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ABSTRACT
To enable app interoperability, the Android platform exposes in-
stalled application methods (IAMs), i.e., APIs that allow developers
to query for the list of apps installed on a user’s device. It is known
that information collected through IAMs can be used to precisely
deduce end-users interests and personal traits, thus raising privacy
concerns. In this paper, we present a large-scale empirical study
investigating the presence of IAMs in Android apps and their usage
by Android developers.

Our results highlight that: (i) IAMs are widely used in commer-
cial applications while their popularity is limited in open-source
ones; (ii) IAM calls are mostly performed in included libraries code;
(iii) more than one-third of libraries that employ IAMs are adver-
tisement libraries; (iv) a small number of popular advertisement
libraries account for over 33% of all usages of IAMs by bundled
libraries; (v) developers are not always aware that their apps include
IAMs calls.

Based on the collected data, we confirm the need to (i) revise
the way IAMs are currently managed by the Android platform,
introducing either an ad-hoc permission or an opt-out mechanism
and (ii) improve both developers and end-users awareness with
respect to the privacy-related concerns raised by IAMs.
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1 INTRODUCTION
The Android platform provides a wide range of APIs to application
developers, to allow for the creation of feature-rich apps that take
full advantage of the device and platform capabilities [26]. Among
others, to enable app interoperability, APIs are given to allow for
retrieving various information related to the applications that are
currently installed on the device [13]. From the users’ point-of-view
these methods are silent, as no special authorization is required
for their usage and they provide no visual indication during their
operation. Therefore, typical users are usually not aware that such
methods do exist. Hereafter we will refer to these methods as In-
stalled Application Methods (IAMs).

Nowadays, the average smartphone user has over 60 apps in-
stalled on her device [2], each chosen on the basis of her own
interests and personal traits (e.g., gender, spoken languages, reli-
gious beliefs). Given that the list of installed applications is readily
available to developers, it is natural to wonder the extent in which
the users’ traits can be deducted from it. Past research, discussed in
Section 2, has shown that many of these traits can be inferred with
near-optimal accuracy. Hence, IAMs prompt privacy concerns.

However, to this day, no inquiry has been conducted on the
prevalence of IAMs in Android apps and how they are employed
by Android developers. In this paper, we fill this gap, investigating
how IAMs are used by Android developers. We aim to assess
the scale of IAMs usage and provides insights on the reasons behind
their popularity.

To this end, we conducted a large-scale empirical study on 14,342
free Android apps published in the Google Play Store and 7,886
open-source Android applications.We identify among them applica-
tions that employ IAMs and extract from them information such as
fields accessed through these APIs andwhether the call is performed
in the app’s own code or by an included library. Furthermore, we
manually identify the main purpose of the most popular libraries
found to be using IAMs. Additionally, we perform an assessment of
developers’ knowledge and awareness about the presence of IAMs
in their apps by means of an online questionnaire. Finally, building
from the collected data, we discuss the open issues connected with
IAMs, (e.g., widespread use in advertisement libraries, lack of de-
veloper awareness) and we suggest some changes to the Android
platform to address them.

The main contributions of this study are the following: (i)
Empirical results about the usage of IAMs, by analyzing their usage
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in 14,342 free Android apps published in the Google Play Store
and 7,886 open-source Android applications; (ii) An investigation
of developers’ awareness regarding the presence of IAMs in their
apps, conducted by means of an online questionnaire filled in by
70 participants; (iii) A discussion of the issues emerging from the
collected data, including suggested changes to the Android platform
and open research directions.

The target audience of this paper is composed of privacy-aware
users, researchers and Android platform maintainers. We support
users by providing them with a set of recommendations to em-
ploy during app selection to minimize privacy risks. We support
researchers by (i) providing a characterization of how IAMs are
used in practice, and (ii) eliciting from collected data existing issues
and open research directions. Lastly, we support Android platform
maintainers by suggesting some changes to the Android platform
aimed at increasing developers’ awareness and end-users’ control
over IAMs, according to collected data.

The remainder of this paper is structured as follows. Section 2
provides background concepts and Section 3 describes the design
of our study. Section 4 presents the main results, which are are
discussed in Section 5. Section 6 discusses the threats to the validity
of our study, whereas Section 7 describes related work. Section 8
closes the paper.

2 BACKGROUND
IAMs are provided by the packagemanager class, that exposes two
methods for retrieving various kinds of information related to the
application packages that are currently installed on the device:
getInstalledApplications() and getInstalledPackages() [13]. The
difference between the two methods is slight1: the former is re-
stricted to provide information declared inside the Application tag
in the apps’ manifest file, while the latter is more general and can re-
turn all information declared in the manifest file, such as employed
services, declared activities, meta-data, etc. It is important to note
that currently these methods are not classified as sensitive APIs in
the Android platform [14]. Hence, their usage inside applications is
silent to the outside: declaring specific permissions is not required
and it is not mandatory to notify end-users.
1 // Let's look for a calculator application
2 mCalculatorActivityItems = new ArrayList <HashMap <String ,

Object >>();
3 mPackageManager = getPackageManager ();
4 List <PackageInfo > packs = mPackageManager.

getInstalledPackages (0);
5 for (PackageInfo pi : packs) {
6 if (pi.packageName.toLowerCase ().contains("calcul")) {
7 HashMap <String ,Object >map = new HashMap <String ,Object >();
8 map.put("appName",
9 pi.applicationInfo.loadLabel(mPackageManager));
10 map.put("packageName", pi.packageName);
11 mCalculatorActivityItems.add(map);
12 }
13 }

Listing 1: Example usage of getInstalledApplication()

An example usage of these methods is provided in Listing 1,
extracted from app ph.coreproc.android.philippineincometax. In
the listing, after initializing required classes and data structures
(lines 1-3), the app retrieves the list of packages installed on the

1https://stackoverflow.com/questions/8720545/getinstalledapplications-vs-
getinstalledpackages

device (line 4) and iterates on it (lines 5-13). During the iteration,
the package name of each installed app is compared to a predefined
string (line 6) to identify calculator apps installed on the device.
The package name (lines 10) and their human-readable counterpart
(lines 8-9) of these apps is stored in a list for future use (line 11).

