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Abstract—IaaS clouds promise instantaneously available re-
sources to elastic applications. In practice, however, virtual
machine (VM) startup times are in the order of several minutes,
or at best, several tens of seconds, negatively impacting the
elasticity of applications like Web servers that need to scale out
to handle dynamically increasing load.

VM startup time is strongly influenced by booting the VM’s
operating system. In this work, we propose using so-called
prebaked µVMs to speed up VM startup. µVMs are snapshots of
minimal VMs that can be quickly resumed and then configured
to application needs by hot-plugging resources. To serve µVMs,
we extend our VM boot cache service, Squirrel, allowing to store
µVMs for large numbers of VM images on the hosts of a data
center. Our experiments show that µVMs can start up in less than
one second on a standard file system. Using 1000+ VM images
from a production cloud, we show that the respective µVMs can
be stored in a compressed and deduplicated file system within
50 GB storage per host, while starting up within 2–3 seconds on
average.

I. INTRODUCTION

With the advent of public Infrastructure-as-a-Service (IaaS)
clouds, like Amazon EC2 or Windows Azure, the use of
virtualized operating systems, “virtual machines”, has gained
widespread use. The promise of elastic computing is instan-
taneous creation of virtual machines (VMs), according to the
needs of an application or Web service. In practice, however,
users face highly variable VM startup times in the range of
several minutes, depending on the actual system load [1], [2].

Such long VM startup times have a strong negative impact
on the elasticity of cloud applications. For example, a Web
server facing spontaneously increasing load needs to scale out
by adding hosts. If such added machines become available only
after several minutes, the Web site might appear unreachable
meanwhile, leading to unsatisfied clients and loss of revenue
for the site operator. Alternatively, such a Web site would
need to overprovision its cloud servers, causing latent costs
of leasing additional, standby servers that were supposed to be
avoided by using the cloud infrastructure in the first place. The
question of how much to overprovision is also not straightfor-
ward to answer, making the design of autoscalers and capacity
managers (e.g., [3], [4], [5], [6], [7]) more difficult. In this
paper, we try to tackle the problem directly, and develop a
solution to minimize the VM starting time.

Two important factors contribute to VM starting time: the
transfer of the VM image from a storage node to the host, and
the actual booting process of the VM. In previous work [8],
we presented the Squirrel system of boot caches that stores

the boot working sets for all VM images of a data center
on all hosts. We have shown that Squirrel can scale up to
storing thousands of boot caches by means of compression
and deduplication. Using Squirrel, no VM image data needs
to be transferred to hosts during VM startup, reducing typical
VM boot times from several minutes to tens of seconds.

In this work, we address the other cause of slow VM
startup: the VM boot process itself. Booting an operating
system is a lengthy but repetitive computation. We propose
to pre-boot a VM image in advance and to take a snapshot
that can be resumed from whenever a user wishes to start
one or more VMs from this image. The reason why VMs are
usually booted on demand (rather than resumed) is that their
operating system state reflects the actual resources available
to the VM, like the CPU cores, the memory, or the disks. For
each VM image and (virtual) machine type of a cloud provider,
a VM snapshot would be needed, leading to a combinatorial
explosion and to non-scalable storage requirements.

To avoid such combinatorial explosion, we propose to use
prebaked µVMs instead. A µVM is a snapshot of a booted
VM with minimal hardware resources, in our case a single
CPU core and 512 MB of RAM. µVMs are relatively small,
lowering storage requirements. We are using hardware hot-
plugging for adding resources of larger machine types (CPU
cores and memory) as part of the resume process, at the actual
VM startup time.

The service for resuming VMs and hot-plugging resources
is called the VM bakery. We have extended our Squirrel storage
system in order to serve µVMs instead of boot cache images.
Combining µVMs, Squirrel, and a carefully designed VM
snapshot format, we can achieve instantaneous VM startup.
Experiments with µVMs created from 1000+ community im-
ages of Windows Azure show that on average, we can start
VMs in under a second using a standard file system, and within
2–3 seconds using a compressed file system consuming only
50 GB of storage space per host.

This paper is organized as follows. Section II provides
background on the operating system boot process and how
it can be improved for fast VM startup. Section III explains
the fundamental properties of µVMs and the VM bakery. Sec-
tion IV presents the actual implementation, and the integration
with Squirrel. In Section V, we evaluate both VM startup times
and storage scalability. Section VI discusses related work.
Section VII concludes.



II. BOOTING VIRTUAL MACHINES

Every time a tenant requests a VM, the provider needs to
start the virtual machine monitor (VMM) with the requested
resource parameters (i.e. number of cores, amount of memory,
etc.) on an appropriate host. The VM then goes through various
stages in the boot process, building the operating system’s state
(OS state). Once the OS state is created, the VM becomes
ready for running the tenant’s applications.

Even when the VMs’ boot working sets are local to the
selected host, the boot process can take tens of seconds [9],
reducing the potentials for elastic cloud applications. In this
work, we propose to reuse the OS state. For doing so, we
need to understand why providers usually need to boot VMs
for every VM startup request.
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Fig. 1. Normal VM start up.

