success probability for
bypassing Intel pTRR in a Rowhammer attack of one week, one day,
and one hour.

Table 5: Summary of findings. Overview of detected (✓) and not
detected (✗) memory controller features on our DDR5 test systems.

Feature iAL iRL aZ4

RFM: Refresh Management ✗ ✗ ✗
FGR: Fine-Granularity Refresh ✓ ✓ ✗
pTRR: Pseudo Target Row Refresh ✗ ✓ ✗

we were unable to find bit flips on any of the DDR5 devices
(Tbl. 7) in a 12 h fuzzer run, we conclude that pTRR is effec-
tive in mitigating state-of-the-art Rowhammer attacks. On the
aZ4 system, however, we could trigger bit flips on a DDR5
device (S4, Micron) similar to Zenhammer [12]. As aZ4 does
not seem to employ any memory controller mitigation, we
conclude that better TRR mitigations and on-die ECC inhibit
us from observing bit flips on other tested DDR5 devices.
We next discuss how our new findings impact the security of
devices against Rowhammer.

7 Implications

We discuss the impact of our observations (§5) and findings
(Tbl. 5) on the security of DDR5 systems with respect to
Rowhammer. As we show, our results are crucial for the de-
sign of future Rowhammer attacks and defenses.

Attacks. Our analysis of two modern Rowhammer attacks
shows that attack evaluations need to be more rigorous and
consider all possible variations. For example, Sledgehammer
should have reported results for all numbers of banks and
activations per bank. Our results also show that such attacks
have the potential to better exploit the underlying feature
they target. For example, an interesting future direction is
exploring system-level Rowpress attacks that rely on access
patterns that keep the aggressor rows open for longer time.

RFM. While literature has proposed many RFM-based mit-
igations [41, 70, 71], this feature is currently not deployed
on consumer CPUs. This means that there is no extra time
available to mitigate Rowhammer, and TRR-based in-DRAM
mitigations can only rely on REFs, thus severely impacting
their security guarantees [18].

FGR. The FGR mode on the Intel systems we tested increases
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Table 6: Comparison of DRAM analysis infrastructures. We
compare estimated hardware costs (HW Costs); ease of use (EoU);
capabilities (Caps.) such as viewing, manipulating, and generating
memory bus traffic; and flexibility (Flex.). We rate aspects as + pos-
itive, o neutral, or – negative.

Solution HW Costs EoU Caps. Flex.

McSee (§ 4) – ($ 175 K) + view +
Logic Analyzer [72, 73] – ($ 450 K) + view o
Oscilloscope [12, 17, 49] + ($ 1 K) o view o

FPGA Platform o ($ 5 K)1 o generate +
Fault Inj. Platform [54] + ($ 500) – manipulate –

the refresh rate while reducing the duration of each REF com-
mand [22]. This can impact TRR, for example, by allowing a
higher or more granular invocation frequency. However, there
exists no study of TRR under FGR [19] and whether this
modality is more favorable to the mitigation or the attacker.
Given that previous work [26] relies on TRR synchronization
to induce Rowhammer bit flips, it is fundamental for future
research to consider the effect of FGR.

pTRR. Raptor Lake deploys pTRR, making it harder to trig-
ger bit flips reliably. This impedes end-to-end Rowhammer
attacks, whose success now depends on the probabilistic na-
ture of pTRR. Hence, future work on Intel must consider both
in-DRAM and in-CPU TRR to trigger bit flips. As pTRR
cannot account for the varying Rowhammer thresholds across
devices (HCmin), future DDR5 characterization results should
be compared with our pTRR reverse engineering results.

PRAC. The latest DDR5 standard [48] contains the Rowham-
mer mitigation feature Per Row Activation Counting (PRAC)
involving the memory controller. Although it promises
stronger protection, our findings are disconcerting: even if
there would be a principled mitigation, there is no guarantee
that CPU vendors will support it. Once the DRAM vendors
deploy PRAC, McSee is an ideal platform to study when
ALERT and RFM commands are sent for an adequate security
evaluation of PRAC.

8 Related Work

We compare different, previously used DRAM analysis in-
frastructures with McSee (§4) w.r.t. the estimated hardware
costs (HW Costs), the ease of use (EoU) in terms of required
expertise, the capabilities (Caps.) (i.e., if memory bus traffic
can be viewed, manipulated, or DRAM workloads can be
generated), and the platform’s flexibility (Flex.) regarding
different use cases. In Tbl. 6, we summarize our results. We
now discuss these aspects in detail.

McSee. Our platform provides us with a comprehensive view
of the entire command/address bus. As an oscilloscope is
a general tool, it is flexible regarding captured signals, sup-

ported DRAM types, and even capturing other buses and
protocols. Thanks to our custom-built software stack, we can
easily capture and efficiently process DDR5 traces.