Since installed apps can be inspected via IAMs, researchers have
investigated whether one user’s traits can be extrapolated from
their installed apps list. Seneviratne et al. [38] have been the first to
investigate this question, showing that using a single snapshot of a
user’s installed apps, their gender can be instantly predicted with
an accuracy around 70%, by training a classifier using established
supervised learning techniques. In a subsequent development [39],
they extend their classification techniques to other traits such as
religion, relationship status, spoken languages and countries of
interest. Malmi et al. [25] study the predictability of user demo-
graphics (e.g., age, race, and income) from installed applications
under varying conditions. In their study, gender proved to be the
most predictable attribute (82.3% accuracy), whereas income proved
to be the hardest (60.3% accuracy). Moreover, training set size and
the number of apps on the user device can have an impact of over
10% on the prediction accuracy. Interestingly, in their experiments,
the quality of predictions significantly drops for users with more
than 150 apps installed. Frey and colleagues have investigated the
usage of the information collected from IAMs to predict users’ sig-
nificant life events (e.g., marriage, first car, becoming a parent) [16].
Compared to a random model, their prediction system achieves
significantly higher accuracy (up to 87.1%). Hence, they suggest
that their findings are potentially useful for companies to identify
and target possible customers. Demetriou et al. [11] investigated
the extent to which information provided by IAMs can be leveraged
by embedded advertising libraries to infer user traits when com-
bined with other information extracted from the host app files and
run-time inputs. Their results show that traits such as age, sex, and
marital status can be inferred with over 90% precision and recall.

It is important to notice that IAMs are not exclusive to Android.
Similar methods also exist in Apple’s iOS, currently the second
most popular mobile operating system [21]. However, in recent
versions of the operating system, applications of interest have to be
preemptively declared inside the app own manifest file, and thus
are reviewed by app store moderators before publication.

3 STUDY DESIGN
This section describes how we designed our study. In order to per-
form an objective and replicable study we followed the guidelines
on empirical software engineering in [51] and [40].

In order to allow independent verification and replication of
the performed study, we make publicly available a full replication
package containing (i) the Python scripts for data extraction and
analysis, the obtained raw data, and the Java files of the apps we
used as subjects.2

3.1 Goal and research question
The goal of this paper is to understand how IAMs are used in
practice, for the purpose of gaining insights on what measures can
be introduced to improve end-users privacy protection. The context
2https://github.com/S2-group/mobilesoft-2020-iam-replication-package
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of this study includes 14,342 free Android apps published in the
Google Play Store and 7,886 open-source Android applications. We
refined this goal into the following research questions:
RQ1 – How are usages of IAMs distributed across app categories?
RQ2 – What kinds of information are most frequently accessed
through IAMs?
RQ3 – How are usages of IAMs distributed between app code and
included libraries code?
RQ4 – What is the declared main role that libraries calling the
IAMs play?
RQ5 – To what extent are developers aware of IAMs and tend to
reflect that awareness?

RQ1 aims to measure how common is the use of IAMs and,
at the same time, highlight differences in their adoption across
different app categories. RQ2 intends to appraise what information
is commonly accessed through IAMs, in order to gain insights on
their practical use. The purpose of RQ3 is tomeasure howmany calls
to IAMs are being initiated from applications’ own code and how
many are being initiated from included libraries code. RQ4 wants
to appraise what is the main role played by libraries that performs
IAMs calls. RQ5 intents to assess how aware are developers of the
sensitiveness of IAMs and, consecutively, how responsible are they
in their usage.

3.2 Data collection
Figure 1 provides an overview of our data collection process, as well
as of the subsequent procedures performed to extract data relevant
to our research questions (explained in detail in Section 3.3).

Figure 1: Data collection and extraction

To answer our first four research questions we relied on two
different datasets of, respectively, open-source and commercial An-
droid apps. We chose AndroidTimeMachine [18] as a starting point
for the collection of the former. AndroidTimeMachine contains
information about 8,431 real-world open-source Android apps, veri-
fied to be published on the Google Play Store. It provided us with (i)
URLs to apps Git repositories from which we could obtain the full
commits history and, (ii) metadata extracted from the Google Play
store, such as app category and ratings. From it we were able to

collect source code files of 7,886 open-source Android applications
(the remainder are no longer publicly available on Github).

As a starting point for the collection of the commercial apps
dataset we considered the top 500 most popular free apps from each
of the 35 categories of the Google Play Store, according to the App-
Annie service for app ranking analysis3 as of 21 April 2019. A total
of 17,164 unique appswere identified, after removing duplicates that
appear in multiple categories. Afterward, binary files (i.e., the APKs)
for the latest version of each app were collected from Androzoo [1].
Binaries for a total of 14,342 apps were collected this way. Notice
that an app might appear in both datasets. However, potentially,
the commercial app version can differ from the open-source one,
as the developer might include additional (proprietary) code into
his project before publication on app stores. Hence, we chose to
abstain from the removal of duplicates that appear in both datasets.

