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Abstract. With software becoming harder to compromise due to mod-
ern defenses, attackers are increasingly looking at exploiting hardware
vulnerabilities such as Rowhammer. In response, the research commu-
nity has developed several software defenses to protect existing hardware
against this threat. In this paper, we show that the assumptions existing
software defenses make about memory addressing are inaccurate. Specif-
ically, we show that physical address space is often not contiguously
mapped to DRAM address space, allowing attackers to trigger Row-
hammer corruptions despite active software defenses. We develop RAM-
SES, a software library modeling end-to-end memory addressing, relying
on public documentation, where available, and reverse-engineered mod-
els otherwise. RAMSES improves existing software-only Rowhammer de-
fenses and also improves attacks by orders of magnitude, as we show in
our evaluation. We use RAMSES to build Hammertime, an open-source
suite of tools for studying Rowhammer properties affecting attacks and
defenses, which we release as open-source software.

1 Introduction

To increase the capacity of DRAM, manufacturers are packing more transis-
tors into DRAM chips. This has resulted in reduced reliability of DRAM in the
wild [12,16]. A prime example of these reliability problems that plague a large
percentage of currently deployed DRAM is the Rowhammer vulnerability [13].
DRAM consists of stacks of rows which store information and the Rowhammer
vulnerability allows for corruption of data in form of bit flips by repeatedly ac-
tivating some of these rows. The past two years have witnessed a proliferation
of increasingly sophisticated Rowhammer attacks to compromise various soft-
ware platforms. Mark Seaborn showed that Rowhammer bit flips can be used
to escalate privileges of a Linux/x86 user process in 2015 [20]. Various academic
research groups then showed that the same defect can also be used to compro-
mise Web browsers [7,9], cloud virtual machines [19,22], and even mobile phones
with a completely different architecture [21].

Given the possibilities for building such powerful attacks, we urgently need to
protect users against their threat. While hardware-based defenses such as error-
correcting code or target row refresh [11] can potentially protect future hardware,
a large portion of existing hardware remains exposed. To bridge this gap, recent
work [5,8] attempts to provide software-only protection against the Rowhammer



vulnerability. ANVIL [5] provides system-wide protection by detecting which
rows in physical memory are accessed often, and if a certain threshold is reached,
it will “refresh” the adjacent rows by reading from them, similar to target row
refresh [11]. In contrast, instead of providing system-wide protection, CATT [8]
protects the kernel memory from user processes by introducing a guard row
between kernel and user memory. Given that Rowhammer bit flips happen in
DRAM, both these defenses attempt to operate at DRAM level, having to make
judgement calls on where the “next” or “previous” row of a given address is.
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Fig. 1. Example of nonlinear physical address to DRAM address mapping.

To remain agnostic to the underlying DRAM hardware, both these defenses
make simplifying assumptions about how DRAM is addressed by modern mem-
ory controllers. Specifically, they assume that physical memory addresses are
mapped linearly by the memory controller to DRAM rows. We investigate whether
this important assumption is valid using a representative set of DRAM modules
and memory controllers. We discover that memory controllers often non-trivially
map physical address to DRAM addresses and DRAM modules may internally
reorder rows. These findings highlight the need to differentiate between the phys-
ical address space, what the CPU uses to address memory, and DRAM address
space, the chip select signals along with bank, row and column addresses emitted
by the memory controller. Subtle differences in mapping one address space to
the other determine the physical address distance between two rows co-located
in hardware, which in turn determines where a Rowhammer attack could trigger
bit flips. Figure 1 shows an empirical example of how a naive address mapping
makes inaccurate assumptions.

Our conclusion is that to build effective software defenses, we cannot treat
the underlying hardware as a black box. To concretize our findings, we develop
RAMSES, a software library modeling the address translation and manipulation
that occurs between the CPU and DRAM ICs. We employ RAMSES to advance
the current state of Rowhammer research in multiple dimensions:

— We show how a memory addressing aware attacker can defeat existing de-
fenses: we could trigger bit flips on ANVIL [5] which aims to mitigate Row-



hammer altogether, and we could trigger bit flips with enough physical address
distance from their aggressor rows to sidestep the guard area of CATT [8].

— We show that existing attacks can significantly benefit from RAMSES when
looking for exploitable bit flips: we can find many more bit flips when com-
pared to publicly available Rowhammer tests or the state of the art [17].
Specifically, within the same amount of time, we could find bit flips on DRAM
modules that state of the art reported to be safe from Rowhammer bit flips.
On other DRAM modules, we could find orders of magnitude more bit flips.
These findings already significantly increase the effectiveness and impact of
known attacks.