Figure 1 shows a rough sketch of the VM start up process
after the host is selected. First, the VMM is invoked with the
proper resources (CPU cores, memory), associated with the
requested instance type (e.g. small, medium, large, etc.) to
be handed to the VM. After the VM passes through BIOS
that detects some of the available hardware, specially bootable
storage, the appropriate bootloader starts. After a configurable
timeout, the OS kernel is loaded into memory, and starts
initialization of various devices such as cores, memory, disk
drives, and so on. After that, the OS starts the configured
services such as SSH (or RDP on Windows). Finally, in the last
step, the OS executes a set of given commands that configure
the VM to run the requested applications. The last step is
typically referred to as contextualization. Contextualization
makes the VM unique from other VMs that have started from
the same base VM image.

Depending on the configuration of the VM, any of these
steps can add to the total boot time. Among these steps,
the only two that make a VM unique, are the initial device
assignment and the contextualization. Contextualization is the
last step, and takes little time for configuring the VM’s network
interface and starting the user applications. The important step
that requires the providers to boot the VM “from scratch” is
the actual device assignment that happens at the beginning.

Previous attempts for addressing this issue involve keeping
VMs with different hardware resources running at all times,
and contextualizing a match according to the VM image
and the instance type of a user’s VM startup request [10].
Unfortunately, this approach does not scale due to different
possible instance types,1 and the number of VM images that
goes into the thousands. Other proposals suggest suspending
the entire VM’s state, including the state of the user applica-
tion, and resuming it when necessary [11], [12], [13]. While

1For example, in December 2014, Amazon EC2 provides more than 20
instance types.

these solutions work for a specific user, they do not scale
for an entire cloud infrastructure since the VMs are already
specialized for a particular user.

None of these solutions consider the fact that the OS state
is initially the same regardless of the VM configuration. We
propose a generic and scalable solution to capture and reuse
this state.

III. µVMS AND THE VM BAKERY

We introduce µVM, a building block for reusable OS state
in Section III-A. We then describe VM bakery in Section III-B,
a service that runs on the hosts, and takes as input a µVM, and
outputs a VM according to the requested user configuration.
We describe the requirements for scalable host-side caching of
µVMs in Section III-C, and we discuss the security implica-
tions of reusing OS state in Section III-D.

A. µVM

As discussed in Section II, the main reason that forces the
providers to boot VMs for every single VM startup request
is the initial device assignment. To relax this requirement, we
propose starting the VM with minimal resources. In our experi-
ence, 512 MB of memory is more than enough to accommodate
the initial state for both Linux and Windows OSes. Once the
VM is booted, we take a snapshot of the VM. This snapshot
contains the state of disk, memory, and devices at the moment
when the VM is booted. We call this snapshot a µVM, and
will explain in Section IV how this can be done in a reusable
manner.

µVMs have some interesting properties:

1) µVMs can be arbitrarily resized to machine types with
larger resources; only one µVM is necessary for every
VM image registered at a provider.

2) µVMs are small in size, allowing for scalable host-
side caching. With slight modification of the snapshot
format, we achieve reasonable deduplication ratios,
resulting in even more scalable host-side caching with
slight increase in the µVMs’ resume times.

3) Standard fast resume techniques can be applied to
µVMs, resulting in fast VM startup times.

We exploit the first and second properties for scalable
storage of µVMs at the hosts, and the third property for fast
VM startup. An alternative approach would be to start with a
larger VM and reducing its size by means of hot-unpluging.
However, due to in-kernel data structures that are necessary
for managing the extra (unused) memory, the storage of the
memory snapshots would become inefficient.

B. VM Bakery

µVMs by themselves are not suited for running user appli-
cations as they lack resources. We hence need a mechanism
for adding resources to µVMs.

Entire machine virtualization cleanly decouples hardware
from the OS that runs in the virtual machine. While this
decoupling provides isolation and consolidation possibilities
exploited in clouds today, it also allows for more dynamic
“physical” resource allocation to guest OSes, termed resource



hot-plugging and hot-unplugging. Realizing the resource man-
agement opportunities of resource hot-(un)plugging, VMMs
and guest OSes are gradually implementing proper support for
various resources such as cores, memory, and disks. The latest
versions of QEMU/KVM (a popular open-source VMM) on
one hand, and Linux, and Windows (among popular commod-
ity guests), on the other, already support resource hot-plugging,
though hot-unplugging is still under progress. (Hot-unplugging
is not needed by µVMs and the VM bakery.)
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Fig. 2. VM Bakery: VM startup using µVM and resource hot-plugging.

We have implemented a service, called the VM bakery,
that runs on the hosts, and employs resource hot-plugging to
extend a µVM to the tenant-requested size. Figure 2 shows
how VM startup looks like with VM bakery. The blue steps
are precomputed and are what constitutes a µVM, and the red
steps happen during the actual VM startup. Upon a VM startup
request, the VM bakery resumes the µVM and contextualizes
it. Immediately after contextualization, the VM bakery starts
hot-plugging core and memory resources by interacting with
the VMM process in control of the µVM. Effectively, the VM
bakery moves the device assignment to the very end of the VM
startup process, making it possible to reuse the precomputed
OS state of µVMs. We perform contextualization before hot-
plugging to make the VM available to the user as soon as
possible. We explain how it is possible to contextualize a µVM
in Section IV-C.