To answer RQ5 we also relied on a short developer questionnaire,
sent to all the 4,227 app developers that were found to be using
IAMs in previously mentioned datasets. Authors’ email addresses
were extracted from Github commits and apps description pages on
the Google Play Store. No compensation was offered in exchange
for answering the questionnaire. The structure of the questionnaire
is detailed in the following. It is comprised of three questions:
Q1: Where does your app use the getInstalledApplications() or

getInstalledPackages() APIs?
Q2: Why does your app use the getInstalledApplications() or

getInstalledPackages() APIs?
Q3: Do you want to add any comments relevant for this study?
We chose to keep the number of questions limited to reduce the

time required to complete the questionnaire and, in turn, minimize
the number of incomplete answers.Q1 is a multiple choice question
and possible answers to it are: “In core functionalities of the app”,
“In a third-party library”, “They are not used at all”, and “Other”. It
is mandatory to provide an answer and participants are invited to
type their own answer if “Other” is selected. Q2 is instead an open
question and it is also mandatory. Q3 is an open question too but
answering it is not required. Notice that, since the questionnaire
is only forwarded to developers of apps that have been found to
use IAMs, a developer answering “They are not used at all” to Q1
reveals his unawareness about the presence of IAMs in the app. For
this reason, we always require a mandatory answer to Q2, as it can
provide insights on the reasons behind this lack of awareness when
the developer declares that IAMs are not used in the app.

3.3 Data extraction
We extracted relevant data for answering our research questions
from our datasets. For this purpose, we identified and recorded oc-
currences of calls to IAMs from the source code of both open-source
and commercial apps. While this process was straightforward for
the former, for the latter we relied on decompilation to extract the
source code from collected binaries. For this task, we adopted a
sequence of two off-the-shelf tools: dex2jar4 and JD-Core5. The first
was used to unpack binaries and extract java class files and the

3www.appannie.com/apps/google-play/top-chart/united-states
4https://sourceforge.net/projects/dex2jar/
5https://github.com/java-decompiler/jd-core
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second to decompile class files to java source code. Notice that,
although these are state-of-the-art tools, in some cases this process
can fail. For this reason, we were unable to decompile 782 files out
of the 14,342 commercial applications. Hence, collected data has
to be considered as a lower bound of actual IAMs usage for the
commercial dataset.

To answer RQ2, we have recorded, for each IAMs call, the fields
that were accessed on the returned applications list. For this task
we rely on srcML [6] to transform the source code into a traversable
XML representation. We limit the scope of our field extraction to
the file where the IAM call appears as the size of our dataset is
unfeasible for the application of whole-app static analysis tools,
due to their high processing and memory requirements [3, 49].

Similarly, to answer RQ3 and RQ4, we extracted the package
name from its declaration at the beginning of the java source code
file from which the IAM call is performed. We consider the IAM
call to be originating from the app’s own code if the extracted pack-
age name does contain, as its prefix, the app main package name,
declared in the app manifest file (e.g., apalon.weatherlive.updater
matches with apalon.weatherlive). It is considered as originating
from a library otherwise.

To answer RQ5 we extrapolate insights from answers to our
developers questionnaire. In particular, answers to Q1 can provide
quantitative insights while answers to Q2 and Q3 can lead to quali-
tative insights.

3.4 Analysis
To provide an answer to RQ1 we resort to descriptive statistics,
computing counts and usage rates of IAMs across different datasets
and different app categories (as defined in the Google Play Store).
Likewise, to answer RQ2 and RQ3 we compute similar statistics for
accessed fields and usages of IAMs in libraries.

To answer RQ4, we need to assess the declared main role of
libraries adopted in our datasets that employ IAMs. As, to the best
of our knowledge, there is no existing automated technique able
to perform this task, we define a manual procedure to determine
the declared main role of an included library and we employ it to
analyze a sample of our data. The procedure, for each library to
be analyzed, is as follows: (i) input the library package name on a
web search engine to trace back its official website (or repository);
(ii) manually survey the website to infer the library main role; (iii)
synthesize it into an informative label following the guidelines of
descriptive coding [34]. The intuition behind the technique is that
the declared main role of a library can be inferred relatively quickly
and easily from its official website, as most libraries websites are
built to concisely and effectively convey their purpose to potential
adopters. In cases where searching for the library package name
does not lead to the immediate identification of its official website,
we recursively repeat the search with progressively smaller package
name substrings.

We obtain a sample of our data, reasonably sized for manual
analysis, through purposive sampling [19], with the ultimate goal in
mind of maximizing the coverage of our analysis. To this purpose,
we decided to include in our sample all the libraries that were em-
ployed by at least five different apps in our datasets. In other words,
our sampling rule gives precedence to popular, widely adopted

libraries. This led to the identification of 154 individual libraries,
that account for 82.83% of all in-library IAMs usages in our dataset
(68.64% of all IAMs usages in our datasets).

To reduce bias, two different researchers independently analyzed
the complete sample. After completing the analysis, the two aligned
the labels with each other, solved all the cases in which there was a
disagreement, and grouped similar labels. We measure agreement
between the two, before solving disagreement cases, using the
Krippendorff’s Alpha [24], resulting in an α = 0.868. We choose
this measure for its ability to adjusts itself to small sample sizes.
Values of α above 0.8 are considered as an indication of reliable
agreement [23]. The disagreements were mostly due to the fact that
one of the two involved researchers adopted more general labels in
his initial coding (e.g., Utility in place of Analytics). After discussing
disagreements, the two coders agreed on adopting the more specific
labels.

In relation to RQ5, we once more rely on descriptive statistics to
analyze answers to Q1, while instead we resort on manual qualita-
tive content analysis [27] for answers to Q2 and Q3 .

4 RESULTS
In this section, we disclose the results of our analysis grouped
accordingly to the research questions presented in Section 3.