— We build a DRAM profiling tool that records a system’s response to a Row-
hammer attack into a portable format called a flip table. We run this tool on
a representative set of memory modules to collect detailed data about bit flip
location and direction. We build an attack simulator that uses flip tables to
perform fast, software-only feasibility analyses of Rowhammer-based attacks,
and use it to evaluate several published Rowhammer exploits. We release these
tools along with collected flip tables open-source as Hammertime, available
at https://github.com/vusec/hammertime.

Outline We provide a background on DRAM architecture and Rowhammer
in Section 2. We then describe the design and implementation of RAMSES based
on these parameters in Section 3 and explore applications of RAMSES in Sec-
tion 4. We present the results of our DRAM profiling and evaluate the impact
of memory addressing on existing attacks and defenses in Section 5. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2 Background

We first briefly look at how modern DRAM is addressed before discussing the
Rowhammer vulnerability. We then show how recent attacks exploit Rowhammer
to compromise systems without relying on software vulnerabilities.

2.1 DRAM Architecture

Figure 2 shows an overview of the devices and addresses involved in accessing
system RAM. There are four types of addresses used, corresponding to different
address spaces:

Virtual Addresses are the way nearly all software running on the CPU
accesses memory. It is often a large, sparsely allocated address space, set up
for each process by the kernel. Physical Addresses are what the CPU uses
to access the “outside” world, including devices such as RAM, firmware ROM,
Memory-Mapped I/O (MMIO) and others. The address space layout is machine-
specific, usually set up by system firmware during early boot. Linear Memory
Addresses are used to index all RAM attached to a controller in a contiguous,
linear fashion. These addresses are internal to the northbridge logic and, due to
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Fig. 2. Functional overview of DRAM addressing

the tight coupling between the physical address router and memory controller,
are specific to hardware implementations. DRAM Addresses are the actual
signals on the memory bus used to access RAM and uniquely identify memory
cells. These signals consist of channel, DIMM, rank and bank select signals, along
with row and column addresses [10]. We take a closer look at the components
translating addresses between these address spaces, as well as some techniques
used in translation.

CPU. The Memory Management Units (MMUs) in modern general-purpose
processors use page tables to translate virtual addresses into physical addresses.
Page tables are architecture-specific data structures in RAM that specify the
virtual memory map of each process, usually set up and maintained by the
operating system. The MMU “walks” these tables for every virtual memory
address translation requested by the CPU. For better performance, a specialized
cache called a Translation Lookaside Buffer (TLB) is often included in the MMU.

Physical Address Router. The CPU uses physical memory addresses to
access more than just RAM. System ROM, non-volatile RAM and PCI device
memory are just a few examples of devices mapped into the system’s physical
address space. Routing physical memory requests to the appropriate device is
accomplished by the physical address router. From a memory addressing per-
spective, the physical address router maps the regions in the physical address
space corresponding to RAM into a contiguous, linear memory address space.
The specifics of how this mapping is achieved will vary not only between archi-
tectures, but also depending on system hardware configuration.

Memory Controller. Memory requests on route to system RAM are ser-
viced by the memory controller, which is responsible for managing the memory
bus. To achieve this, the linear memory addresses of incoming requests must be
mapped to a multidimensional address space specific to the memory configura-
tion in use. These DRAM address tuples consist of channel, DIMM and rank
select signals, along with bank, row and column addresses. Each memory bank
comes equipped with a row buffer, a cache for the bank’s current active row,
to which accesses complete with minimal delay. Consequently, a request to a
different row within the same bank — an event known as a bank conflict — will
incur a significant delay while the old row is closed and the new one opened. A



well-performing memory controller will therefore map linear addresses to DRAM
in such a way as to minimize the occurrence of bank conflict delays for common
usage patterns. The specific DRAM address mappings used by controllers are
either documented by the vendor [2] or reverse-engineered [17].

DIMM Circuitry. The memory controller is not the last step in memory ad-
dressing, as DIMM circuitry itself can change the signals that individual DRAM
ICs receive, including bank and address pins, an example of which is DDR3
rank mirroring [10]. Other remapping strategies exist, which we will discuss in
Section 3.1.

2.2 The Rowhammer Vulnerability

Due to the extreme density of modern DRAM arrays, small manufacturing im-
perfections can cause weak electrical coupling between neighboring cells. This,
combined with the minuscule capacitance of such cells, means that every time a
DRAM row is read from a bank, the memory cells in adjacent rows leak a small
amount of charge. If this happens frequently enough between two refresh cycles,
the affected cells can leak enough charge that their stored bit value will “flip”,
a phenomenon known as “disturbance error” or more recently as Rowhammer.
Kim et al [13] showed that Rowhammer can be triggered on purpose, a process
known as hammering, by using an FPGA to saturate the memory bus with re-
quests to a single row. To trigger Rowhammer flips with similar effectiveness
from the CPU (a much stronger threat model), we need to ensure that memory
accesses go to DRAM and reach their designated target row as many times as
possible between two refresh cycles. To achieve these goals, we have to deal with
CPU caches, the row buffer and DRAM addressing.