C. Host-side Caching of µVMs

For resuming a µVM, only the states of memory and de-
vices are necessary. Hence, we need to consider the efficiency
of storing these states for many µVMs. To investigate this, we
created µVMs from our Windows Azure repository, consisting
of more than 1000 Linux VMs of different flavours, using
KVM’s default savevm facilities [14]. The entire states of all
µVMs amounted to 241 GB on an ext4 partition, which is too
large for host-side caching. To reduce this footprint, standard
deduplication and compression techniques can be applied.

To understand the potential for deduplication, we stored
the µVMs on deduplication-enabled ZFS volumes with varying
block sizes and measured the deduplication ratios. The default
format line in Figure 3 shows the result of the study. To
our surprise, the results showed almost no opportunities for
deduplication, even on page-granular block size (4 KB). The
reason for this turned out to be the complex file format
that KVM uses for storing each µVM state file. The default
VM state file format contains different sections for different
devices, and one of these sections, that is amounting to almost
all of the state file, is the µVM’s memory. Further, KVM
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Fig. 3. Deduplication ratios of µVMs from Windows Azure repository with
KVM’s default state file format and the raw memory contents taken with
pmemsave.

applies a basic compression routine that stores a single byte
for pages that contain that specific byte (e.g., zero pages),
and reflects this information in the state file [15]. These
“meta-state” information and possible per-page misalignment
of guest’s physical memory, make low-cost fixed block-based
deduplication ineffective.

To understand possible improvements to the deduplication
ratio, we used QMP’s pmemsave command to retrieve the
µVMs’ raw physical memory contents [16], bypassing KVM’s
complex snapshot file format. The gross size of these memory
dumps is 512 GB (memory size of each µVM: 512 MB, multi-
plied by the number of µVMs), but simple sparse file support
(not storing zero pages) of the ext4 file system already reduces
it to only 271 GB. In Figure 3, the pmemsave line shows
that simplifying the µVM’s memory state allows for better
storage scalability due to improved deduplication possibilities
when stored with varying block sizes in a deduplicating ZFS.
We show how we have adapted KVM’s snapshot file format
according to these findings in Section V-C.

D. Security Considerations

Security is beyond the scope of this work. However, we
briefly discuss the security implications of reusing the OS state.

Operating systems typically use Address Space Layout
Randomization (ASLR) in combination with other techniques
such as stack canaries, and non-executable stack and heap to
protect against exploits that target vulnerable applications. By
reusing the OS state, we may allow an attacker to defeat
ASLR by starting VMs on the target provider to read the
address space layout (ASL) of target processes. Since most
OS kernels themselves do not employ ASLR, the only affected
and important processes are OS services that run as part of the
boot process such as httpd or ssh.

To restore ASLR to these important OS services, their
ASLs should be re-randomized. A pragmatic approach involves
restarting these processes after the VM starts. A more elegant
approach is live layout re-randomization of these address
spaces [17], [18]. We assume that such techniques will be used
in combination with our µVMs.



IV. IMPLEMENTATION

Our implementation of µVMs allows providers to reuse the
precomputed (“prebaked”) OS state by several, concurrently
started VMs during the VM startup process based on VM
resume. To make this possible, the VMs created from the same
µVM should not modify any µVM state, including the state of
memory and devices, and the µVM’s view of its virtual disk.
Instead, their modifications should be local and visible only
to themselves. We provide this property in a similar fashion
to Linux process fork, using copy-on-write, both for memory
and disk. The end result is reusable µVMs.

To allow for reusable memory state, as well as efficient
host-side caching of µVMs, we needed to introduce changes
to QEMU/KVM (Section IV-A). To allow for reusable µVM
virtual disks, we used overlay images (Section IV-B). We
then discuss the implementation of the VM bakery service
(Section IV-C) that uses these µVMs for starting VMs, and
how we modified Squirrel, an existing caching system for
the efficient storage of µVMs (Section IV-D). Finally, we
discuss some of the issues that we encountered during the
implementation of this work (Section IV-E).

A. Supporting µVMs in QEMU/KVM

As we showed in Section III-C, raw storage of µVM mem-
ory is necessary for efficient and scalable host-side caching
of µVMs. To allow µVM resume over raw µVM memory,
we modified KVM’s state file format to exclude the memory
section. Instead, we provide a separate file containing the
µVM’s memory directly to KVM as a command line parameter
at resume time.

The default resume mechanism in KVM reads the entire
state file, including the VM’s memory, before starting the
VM (i.e., eager resume). µVMs are small, thus we can load
their memory state in a small time amount. However, to
improve the resume time further, we decided to use and modify
an implementation of lazy resume [15]. The implementation
leverages mmap [19] to provide a one-to-one mapping of the
VM’s raw memory file (stored on disk) in the QEMU/KVM’s
address space. Once the VM resumes, every access to its
memory results in a page-fault. The Linux page-fault handler
(on the host that runs KVM) then loads the memory page
from the file, and resumes the execution of the VM. Using the
raw memory file also satisfies our requirement for having the
µVM’s memory in a separate file.