4.1 RQ1: How are usages of IAMs distributed
across app categories?

The plot in Figure 2 provides an overview of IAMs usages in both
commercial and open-source apps. Categories for which no apps
were collected are marked with the symbol “–”. IAMs usages appear
to be considerably more common in commercial apps, with a total
of 4,214 apps employing them, amounting to 30.29% of the total.
Conversely, a total of 228 apps employ IAMs in open-source apps,
amounting to only 2.89% of the total. Focusing on commercial apps,
we can notice that usages of IAMs occur in all categories. However,
distribution of usages varies greatly among categories: over half of
analyzed apps employ IAMs in categories Games (72.97%), Comics
(70.50%), Personalization (60.6%) and Auto & Vehicles (57.61%) while
usages diminish to about one in ten apps in categories Medical
(14.36%), Libraries & Demo (12.26%) and Events (11.90%). Regarding
open-source apps, usages appear to be less frequent, being more
common in categories such as Personalization (8.95%), Shopping
(6.67%) and Tools (5.88%) while completely absent in other categories
such as Food & Drink, Events and Comics. To summarize:

• Usage of IAMs is quite common in commercial apps, with
an average usage rate of about 30% in our dataset.

• For commercial apps, adoption of IAMs greatly varies among
app categories, being higher than 70% in theGames andComics
categories, while close to 12% in the Libraries & Demo and
Events categories.

• Usage of IAMs is less frequent in open-source apps, with a
3% mean usage rate across categories in our dataset.
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Figure 2: Usage of IAMs across Google Play Store categories

4.2 RQ2: What kinds of information are most
frequently accessed through IAMs?

The results of the analysis of fields accessedwith IAMs are displayed
in Table 1. Surveying the table, it is evident that in both open-source
and commercial apps packageName (i.e., the app name) is the most
accessed field, being read by almost half of IAMs calls (47.62% and
46.90% in open-source and commercial apps, respectively).

Moreover, we can notice that the frequency of accesses to each
field does not significantly differ among the two datasets, save for
a few exceptions. The first of these exceptions is represented by
flags (i.e., boolean flags about the app nature) that, while being
the second most commonly accessed field for both commercial and
open-source apps, appears to be less popular in the latter (9.52%
as opposed to 15.03%). Other exceptions are represented by fields

Table 1: Access rate of IAM fields
(PI = PackageInfo, AI = ApplicationInfo)

Class Field Commercial (%) Open-source (%)

PI packageName 5502 (46.90%) 210 (47.62%)
AI flags 1763 (15.03%) 42 (9.52%)
PI versionName 706 (6.02%) 24 (5.44%)
PI versionCode 678 (5.78%) 19 (4.31%)
PI firstInstallTime 538 (4.59%) 7 (1.59%)
PI lastUpdateTime 326 (2.78%) 7 (1.59%)
AI sourceDir 259 (2.21%) 18 (4.08%)
AI enabled 200 (1.70%) 6 (1.36%)
PI receivers 132 (1.13%) 2 (0.45%)
AI publicSourceDir 117 (1.00%) 3 (0.68%)
AI uid 95 (0.81%) 9 (2.04%)
PI providers 90 (0.77%) 3 (0.68%)
PI requestedPermissions 78 (0.66%) 11 (2.49%)
AI targetSdkVersion 63 (0.54%) 2 (0.45%)
PI activities 56 (0.48%) 4 (0.91%)
PI signatures 50 (0.43%) 1 (0.23%)
AI processName 38 (0.32%) 1 (0.23%)
PI services 20 (0.17%) 4 (0.91%)
AI nativeLibraryDir 10 (0.09%) 0 (0.00%)
PI sharedUserId 8 (0.07%) 0 (0.00%)
PI CREATOR 8 (0.07%) 1 (0.23%)
AI className 8 (0.07%) 1 (0.23%)
AI dataDir 7 (0.06%) 3 (0.68%)
AI theme 7 (0.06%) 0 (0.00%)
PI permissions 7 (0.06%) 4 (0.91%)
AI category 2 (0.02%) 0 (0.00%)
AI manageSpace-

ActivityName
2 (0.02%) 0 (0.00%)

PI reqFeatures 2 (0.02%) 0 (0.00%)
PI gids 1 (0.01%) 1 (0.23%)
AI permission 1 (0.01%) 6 (1.36%)
AI descriptionRes 0 (0.00%) 1 (0.23%)
AI sharedLibraryFiles 0 (0.00%) 1 (0.23%)

Sum Total 11,732 (100%) 441 (100%)

that contain information about application permissions (permission,
permissions and requestedPermissions) and uid (the Linux kernel
user-ID that has been assigned to the application) that in our data
appears to be more often accessed by open-source applications.

Finally, we can observe that among the most frequently accessed
fields, there are several ones which are related to app versioning and
management of updates (versionName, versionCode, firstInstallTime
and lastUpdateTime). As we will discuss in Section 5, this similarity
in behavior between open-source and commercial apps hints that
there exists a significant challenge for techniques that aim to protect
end-users’ privacy by selectively blocking undesired IAM calls.
Synthesizing our findings:

• packageName is the information most frequently collected
through IAMs, accessed by 47.62% and 46.90% of all IAMs calls
performed in open-source and commercial apps, respectively.

• For the majority of fields that can be accessed with IAMs,
the frequency of accesses does not significantly differ between
open-source and commercial apps.

• Information about application permissions and uid appears
to be accessed more frequently by open-source apps in our
dataset.
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4.3 RQ3: How are usages of IAMs distributed
between app code and included libraries
code?