As an alternative to buying the oscilloscope used by Mc-
See, academic groups can rent our exact setup for around
$ 9 K/month. Alternatively, it is also possible to obtain a
second-hand device at a cheaper price. Given that the software
part of McSee is platform-agnostic, it can be used with the
output from any oscilloscope or logic analyzer.

Specialized logic analyzer. A logic analyzer for DRAM anal-
ysis (e.g., Keysight U4164A) provides a detailed view of
the DDRx memory bus, including the C/A and the data bus.
Having an analysis SW makes it the easiest-to-use solution,
requiring little expertise to set up and use. However, it is by
far the most expensive solution and its flexibility is limited.

Oscilloscope. An oscilloscope can capture very few signals
from the DDRx memory bus at a time, for example, for veri-
fication [12, 17]. However, this is insufficient to fully recon-
struct the DRAM commands. In addition, it requires short
repetitive workloads, making it impossible to detect a TRR-
triggered ACT for a victim amid hundreds of regular ACTs
to aggressors. Therefore, the low costs are diminished by low
usability and a limited view of the memory bus. The low sam-
pling frequency of devices in this price range (e.g., 200 MHz)
restricts their use for research on high-speed DRAM.

FPGA platform. An FPGA-based memory controller allows
running custom workloads with fine-grained control over
DRAM commands and device behavior (e.g., refreshes) [19,
25]. It is the most versatile platform for studying DRAM chips
in isolation, as it avoids all “noise” (e.g., optimizations, miti-
gations) caused by memory controllers in COTS CPUs. The
main drawbacks are the high platform development costs and
the expertise required to run and debug it. Besides that, we
cannot use them to study in-CPU Rowhammer mitigations.

Fault injection platform. The mFIT [54] DDR4 platform
manipulates DRAM commands on-the-fly by controllably
faulting bits to turn one command into another. Because only
a custom PCB and a microcontroller are needed, the costs
are low. However, the possible command transformations
are limited (since it can only pull-up/-down voltage levels),
and precise synchronization with commands is missing, thus
strongly reducing possible use cases. Similar limitations apply
to the REFault DDR5 fault injection platform [74]. Due to
the two-cycle commands in DDR5, the possible command
transformations are even more limited than on DDR4.

9 Conclusion

We presented McSee, a new platform for reliable and efficient
analysis of DDR4/5 traffic on the DRAM bus. Using McSee,
we found that advanced Rowhammer(-like) attacks do not
always exploit the underlying DRAM features that they tar-
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get as intended. We also uncovered the DRAM addressing
functions on Intel and AMD CPUs that support DDR5 and
showed that — although new DDR5 modules advertise RFM
values in their SPD chips — current CPUs do not send any
RFM commands. We further discovered that Intel CPUs use
fine-granularity refresh mode and Raptor Lake systems ad-
ditionally employ a memory controller-based probabilistic
mitigation under Rowhammer attacks, which we also reverse
engineered using McSee. Finally, we explored the implica-
tions of our discoveries for practical Rowhammer attacks and
defenses in the future.
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Appendices

A Research Ethics

This work presents a novel platform for validating DRAM-
based attacks (such as Rowhammer and Rowpress), and more
generally, for studying the memory controller of CPUs. We
study the memory controller to analyze the presence of in-
CPU Rowhammer mitigations.

The insights of our work are useful to better understand the
multi-layered security of DDR5 DRAM memory in today’s
computing systems. However, we believe that the potential for
misuse is limited due to the advanced nature of these attacks.
Moreover, Rowhammer is an industry-wide known problem,
and as we do not present any new attack vectors, we do not
think that this work raises any ethical concerns.

B Open Science

We open source McSee’s software, the oscilloscope-agnostic
data processing pipeline, and our decoder on GitHub. Addi-
tionally, we provide the PCB interposer design for enabling
straightforward replication. The artifacts can be found at
https://github.com/comsec-group/mcsee.

C DIMM Details

In Tbl. 7, we provide details of the DDR5 UDIMMs used in
our experiments, including their reported RFM values and the
presence of on-die ECC (ODECC).

Table 7: Our DDR5 UDIMM testpool. We report for each device,
its manufacturing date (Mf. Date) as year-month; size; frequency
(Freq.); device width (Wd.); DRAM geometry as number of ranks
(RK), bank groups (BG), banks per bank group (BA), and row bits
(R); their RFM values (RFM) where “R” denotes reserved for future
use (RFU), and if on-die ECC (ODECC) is present (✓) or it is
unclear (?). Unavailable values are denoted by n/a.