We now discuss how we modified the lazy resume im-
plementation to provide copy-on-write semantics for reusable
µVMs. The small (O(1 MB)) device state is copied eagerly
into the memory during µVM resume, and is hence reusable.
The implementation of lazy resume in [15] needs to keep the
VM’s memory state file synchronized with the current VM’s
memory to provide support for snapshots. For this purpose,
it uses a shared memory mapping (i.e., MAP SHARED [19]).
MAP SHARED allows the changes to the VM’s memory to be
propagated to the memory state file on disk. The propagation
happens eagerly with the msync [20] system call during the
snapshot process, and also periodically by the Linux kernel
in configurable system-wide intervals. This is undesirable for
µVMs, since we intend to reuse µVMs memory states.

Fortunately, the alternative, private memory mapping (i.e.,
MAP PRIVATE) provides us with a private copy-on-write
mechanism that is not reflected on the underlying memory
state file. Thus, using MAP PRIVATE makes it possible to use
µVMs by multiple VM’s at any time without any concurrency
issues. Unfortunately, in Linux, once a mapping is defined
as private, it is not possible to propagate the updated pages
to the underlying backing file. To address this limitation,
we use MAP SHARED/msync during µVM creation, and
MAP PRIVATE during reuse. The snapshot process invoked
on VMs started from a µVM goes through the pages in the
private mapping, and reflect them on a new memory state file.

B. µVM Storage Overlay

During its boot process, the OS writes data (e.g., logs,
temporary files, etc.) to its booting storage device. We call
these writes the boot writing set of a particular VM. A VM
started from a µVM should have a consistent view of its storage
device. In other words, we should protect the boot writing
set from VMs that are started from a µVM. QCOW2 [21],
QEMU’s widely used copy-on-write (CoW) image format,
provides support for overlays [22] among other things. We use
this feature for creating a copy-on-write overlay for keeping
the VM’s boot writing set.
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Fig. 4. Creation and reuse of µVM storage overlays.

Figure 4 shows how µVM overlays are created and reused.
During µVM creation, we use a normal CoW image over the
base VM image of the µVM. Once the µVM is booted, we take
a snapshot. At this time, all the boot writing set of the µVM is
in the CoW image. We call this CoW image the µVM overlay.
Whenever there is a VM startup request, we create another
CoW image, and chain it to the µVM overlay, and resume the
µVM by passing the (last) CoW as the µVM’s virtual disk.
With this technique, the reads originating from the VM see
the consistent view of the storage device at the time of the
snapshot. Further, the writes originating from different VMs
do not pollute the µVM overlay due to their copy-on-write
nature.

We have previously shown that chaining overlays is a
cheap operation in QCOW2 [9], as the small overlay metadata
remains in the page-cache.



C. VM Bakery

Our VM bakery service takes as an input the states of
devices and memory of a µVM and outputs a contextualized
VM with the requested core and memory resources. VM
bakery runs on the hosts and has access to a local cache
containing the necessary states.

As soon as there is a VM startup request, VM bakery starts
the KVM process, and resumes the desired µVM. At this point,
the OS running in the VM needs to be contextualized. We
implement contextualization in a way that does not require
modifications to the guest OS. For this purpose, we decided
to contextualize our µVMs using a hot-pluggable hard disk.
In parallel to resuming the VM, we create a file with the
required contextualization information, and attach it to the
µVM. In Linux guests, we use a simple udev rule [23] that
acts on the hot-plugging event of this special hard disk and
contextualizes the µVM based on the information inside it. In
Windows guests, we use the Task Scheduler [24] to register a
“trigger” for hot-plugging this specific disk, and an “action”
for contextualization.

Right after contextualization, depending on the requested
instance type, VM bakery starts hot-plugging CPU cores,
and a memory device with the necessary size through a
QMP TCP connection to KVM. These devices are picked up,
and initialized by the guest OSes immediately if support is
available in their kernel. All recent versions of kernels found
in common Linux distributions, and Windows Server editions
support core and memory hot-plugging (also referred to as hot-
add). While a contextualized µVM can already start executing
user applications, we will show the hot-plugging times of new
cores and memory of various OSes in Section V-A.

D. Host-side Caching of µVMs with Squirrel

We modified Squirrel [8], a host-side caching infrastruc-
ture, to be used by VM bakery. Squirrel is originally designed
for scalable host-side caching of VM images. Hence, our
modifications for caching µVMs instead were straightforward.
We briefly describe the architecture of Squirrel, its VM image
register operation, and then discuss the necessary changes for
adding support for µVMs.
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Fig. 5. Squirrel architecture diagram.

1) Architecture: Figure 5 shows the architecture of Squir-
rel. Squirrel keeps compressed cache volumes (ccVol), running
ZFS [25], on the hosts. The volumes store the VMs’ boot
reading sets. Whenever VMs need to start up, they use their
boot reading sets from Squirrel’s cache volumes rather than
reading remotely across the network. This allows for scalable

startup of VMs without congesting the network and/or storage
servers.