The heatmap in Figure 3 summarizes the distribution of usages of
IAMs between local and library code in our datasets. A total of 7,538
and 287 calls to IAMs were detected in commercial and open-source
apps respectively (some apps perform more than one call). Usages
of IAMs in included libraries appear to be more common in com-
mercial apps, where 6,306 (83.66%) of detected calls are performed
in code belonging to libraries, while the remaining 1,232 (16.34%)
are performed in the apps’ own code. Concerning open-source apps,
178 usages (62.02%) are performed from bundled libraries while
remaining 109 (37.98%) belong to the apps’ own code.
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Figure 3: Usage of IAMs in app code and included libraries

Figure 4 presents the rate of usages in libraries for each category.
Each bar in the plot provides the total amount of IAM calls found in
included libraries (the remaining ones are performed in apps’ own
code) for applications of a given category. Categories for which
no apps were collected or no IAM calls were observed are marked
with the symbol “–”. It can be noticed that, for commercial apps,
in most categories IAMs appear to be used mostly in included li-
braries, with it being almost exclusive in categories such as Comics
(98.47%), Auto & Vehicles (98.38%) and Art & Design (97.6%). A more
even distribution of usages can be observed in a limited amount
of categories, such as Productivity (59.24%), Lifestyle (52.12%) and
Business (46.43%). Focusing in open-source apps, exclusive usage
of IAMs methods in libraries can be observed in some categories,
such as Social and Shopping. However, this trend can possibly be
accounted to the low sample size of those categories. Indeed, cat-
egories Productivity and Tools, the ones with the higher amount
of occurrences, exhibit a more even distribution with 68.75% and
56.00% of usages in included libraries respectively. To recap:

• In commercial apps, the vast majority of IAMs calls are
performed in included libraries, representing 83% of all usages
in our dataset.

• For commercial apps, usage of IAMs in libraries greatly
varies among app categories, being almost exclusive inside
the Comics (98.47%), Auto & Vehicles (98.38%), and Art & Design
(97.6%) categories in our dataset.

• Also in the case of open-source apps, IAMs are mostly used
in libraries, although in our dataset proportions are more even
(62% in libraries against 38% in the app’s own code).
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Figure 4: Library usage of IAM across categories

4.4 RQ4: What is the declared main role that
libraries calling the IAMs play?

Figure 5 provides the results of our analysis of the declared main
role of libraries employing IAMs, following the procedure described
in Section 3.4. Of the 154 analyzed libraries, the declared main role
of more than one third (56) has been classified as Advertising. The
role of roughly another one third (47) has been classified as Utility,
grouping together libraries that serve varied purposes (e.g., push
notifications, in-app billing, social networks integration) with the
ultimate goal of streamlining app development. The remaining one
third is composed as follows: 20 libraries are created in a custom
manner by developers who want to enact interaction between other
apps developed by them, 17 have an Undetermined purpose despite
our efforts, 12 are Analytics libraries, and 2 focus on App promotion.
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The 17 instances of Undetermined role were mostly due to the use
of obfuscation techniques, resulting in semantically meaningless
package names.
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Figure 5: Assessed purpose of frequently used library pack-
ages

Table 2 displays the 20 most popular library packages that em-
ploy IAMs in our combined datasets, with each respective number
of occurrences. We can notice that 12 out of 20 have Advertising
as their main role, including the top 6 most popular ones. These
libraries have a large number of occurrences within our dataset (i.e.,
they are employed by a high number of apps), totaling 33.71% of all
occurrences of libraries that employ IAMs. Of note, Unity3D, the
most popular library, has been found to covertly read and upload to
a remote server the user device MAC address in a recent study [32].
The remainder is composed of 3 Utility libraries, 2 Analytics, 2 App
promotion and 1 whose role could not be determined. In short, our
findings:

•More than one third of libraries that employ IAMs are Adver-
tising libraries and roughly one other third are Utility libraries.
The remainder is mostly comprised of Custom libraries, Ana-
lytics and App promotion libraries.

• Advertising libraries are by far the most diffused users of
IAMs, with a small number of popular advertising libraries
accounting for over 33% of all IAMs library usages.

4.5 RQ5: To what extent are developers aware
of IAMs and tend to reflect that awareness?

A total of 72 participants completed the developer questionnaire,
leaving us with 70 legitimate responses after discarding invalid ones.
Given the low number of replies, we will limit our quantitative
analyses and only briefly report on answers to Q1, as there is a
considerable risk that collected answers might not generalize to the
general developer population. Instead, we will focus more deeply
on answers to the open questions Q2 and Q3, from which we can
extrapolate qualitative insights. We believe that the low response
rate is due to a combination of multiple factors: (i) as we will see
later, the developers are generally unaware of IAMs usage in their

apps and therefore might have disregarded the invitation email to
answer our questionnaire; (ii) email addresses extracted from the
Google Play store do not always provide a direct contact with the
app developer(s) but might forward the mail to other stakeholders;
(iii) the invitation email might have been blocked by spam mail
filters.

Table 2: Top 20 library packages using IAMs

Package Occurrences
(%)

Role

com.unity3d.ads.api 815 (10.81%) Advertising
com.ironsource.environment 310 (4.11%) Advertising
com.ironsource.sdk.controller 279 (3.70%) Advertising
com.unity3d.services.core.api 234 (3.10%) Advertising
com.google.ads.conversiontracking 175 (2.32%) Advertising
com.appnext.base.b 158 (2.10%) Advertising
com.pollfish.f 127 (1.68%) Analytics
com.yandex.metrica.impl 127 (1.55%) Analytics
com.tapjoy 125 (1.66%) Advertising
com.heyzap.house 117 (1.55%) Advertising
com.heyzap.internal 110 (1.46%) Advertising
com.onesignal 97 (1.29%) Utility
com.unity3d.ads.android.data 88 (1.17%) Advertising
com.appodeal.ads.f 73 (0.97%) Advertising
c.m.x.a.am48 70 (0.93%) Undetermined
hotchemi.android.rate 69 (0.92%) App promotion
io.branch.referral 68 (0.90%) App promotion
com.google.zxing.client.android.share 64 (0.85%) Utility
org.onepf.oms.appstore 61 (0.81%) Utility
com.startapp.android.publish.common 57 (0.76%) Advertising

With respect to Q1, 47 developers answered that IAMs are used
in core-functionalities of their app, 12 reported that they are used in
included libraries, 7 declared that they are not used and 4 selected
“Other” as an answer. Of the latter 4, one specified that IAMs are
employed in his own framework, one that they are used in app
functionalities that are not core, one that he was not aware of the
presence of IAMs in his app and the last that he would need to
check the code before providing an answer. Although the size of our
sample is limited, it appears that while IAMs are often leveraged to
provide some key app functionality there is a considerable amount
of cases in which they are used exclusively by included libraries,
sometimes unbeknownst to the developer itself.