ID Mf.
Date

Size
[GiB]

Wd.
[b]

Geometry
#(RK,BG,BA,R) RFM† OD-

ECC

M1 22-05 16 x8 1, 8, 4, 16 0, 80, 6x ✓

M2 22-08 16 x8 1, 8, 4, 16 0, R, R ?
M3 22-01 16 x8 1, 8, 4, 16 1, 80, 4x ✓

M4 21-10 16 x8 1, 8, 4, 16 1, 80, 4x ✓

M5 21-10 16 x8 1, 8, 4, 16 1, 80, 4x ✓

M6 21-10 16 x8 1, 8, 4, 16 1, 80, 4x ✓

M7 22-02 16 x8 1, 8, 4, 16 0, R, R ?
M8 21-12 16 x8 1, 8, 4, 16 0, R, R ✓

M9 n/a 16 x8 1, 8, 4, 16 0, R, R ✓

M10 21-11 16 x8 1, 8, 4, 16 0, R, R ✓

M11 22-10 32 x8 2, 8, 4, 16 0, 80, 6x ✓

H1 22-01 8 x16 1, 4, 4, 16 0, R, R ✓

H2 22-12 8 x16 1, 4, 4, 16 0, 80, 6x ?
H3 22-07 16 x8 1, 8, 4, 16 0, 80, 6x ✓

H4 22-08 16 x8 1, 8, 4, 16 0, 80, 6x ✓

H5 22-07 16 x8 1, 8, 4, 16 0, 80, 6x ✓

H6 23-01 32 x8 2, 8, 4, 16 0, 80, 6x ✓

H7 22-12 32 x8 2, 8, 4, 16 0, 80, 6x ?
H8 23-01 32 x8 2, 8, 4, 16 0, 80, 6x ✓

H9 22-08 32 x8 2, 8, 4, 16 0, 80, 6x ?
H10 23-01 32 x8 2, 8, 4, 16 0, 80, 6x ?
S1 22-02 8 x16 1, 4, 4, 16 0, 80, 6x ?
S2 21-12 8 x16 1, 4, 4, 16 0, R, R ✓

S3 22-01 16 x8 1, 8, 4, 16 0, R, R ✓

S4 21-10 16 x8 1, 8, 4, 16 0, R, R ✓

S5 n/a 16 x8 1, 8, 4, 16 0, R, R ✓

S6 22-09 16 x8 1, 8, 4, 16 0, R, R ✓

S7 23-05 16 x8 1, 8, 4, 16 0, R, R ✓

U1 22-05 8 x16 1, 4, 4, 16 0, 80, 6x ✓

† RFM values: RFM is required, RAAIMT, RAAMMT.
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M. B. Cavlak, J. Lindegger, M. Sadrosadati, and
O. Mutlu, “Artifact of "RowPress: Amplifying Read-
Disturbance in Modern DRAM Chips",” Zenodo,
Mar. 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.7768005

[60] F. Ridder, P. Jattke, and K. Razavi, “Posthammer:
Pervasive Browser-based Rowhammer Attacks with
Postponed Refresh Commands,” in USENIX Security

’25. Seattle, WA, USA: USENIX Association, Aug.
2025. [Online]. Available: https://comsec.ethz.ch/
research/dram/posthammer/

[61] Kingston Technology Corp., “KF556C40BB-32 - Mem-
ory Module Specifications.” [Online]. Available: https:
//www.kingston.com/datasheets/KF552C40BB-32.pdf

[62] “Crucial 16GB DDR5-4800 UDIMM | CT16G48C40U5
| Crucial.com.” [Online]. Available: https://www.crucial.
com/memory/ddr5/ct16g48c40u5

[63] “M323R1GB4BB0-CQK(DDR5) | DRAM.” [Online].
Available: https://semiconductor.samsung.com/dram/
module/udimm/m323r1gb4bb0-cqk

[64] “JESD400-5B: DDR5 Serial Presence Detect (SPD),”
Oct. 2023. [Online]. Available: https://www.jedec.org/
standards-documents/docs/jesd400-5b

[65] M. Wang, Z. Zhang, Y. Cheng, and S. Nepal,
“DRAMDig: A Knowledge-assisted Tool to Uncover
DRAM Address Mapping,” arXiv:2004.02354 [cs], Jul.
2020. [Online]. Available: http://arxiv.org/abs/2004.
02354

[66] L. Orosa, U. Rührmair, A. G. Yaglikci, H. Luo,
A. Olgun, P. Jattke, M. Patel, J. Kim, K. Razavi,
and O. Mutlu, “SpyHammer: Using RowHammer to
Remotely Spy on Temperature,” Oct. 2022. [Online].
Available: http://arxiv.org/abs/2210.04084

[67] P. Alcorn, “Intel’s Alder Lake BIOS Source Code
Reportedly Leaked Online,” Oct. 2022. [Online].
Available: https://www.tomshardware.com/news/intels-
alder-lake-bios-source-code-reportedly-leaked-online
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