2) Squirrel’s Register: Whenever a cloud user registers a
VM image, Squirrel creates its boot reading set by booting a
VM instance at a storage server, and efficiently replicates it to
the VM hosts using ZFS incremental snapshots. A complete
description of Squirrel can be found in [8].

Base VM Image

uVM Overlay

Memory

Device states

LocalRemote

Fig. 6. The organization of a µVM from a host’s point of view. The overlay
as well as the devices and memory states are µVM-specific.

3) µVM Support: So far, our µVM constitutes the states of
its memory and devices, and an storage overlay. Since only
the states are actively read during µVM resume, we modified
Squirrel to replicate these states rather than the boot reading
sets. During Squirrel’s register operation, we boot a µVM the
same way as with the original Squirrel implementation, but in-
stead of performing copy-on-read for creating the boot working
sets, we perform copy-on-write for creating the µVM’s overlay.
Figure 6 summarizes the organization of µVMs from a host’s
point of view. We study the scalability of the cache volumes
in Section V-C.

E. Encountered Issues

We describe some of the issues that we encountered during
the implementation of µVM and VM bakery.

1) Lost events: One important issue that we needed to
address was “lost” hot-plugging events. VM bakery needs to
send hot-plugging events after KVM sets up lazy resume and
starts the guest VM. Otherwise, if the guest VM is not running
yet, these events will be lost. Hence, we needed to synchronize
these events with KVM. Fortunately, we found out that KVM
sends an end-of-resume event via QMP, so all we needed to do
was making sure that we are connected to QMP before starting
the µVM resume. For this purpose, we let the KVM process
wait on the devices state file using the inotify [26] system call.
Within the bakery service, after making a successful QMP
connection, we create a symbolic link to the devices state file
with the same path given to KVM’s inotify. KVM picks up
this event, and starts the resume. Using this simple mechanism,
VM bakery always picks up the event that constitutes a running
µVM, and starts hot-plugging the devices.

2) Sluggish (virtual) NIC: We initially implemented the
mechanism that informs the µVM about the state change
(resumed), by unplugging the NIC cable during µVM creation,
and plugging it back right after resume. We then used a udev
rule for picking up the context file via a configured link-local
IP address. Unfortunately, the link state change notification to
user-space could take up to tens of seconds after resume. Given
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(a) Ubuntu 12.10 - cold page cache.
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(b) CentOS 6.6 - cold page cache.
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(c) Windows Server 2012 - cold page cache.
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(d) Ubuntu 12.10 - warm page cache.
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(e) CentOS 6.6 - warm page cache.
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(f) Windows Server 2012 - warm page cache.

Fig. 7. VM startup time using µVMs of various OSes. The VMs can already start serving their applications as soon their µVMs resume (Leftmost line in each
figure). Note the different vertical axis in the Windows Server experiments.

this observation, we decided to contextualize our µVMs using
disk hot-plugging, like we discussed in Section IV-C.

3) No memory for new memory: The first version of our
µVMs only had 256 MB of memory. We however noticed
unstable kernel panics in Linux when hot-plugging memory.
The reason turned out to be critical out-of-memory situations
in the kernel, due to allocation of data structures needed for
the initialization of the hot-plugged memory. We resolved the
issue by moving to µVMs with 512 MB of memory.

V. EVALUATION

Our evaluation of µVMs consists of three parts. First, we
present a detailed analysis of VM startup times using three
commodity operating systems, including device hot-plugging
(Section V-A). Second, we compare startup times of µVMs and
boot reading sets over a large repository of VM images using
Squirrel (Section V-B). Third, we study scalability aspects of
caching µVMs at the hosts (Section V-C).

For our experiments, we used compute nodes from the
DAS-4/VU cluster [27]. The nodes are equipped with dual
quad-core Intel E5620 CPUs (8 physical cores), running at
2.4 GHz, with 24 GB of memory, with two Western Digital
SATA 3.0 Gbps/7200 RPM/1 TB disks in software RAID-0
fashion, and with a Crucial’s C300 M4 256 GB SSD. For all
these benchmarks, we used ZFS and ext4 natively [28] on
the SSDs. Lazy resume is slow on HDDs due to their poor
random access performance, but this can easily be improved
by an standard technique that prefetches the µVM’s resume
working set ([11], [12], [13]). In this work, we are using SSDs
for storing the µVMs.

Our test set consists of 1011 community images of Win-
dows Azure, taken between April 2013 and June 2014 for
our large-scale experiments in Section V-B and V-C. The
repository with this set contains Linux images, mostly Ubuntu,

but also CentOS, OpenSuse, Debian, and others. We have
discussed the diversity of a smaller version of this repository
containing 607 VM images in [8]. Most of these images had
grub timeouts that would add tens of seconds to the startup
times of their VMs. We removed these timeouts before running
our experiments. These timeouts in grub (and the Windows
bootloader) are designed to provide a mechanism to choose
alternative OSes or boot options. This mechanism is, however,
not helpful for cloud VMs that typically employ a single OS. It
is worth mentioning that µVMs hide all boot-related timeouts
automatically.