The collected open responses (Q2 and Q3) reveal a clear lack
of awareness of some developers regarding IAMs and their use in
libraries. The 7 developers that declared that IAMs are not present in
their apps confirmed to be oblivious about their presence, providing
responses such as “My app doesn’t use this call.” and “We don’t at the
moment.”. In addition, 9 out of the 12 developers that declared that
IAMs are used by libraries in their apps were surprised that such
methods were found inside their applications and they assumed
they are used by included libraries. For instance one developer
answered “We were not aware that it was used at all. This API is
likely called from an advertising library or from something like Google
Play Game Services. We use a variety of advertising SDKs within our
game app.”. Another stated “We aren’t using it. Third-party API? If
you can tell me which one I’ll remove it.”.

Replies such as the ones above clearly show a missing link where
the developers are ignorant to the fact that libraries are using the
IAMs in their applications. We assume that the black-box nature
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of code libraries is the main reason, as will be further discussed
in Section 5. However, an answer in particular sheds some light
on one of the reasons behind developers lack of awareness: “The
app is created on www.seattleclouds.com which is a drag and drop
app builder. Contact them and ask them personally why they include
this functionality.”. From it we can infer the existence of third-party
app building services that introduce calls to IAMs unbeknownst
to the app provider. This is consistent with the behavior observed
by Watanabe et al., that noticed that these services tend to add
unnecessary permissions or code [48].

One participant even showed resentment against library usage
of IAMs, stating that, after learning more about reasons for their
usage, he decided to no longer use the library in his applications: “I
recently found out about this call through the third party API, SafeDK.
SafeDK reported that the InMobi library was polling the device for
installed applications. This is NOT OK with me and I just uninstalled
the InMobi library from all of my Android apps. I don’t believe this
call is needed or fair to users. I’ve notified InMobi that it’s not OK to
secretly poll devices for installed applications.”. Although this shows
care for users, it also highlights how difficult it is right now for
developers to know whether their used libraries make use of such
methods or not.

Finally, developers who are actively using IAMs in their appli-
cations provide a wide range of reasons for their usage. IAMs are
the basis for launcher apps, i.e., applications that allow for the cus-
tomization of the home screen and provide shortcuts to launch
other applications (reported as reason for usage by 9 participants).
Similarly, IAMs are employed by applications that monitor or help
manage other apps, e.g., Virtual Private Networks (3 participants),
backup software (2), notification managers (2), anti-malware (1),
battery savers (1), and firewalls (1). Notably, several developers
report using IAMs to enhance the user experience. In particular,
IAMs play a role in assisting users with disabilities: “The user can
select which apps they want our app to work in, or not. Note that our
app is an accessibility service, so it is always active by default”. Other
enhancements include providing improved social network sharing
capabilities (2), managing passwords (1) and identifying installed
web browsers to handle external urls (1). Finally, IAMs are used by
developers to enable cooperation among multiple of their apps, e.g.,
one developer stated: “We have an internal ads service, which shows
ads for other applications written by our company. In order to show to
the user ads for applications that aren’t installed on his device, we use
this API.”. Similarly, others pointed out interaction among multiple
of their apps (4), the existence of theme or plugin systems (3) and
their usage to verify the presence of the paid version of the app
on the device (1). This diversity highlights that IAMs are key to a
variety of applications and purposes, hence changes to the inner
workings of these methods must be carefully thought through as
they can potentially introduce breaking changes affecting a wide
range of applications. One developer in particular expressed dis-
comfort towards a possible deprecation of the IAM, stating that
“if Google deprecates this API I’ll lose my mind.”. Summarizing our
findings:

• Developers are not always aware of having included calls
to IAMs in their apps, often introduced by enclosed libraries
without their knowledge.

• Some app-builder frameworks and services automatically
introduce IAM calls in the app.

• Some developers are against the use of IAMs for advertising
purposes, to the point of having removed the libraries that
employ them from their apps after becoming aware of their
behaviour with respect to IAMs.

• IAMs are used for a variety of different purposes and some
developers have spoken out against their potential deprecation
or removal.

5 DISCUSSION
Our analysis reveals that IAMs are widely used in commercial
applications, with a mean usage rate of about 30%, despite the fact
that their diffusion greatly varies across app categories. Instead,
popularity of IAMs is much lower in open-source apps, among
which the mean usage rate is only 2.89%. IAMs appear to be used
for varied purposes, to the point that some developers believe they
are essential for their apps and expressed discomfort towards their
possible deprecation. However, one of the main factors behind
the popularity of IAMs is their usage by advertisement libraries:
we identified 56 different ad libraries that rely on IAMs, with the
most popular ones contributing for over 33% of occurrences of
IAMs-employing libraries. Notably, this finding is in contrast with
previous studies: Grace et al. [20], in May 2011, observed that only
3 out of the 50 most used advertisement libraries made use of IAMs;
Demetriou [11], in 2016, identified 28 ad libraries that invoke IAMs
but reported that only 12.54% of apps in their dataset made use
of such libraries. Although further data is required to be certain
of the reasons for this discrepancy, we speculate it might be due
to an increase in adoption of IAMs by advertisement companies,
that over time learned to incorporate installed apps in their data
collection practices. As a future work, we plan on investigating this
point further, expanding our study to assess how IAMs’ adoption
has evolved over time.