TABLE I. BOOTING TIME OF VARIOUS OPERATING SYSTEMS.

OS Cold page cache Warm page cache

Ubuntu 12.10 µ= 11.7 s σ = 0.5 µ= 10.9 s σ = 0.5
CentOS 6.6 µ= 21.9 s σ = 0.7 µ= 20.9 s σ = 0.7

Windows Server 2012 µ= 44.1 s σ = 2.1 µ= 41.4 s σ = 2.7

A. VM Startup Times

To evaluate VM startup improvements, we first measured
the boot time of three different OSes over a cold and a warm
page cache (repeated ten times) with their VM images available
on the local ext4 drive. We expect the boot times of production
runs to be in between these two extreme cases. Table I shows
the results of this experiment, expressed by mean value µ
and standard deviation σ. Note that the VM startup process
is highly compute-bound and a warm page cache only slightly
improves the VM startup time. We then used the same VM
images to create µVMs, and measured the µVM startup times,
contextualization, and the time it takes for guest OSes to
initialize the new cores and memory.

Figure 7 shows the startup times using µVMs stored on
the local ext4 drive, and hot-plugging up to 7 cores (total: 8
cores), and 15.5 GB (total: 16 GB) of memory. The leftmost
bar in each graph shows a contextualized µVM that is making
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(a) Average µVM startup time.
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(b) 99 percentile µVM startup time.
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(c) Maximum observed µVM startup time.

Fig. 8. µVM startup times over a gzip compressed and deduplicated ZFS volume measured over a cold page cache. Note the larger vertical axis in (c).

a network connection to state that it is live. Note that at
this moment, the µVM can already start doing work and
provides close to peak performance to the user applications
([15]). The results show that with a cold cache, µVMs start
up 12x faster for Ubuntu, 15x faster for CentOS, and 9x
faster for Windows Server. With a warm cache, µVMs start
up 33x faster for Ubuntu, 43x faster for CentOS, and 18x
faster for Windows Server. These results hint that an efficient
deduplicated and/or compressed page cache (e.g., [29], [30],
[31]) can have a significant performance impact on the µVM-
based startup times.

The difference between the leftmost bar in each figure and
the other bars in the same figure is the time it takes for all
of the hot-plugged resources to become available. Since the
initialization of memory by guest OSes is gradual, we do
not expect user applications to consume memory faster than
it takes to hot-plug it. The information on the final number
of cores and amount of memory is made available as part
of contextualization in case user applications need it. The
conclusion of this experiment is that while there have been
recent efforts to make core hot-plugging/unplugging fast [32],
[33], hot-plugging memory seems to be expensive as well,
and requires more immediate attention. We are planning to
investigate this as part of our future work.

B. Startup Times of Compressed µVMs

µVMs are small; The average size of a µVM from our
Windows Azure repository is only 275 MB. This means that
a small-scale data center with a small number of VM images,
can manage without compression to enjoy VM startup times
similar to ones that we showed in the previous section. The
same can be done for popular VM images of a larger data
center. But for less popular, tenant-provided VM images,
compression techniques are necessary for providing scalable
host-side caching.

We defer the study of storage gains to the next section, and
focus only on startup times here. We configured Squirrel’s ZFS
volumes with different block sizes (record size in ZFS terms),
and for each block size, we registered all the images in our
Windows Azure repository to Squirrel. We then measured the
startup times of all the µVMs with a cold page cache.

Figure 8 shows the average, the 99 percentile, and the
maximum VM startup times that we observed using the
original Squirrel (boot caches), and with VM bakery. ZFS com-
pression/deduplication affects the µVM startup more severely
than the boot caches. This is most likely due to scattered page

faults over the memory state file, resulting in unnecessarily
larger read requests to ZFS. Going to smaller block sizes does
not resolve this problem due to increased overhead of ZFS. A
warm page cache and/or a file system tailored towards this type
of workloads could improve the performance considerably.

Regardless of the negative impact of compression, µVMs
consistently startup much faster than boot caches: On average
with the optimal block size of 64 KB, µVMs start 5x faster,
compared to using boot caches. The 99th percentile of µVMs
is 4.5x times better, and finally the 100th percentile (i.e.,
maximum) of µVMs is 5.5x better.

C. Storage Scalability

To measure the efficiency of deduplication and compres-
sion on cached µVMs with the modified state file format, we
used the statistics reported from ZFS under different block
sizes with its gzip6 compression and deduplication turned on.
We then compare these numbers with the original Squirrel
architecture that stores boot caches.

Our measurements are shown in Figure 9-a. µVMs, when
stored in their raw format need about 2.7x more space than
boot caches, however when compressed, at e.g. 64 KB block
size, they only need 48% more space (49.6 GB vs. 33.5 GB for
boot caches). This means that the compression techniques are
more effective for µVMs than for boot caches. The compres-
sion pipeline first finds duplicates in the written blocks, and
then compresses unique (i.e., deduplicated) blocks. Combined
compression ratio is the multiplication of these two ratios that
takes both into account.

Figure 9-b and Figure 9-c show the compression ratios
for µVMs and boot caches. Comparing the figures, it is clear
that µVMs tend to compress better, and as a result have a
better combined compression ratio. The deduplication ratio
of about 1.8x (at 64 KB) is still surprisingly high, given
the fact that memory locations are much more volatile than
disks (boot caches deduplication ratio is 2.6x at 64 KB).
According to [34], and our own independent cross-similarity
analysis [8], the duplications are mostly due to similar pages
within the µVMs themselves. Regardless, this analysis shows
that our modification to the µVM state file format improves
the combined compression ratio from 3.98x to 6.64x.

While the combined compression ratio of µVMs increases
significantly with smaller block sizes compared to boot caches,
the overall compression efficiency does not increase. As we
have shown previously in [8], This is due to the excessive
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(b) Compression ratios of µVMs.
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Fig. 9. The effect of gzip compression and deduplication on µVMs vs. boot caches. µVMs show better compression efficiency with slightly higher overhead.

number of deduplication table entries that are present in the
file system. Higher (potential) memory consumption of ZFS
for deduplicating µVMs compared to boot caches is also due
to this effect (Figure 9-a).

D. Summary

To summarize our findings, compared to normal booting,
µVMs of three standard OSes on an ext4 file system startup
between 9x and 15x faster with a cold page cache, and between
18x to 43x with a warm page cache. Compared to booting,
using µVMs created from our Windows Azure repository and
with a cold page cache, we observed on average 18x improve-
ment with ext4, and 5x improvement with a deduplicated and
compressed ZFS volume at 64 KB block size.

Our storage scalability analysis showed that our change to
QEMU’s state file improved the combined compression ratio
from 3.98x to 6.64x, allowing us to cache µVMs of our entire
Windows Azure repository, consisting of 1011 VM images,
within 49.6 GB of drive storage and up to 342 MB of memory
for deduplication table entries. In [8], we provided a scalability
analysis of Squirrel caches for large amounts of VM images.
There, we had found that the requirements on each host can
be considered as modest with current and near-future host
hardware. We can draw similar conclusions here, namely that
the VM bakery will be able to store large amounts of µVMs
on the hosts without prohibitive storage requirements.

VI. RELATED WORK

In the following, we discuss work related to µVMs. We
distinguish between the following three aspects that µVMs are
touching upon:

1) Dynamic Resource Allocation deals with dynamic
(de-)allocation of resources from the OS and VMM’s
point of view.

2) Fast VM Startup deals with fast and scalable tech-
niques for provisioning VMs.

3) Host-side Caching deals with caching techniques for
improving VM startup times.

A. Dynamic Resource Allocation to VMs

Commodity VMMs such as KVM [35] or Xen [36] support
dynamic resizing of VM memory by means of a technique
called ballooning. Cooperative guest OSes run a balloon driver
that inflates and deallocates memory from the guest, or deflates

to allocate more memory to the guest OSes. For our µVM
design, we opted for memory hot-plugging instead for two
reasons: 1) Hot-plugging does not require cooperative guests,
an important requirement for IaaS clouds, and 2) with balloon-
ing, the VM should be configured with the maximum possible
memory before VM startup to allow for arbitrary resizing. This
potentially makes caching of VMs with balooning less scalable
than µVMs.

Core hot-plugging and hot-unplugging support in the OS
kernel is increasingly becoming important due to their potential
power saving and the approaching age of dark silicon [37].
Chameleon [32] is providing fast dynamic processors for the
Linux kernel, and Zellweger et al. [33] provide a similar feature
for a multikernel OS. These improvements can benefit the
core hot-plugging time for µVMs. We showed in Section V-A,
however, that memory hot-plugging takes significantly longer,
and requires some research attention.

B. Fast VM Startup

Peer-to-peer networking is a common technique for trans-
ferring a single VMI to many compute nodes [38], [39],
[40], [41]. The main issue so far has been the considerable
delay of startup time in order of tens of minutes. This is
because the complete VM image needs to be present before
starting the VM. VMTorrent [42] combines on-demand access
with peer-to-peer streaming to reduce this delay. Similarly,
IP multicasting has been used extensively for scalable startup
of VMs [43], [44]. All these approaches require booting of
the guest VMs. µVMs are orders of magnitude faster when
starting VMs, without sacrificing generality or requiring high-
performance networks.

VMPlants [45] and similar systems (e.g., [46], [47]) try
to optimize the size of VM images in order to reduce their
transfer times during VM startup. While these systems are
still beneficial for reducing the storage footprint of the VM
images, µVMs are minimal snapshots of the memory state,
and agnostic to the original size of the VM image. Further,
µVMs are cached by Squirrel to eliminate data transfer during
VM startup.

SnowFlock [48] can start many stateful worker VMs in
less than one second. It introduces VMFork and VM descriptor
primitives that fork child VMs that are in the same state as
the parent VM when they start. SnowFlock achieves good
performance by multicasting the requested data to all workers
and uses a set of avoidance heuristics at child VMs to reduce



the amount of memory traffic from the parent to the children.
VMScatter [49] is a similar system, but less intrusive in
modifying the guest OS kernels, but less efficient in terms
of scale. Kaleidoscope [50] improves SnowFlock’s on-demand
paging by eagerly transferring the working set of the cloned
VM. These systems, while efficient at starting stateful workers,
require a live VM for cloning, and rely on significant multicast
traffic during the cloning process. µVMs are designed for
cloning of the OS state. They provide similar startup times,
without requiring live VMs and high-performance networks.
Further, µVMs rely on existing mechanisms only, not requiring
any changes to the OS kernels. We have shown µVM’s appli-
cability and scalability using our large-scale VM repository.