The popularity of IAMs in advertisement libraries also suggests
an explanation for the discrepancy in adoption between open-
source and commercial applications: similarly to what observed by
Demetriu et al. [11] who noticed a much lower usage rate of IAMs in
paid apps as opposed to free ones, we can attribute it to the fact that
open-source apps do not rely on advertising as much as commercial
ones. As such, when choosing apps, we recommend privacy-aware
users to (i) make use of existing app vetting services (e.g., Virus-
Total [46]) to scrutinize apps for privacy risks prior to installation
(ii) prioritize advertisement free-apps, choosing open-source apps
when possible. Another potential reason for the observed difference
in adoption of IAMs among the two datasets could be that in com-
mercial apps synergies and dependencies between apps developed
either by the same company or by partner companies are more
common, thus resulting in a more frequent usage of IAMs. This is
another point that we plan on investigating in future work.
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Given the above, concerns regarding end-users privacy naturally
arise: as previously discussed in Section 2, IAMs can be used to
infer users’ traits in detail and often without explicit consent or
notification. As other privacy-sensitive parts of the Android plat-
form are protected by app permissions [12], forcing developers
to explicitly notify users before attempting access to these parts,
begs the question on why IAMs are treated differently. Indeed, the
European Union General Data Protection Regulation (GDPR) [7],
generally regarded as the forefront in privacy regulations [47], con-
siders “online identifiers provided by their devices, applications, tools,
and protocols [...].” as personal data, for all purposes and means.
Hence, an immediate possible solution would be the introduction of
a new permission so to make IAMs treated equally to other sensitive
resources. Not only it would make usage of IAMs more explicit to
users, but it would also contribute in raising developers’ awareness
about libraries usage of IAMs, as they would need to manually add
the permission in the app manifest and source code when including
one of these libraries into their apps. As privacy-aware users are
skeptical of apps that require many permissions [37], in turn it
would discourage unwarranted use of IAMs. The privacy concern
can also be addressed by restricting IAMs querying capabilities
to a subset of apps that must be declared beforehand in the app
manifest file, similarly to how these methods are currently handled
in Apple’s iOS. Clearly, this would come at the expense of those
applications for which it is necessary to access the complete list of
installed apps in order to function properly (e.g., battery monitors,
app launchers). Hence, a middle ground would be to allow users to
disable IAMs from the Android system settings: on the one hand
this would allow privacy-aware users to consciously avoid using
those applications in exchange for an increased privacy protection,
on the other hand unconcerned users would still be allowed to take
advantage of such apps on their devices.

In regards to these concerns, an open area of investigation for
researchers is the development of novel solutions that, while al-
lowing for apps’ interoperability, ensure that end-users privacy is
preserved. In this direction, as future work, we plan on investigat-
ing the usage of machine learning techniques for the automatic
identification and selective filtering of IAMs calls performed for
profiling purposes, similarly to what has already been done for
Android permissions [29, 50]. The first step to reach this goal is
understanding what features can be leveraged to perform the fil-
tering. Relying on the library package name does not seem to be a
long term solution, as it can be changed dynamically to evade such
filters. Similarly, the results presented in Section 4.2 suggest that
discriminating IAM calls based on accessed fields is also not help-
ful, as the frequency of fields accessed does not significantly vary
between open-source and commercial apps, despite the different
popularity that advertising libraries experience between those two
groups.

On a broader scope, the issues that emerge from our analysis
can be seen as consequences of the black-box nature of software
libraries. It is a known issue that the tendency of developers to
include third-party code in their projects, without prior verification
of its content, can lead to the inclusion of vulnerabilities or, in the
worst case, of malicious code [10, 33, 43]. Indeed, in recent history,
prominent package repositories for the Python and JavaScript lan-
guages have been the target of attacks that aimed to exploit the

popularity of widely-used libraries [28, 42]. Likewise, the introduc-
tion of libraries that covertly employ IAMs endangers end-users’
privacy and thus it confirms the need for novel solutions for scal-
able discovery, analysis, and vetting of software libraries [53]. Our
previous work [35, 36] provides a first step in this direction, en-
abling mobile users with the means to better control the purpose
and extent to which their personal data is used.

Addendum – At the time of writing, some of the previously
mentioned actions are being considered by Google and they are
being incorporated into the early preview of Android 11 6, which
will be released to the public at the end of 2020. Specifically, from
this version forward, to interact with other apps app developers
will likely have to either (i) explicitly declare in the app manifest
file the list of apps that they want to inspect or (ii) request the
new QUERY_ALL_PACKAGES permission. However, the newly intro-
duced permission does not appear to be considered as a dangerous
permission. Hence, access to IAMs is still silent for the end-user.
Although these new rules are a step in the right direction, it is
unclear whether they are sufficient to limit data collection activ-
ities. Therefore, in future work, we plan to investigate how the
developers and companies will adapt to the new rules.

6 THREATS TO VALIDITY
In the following we discuss the threats to validity of our study,
referring to the categorization by Cook and Campbell [8].

Internal validity refers to the causality relationship between treat-
ment and outcome [51]. In our study we relied on decompilation
of Android binaries to perform the data extraction from commer-
cial applications, as described in Section 3.3. Decompilers are not
always able to rebuild the original source code with full precision.
Moreover, some app developers are known to rely on obfuscation
techniques to hinder decompilation attempts. When extracting the
fields accessed with IAMs calls, we limited the extraction scope to
the same file where the IAM call is found, due to the expensive
computational requirements of more precise analyses. Moreover,
during the extraction, only direct field accesses were considered,
without taking into consideration accessor methods. Hence, we
might have missed some IAMs calls, or some details thereof. We
mitigated this threat by relying on consolidated off-the-shelf tools
during the data extraction process and by considering a large num-
ber of apps in the initial subject selection. Moreover, extracted data
is informative even if it represents a lower bound of actual IAMs
usage.

In our study a manual procedure was employed to ascertain the
declared main role of included libraries, described in Section 3.4.
Like all types of manual analysis, there is the potential for mis-
takes during the procedure. To mitigate this threat, two different
researchers performed this task independently. Their agreement
level was measured with the Krippendorf alpha [24] and resulted
satisfactory.

External validity deals with the generalizability of obtained re-
sults [51]. To ensure that our subjects are representative of the
population of Android apps, we considered both open-source and
commercial Android apps. For the former, we downloaded the 7,886
apps included in the Androzoo dataset that are still available. For
6https://developer.android.com/preview/privacy/package-visibility
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the latter, we downloaded the top 14,342 apps in the United States
across all categories of the Google Play Store, as ranked by App-
Annie. Since the apps are the top ranking apps of all categories, we
can expect that they have a high number of users because they are
ranked using a combination of number of downloads and aggregate
user ratings. In our study, mostly due to budgetary concerns, we
did not consider paid apps. However, free apps represent 75% of all
Google Play Store apps and they are downloaded more often [17].

Construct validity deals with the relation between theory and
observation [51]. The goal of our study is to understand how IAMs
are used in practice, for the purpose of gaining insights on what
measures can be introduced to increase end-users privacy protec-
tion. Although in our study we considered several aspects related
to IAMs usage, others have not been considered (e.g., how is col-
lected information used, if it is transmitted to a remote server, how
frequently is the list of installed apps collected). Hence, our analysis
might not have uncovered the more subtle issues.

Conclusion validity deals with the statistical correctness and
significance [51]. In the discussion of results, we assumed that vast
majority of the IAMs calls performed by advertisement libraries are
for profiling purposes, and we therefore suggested some potential
changes to the Android platform accordingly. This assumption is
substantiated by existing literature [11, 20, 31, 32]. Moreover, we
report in the paper example answers to our developer questionnaire
that further confirm the nonessential nature of these calls.

7 RELATEDWORK
Seneviratne et al. [38, 39] conducted the first investigation on user
profiling via IAMs. Malmi et al. [25] and Frey et al. [16] conducted
similar studies. Demetriou et al. have investigated the extent to
which information provided by IAMs can be leveraged by adver-
tising libraries [11]. A discussion of these works is provided in
Section 2. Our work is based on theirs, aiming to provide a broader
picture of diffusion and actual usages of IAMs. Zhou et al. com-
bined information provided by several seemingly innocuous An-
droid APIs, including IAMs, to infer sensitive information, such as
users’ gender and religion [54].

The privacy risks posed by IAMs are particularly critical in the
context of mobile health apps, as their mere presence on the user
device can reveal particularly sensitive information. To address this
issue Pham and colleagues designed HideMyApp [30], a system that
hides the presence of sensitive apps relying on user-level virtualiza-
tion techniques. Experimentally evaluated, HideMyApp introduced
a negligible performance overhead and was well received by end-
users.

More loosely related to our work are studies that investigated po-
tential techniques for the unique identification of end-users. Browser
fingerprinting has historically been used by companies to uniquely
identify website visitors [15]. In the context of Android, multiple
studies have investigated potential techniques for app fingerprinting,
leveraging network traffic patterns [9, 44, 45, 52], power consump-
tion [5], memory footprints [22], and UI states [4].

Researchers have also focused on analyzing and understanding
the behavior of advertising libraries, to assess the possible risks
deriving from it. Grace and colleagues [20] investigated potential

privacy and security risks posed by embedded advertisement li-
braries commonly used in commercial Android apps. Their analysis
highlights that these libraries often engage in risky behavior for
end-users’ privacy, ranging from uploading sensitive information
to remote servers to executing untrusted code downloaded from
Internet sources. Besides, their results show that most existing ad
libraries collect a wide range of private information, that in some
cases includes the list of apps installed on the phone. Stevens et
al. [41] examined the effect on user privacy of thirteen popular
Android ad providers. From their analysis emerges that several
ad libraries check for permissions beyond the required and op-
tional ones listed in their documentation and employ an insecure
JavaScript extension mechanism. Worryingly, they show that ad
providers can identify and track users across applications.

Recently, Razaghpanah and colleagues [31] performed a large
scale study aiming at understanding the actors involved in the
mobile advertising and tracking ecosystem and their commonly
employed practices. Their results show that these services can
track users leveraging a wide range of device identifiers without
providing visual clues inside the apps. By analyzing network traffic
they show that, after collection, sharing users’ datawith subsidiaries
and third-party affiliates is the norm. Although IAMs can be used
for tracking purposes, they have not been considered in the above
study and, to our knowledge, our work is the first that aims to
provide a measurement of their adoption in the wild.

8 CONCLUSION
We conducted a large scale empirical study to investigate how
IAMs are used in practice, analyzing their usage in 14,342 free
Android apps published in the Google Play Store and 7,886 open-
source Android applications. For this purpose, we performed an
analysis that discovers the information that is extracted through
IAM usage in these apps to gain insights on potential user privacy
concerns. We further administered an online questionnaire to app
developers to assess their awareness about the presence of IAMs
in their apps. Based on the results of our analysis, we formulated
some suggestions for improving the Android platform to increase
developers’ awareness and end-users’ control over IAMs.

Future work involve (i) analysing how developers are using the
fields accessed with IAMs, possibly also by directly contacting An-
droid developers, (ii) investigating the evolution of IAMs adoption
over time, and (iii) developing novel solutions that allow apps’ in-
teroperability while ensuring that end-users privacy is preserved.
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