De et al. [10] suggest keeping VMs with different hardware
resources running at all times, and contextualizing a match
according to the VM image and the instance type of a user’s
VM startup request. As discussed previously, this approach
does not scale to IaaS clouds with many VM images and
instance types. µVMs, in contrast, can start in mere seconds,
hence providing the same benefits while being scalable.

Armstrong et al. [51] introduce recontextualization for
reconfiguration and reusing of VMs to reduce the downtime
of applications. Recontextualization can be used in conjunction
with µVMs for compatible applications. µVMs, however, are
more general, OS-agnostic, and can be started instantly as we
showed in Section V.

DreamServer [13] and similar, stateful resume systems
(e.g., [11], [12], [52]) rely on prefetching the resume working
set for fast VM startup. While these techniques can improve
µVM resume times further, they lack the generality and
scalability that µVMs provide. We modified the open-source
implementation of [15] for the lazy resume of our µVMs.

There has recently been an increased interest in running
containers such as Docker [53] inside VMs (e.g., [54], [55]).
One of the major benefits of such an approach is fast environ-
ment startup, in the order of seconds. Containers, however,
have dependency on their hosting OS, due their process-
based nature. This makes it difficult to migrate them, or start
them without a compatible OS. In comparison, µVMs provide
competitive startup times without these limitations. As an
additional benefit, µVMs provide the full isolation of a VM.

Another source of overhead in VM startup is physical
machine startup when there is no available physical node to
host a new VM. Recent work on cloud schedulers [56], [57]
improves this aspect by predicting the future number of VM
startup/shutdown requests.

C. Host-side Caching

In this section, we look at caching techniques used to
improve VM startup.

Zhao et al. [58] suggest that simply using NFS to transfer
VM images is suboptimal. By adding a module to NFS to
cache a number of NFS requests at the compute nodes or a
proxy, they improve the VM booting process with a warm
cache. They further improve the performance of the virtual
disk by doing copy-on-write in an NFS proxy that is running
inside the VM [59].

The Liquid file system [60] and similar systems (e.g., [61],
[62], [63]) are designed for scalable VM image distribution.
These systems keep a cache of VM image contents (dedupli-
cated or otherwise) on each compute node to improve VM
startup times.

Squirrel’s cVolumes [8] persistently cache all the blocks
needed for starting µVMs instantly, by exploiting deduplica-
tion and compression techniques in an off-the-shelf ZFS file
system [25]. None of these systems consider caching VM
snapshots for scalable and instant VM startup like we proposed
in this paper.

VII. CONCLUSIONS

Infrastructure-as-a-Service (IaaS) clouds promise instant
creation of virtual machines for elastic applications. In prac-
tice, however, VM startup times range from several tens
of seconds to several minutes. There are two major factors
contributing to these long VM startup times, (1) the transfer
of the VM image from a storage server to the host, and (2)
the actual boot time of the virtual OS.

In previous work [8], we presented a host-side caching
system, called Squirrel, that solves the VM image transfer
problem by scalable storage of the boot reading sets for all
VM images on the hosts directly. In this paper, we have
addressed the OS boot time itself. Booting an OS is a lengthy
but repetitive computation that we replace by much faster OS
resume from precomputed snapshots. Such an OS snapshot
needs to reflect the resources of the guest OS, like CPU
cores and main memory. To avoid the combinatorial explosion
caused by providing an OS snapshot per VM image and per
machine type, we introduce prebaked µVMs, booted VMs with
minimal resources (a single CPU core and 512 MB memory).
At resume time, our VM bakery service that runs on the hosts
is using hot-plugging of additional resources to match the
requested machine types. Our evaluation shows that individual
virtual machines can be resumed from µVMs in less than one
second, when reading the µVM from an ext4 file system on a
SSD device.

µVMs are small in size and lend themselves to scalable
caching on the hosts of a data center. For scaling to large num-
bers of VM images, however, a storage layer with compression
and deduplication is needed. We have extended our Squirrel
system to store µVMs instead of VM image caches. For this
purpose, we have analyzed the potential for compression and
deduplication of snapshot data, and implemented the system
accordingly. We can store µVMs for our repository of 1000+
VM images from Windows Azure in less that 50 GB drive
space and 350 MB memory at each host, hence requiring only
modest host resources in exchange for instant VM startup.
Resuming from our compressed and deduplicated file system
takes 2–3 seconds on average for our Azure VM image set.

With these results, we have demonstrated that instant VM
startup is possible in IaaS clouds, allowing elastic applica-
tions like Web services to scale out according to changing
workloads, while avoiding costly resource overprovisioning or
elaborate workload prediction schemes.
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