Avoiding caches has been heavily studied before. Attackers can use cache
flushing instructions [19,20,22], uncached (DMA) memory [21], eviction buffers [5,
7,9] and non-temporal load/store instructions [18]. Bypassing the row buffer is
possible by repeatedly reading from two rows as to cause a bank conflict [13]. If
these bank-conflicting rows happen to be exactly one row apart, their respective
disturbance errors add up in that middle row, greatly increasing the number of
observed Rowhammer bit flips. This technique is known as double-sided Row-
hammer [20] as opposed to single-sided Rowhammer where the bank-conflicting
row is arbitrarily far away and does not directly participate in inducing distur-
bance errors. Lastly, making use of end-to-end DRAM addressing to precisely
select Rowhammer targets has not been adequately explored and presents sev-
eral advantages over the state of the art, as we will discuss in Section 4.1 and
evaluate in Section 5.

2.3 Rowhammer Attacks

Published Rowhammer exploits [7,9,19-22] go through three phases. They first
hammer and scan memory for exploitable bit flips; each memory page stores
many thousands of bits, of which only a few are useful to the attack in any
way if flipped. If a bit flip is found with the right offset and direction (1-to-0 or



0-to-1) to be useful, we call it an exploitable bit flip. In the second phase of the
attack, security-sensitive information has to be precisely placed on the memory
page prone to exploitable Rowhammer flips. This is done by either releasing the
target memory page and then spraying security-sensitive information in memory
for a probabilistic attack [9,20], or by massaging the physical memory to store
security-sensitive information on the vulnerable page for a more targeted and
deterministic attack [19,21]. Once the security-sensitive information is stored on
the vulnerable memory page, in the third step the attacker triggers Rowhammer
again to corrupt the information resulting in a compromise.

Selecting targets for hammering is often done heuristically: attacks assume
physical contiguity and split memory into consecutive blocks associated with
a particular row number. These blocks aim to contain all pages that map to
the same row index, regardless of channel, DIMM, rank or bank and are sized
according to assumptions about memory geometry (e.g. 256KiB for two dual-
ranked DDR3 DIMMs). Once two blocks are selected as targets, hammering
works by exhaustively hammering all page pairs and checking for flipped bits.
Alternatively, a timing side-channel based on DRAM bank conflicts can reduce
the number of tried pairs significantly.

2.4 Rowhammer Defenses

In response to the proliferation of Rowhammer attacks several software-only de-
fenses were developed. ANVIL [5] attempts to prevent Rowhammer altogether by
monitoring memory access patterns and forcibly refreshing the rows neighboring
a potential Rowhammer target row. To achieve this, it uses a reverse-engineered
mapping scheme and assumes consecutive numbering of rows with ascending
physical addresses.

An alternative approach, CATT [8], attempts to mitigate the security impli-
cations of Rowhammer by preventing bit flips from crossing the kernel-userspace
boundary. To achieve this, it partitions physical memory into userspace and
kernel sections separated by a contiguous guard area, whose size is computed
similarly to the target blocks of attacks we presented earlier. This approach
relies on two assumptions: first, that a sufficiently large physically contiguous
memory block will contain all instances of a particular row index across all chan-
nels, DIMMs, ranks and banks, and second, that such blocks corresponding to
consecutive row indices are laid out consecutively in physical memory.

3 RAMSES Address Translation Library

3.1 Design

In this section we discuss our approach to the main challenges facing an end-to-
end model of computer memory addressing. First we consider the address spaces
at play and define relationships between individual addresses. Second we look at
modeling the physical to DRAM address mapping done by memory controllers.



Third we discuss any further DRAM address remappings performed on route
to DRAM ICs. Finally, we consider how to efficiently map contiguous physical
memory to the DRAM address space.

Address Spaces Among the address spaces discussed in Section 2.1, virtual,
physical and linear memory addresses can be intuitively defined as subsets of
natural numbers, which have familiar properties. DRAM, however, is addressed
quite differently. Hardware parallelism is evident from the channel, DIMM, rank
and bank select signals, and once a particular bank is selected, a memory word
is uniquely identified by a row and column address. To accommodate all these
signals we define a DRAM address to be a 6-tuple of the form <channel, DIMM,
rank, bank, row, column>, with the order of the fields reflecting hardware hier-
archy levels. We have no universal way of linearizing parts of a DRAM address
since memory geometry (i.e. DIMMs per channel, ranks per DIMM, etc.) is
highly dependent on what hardware is in use. Moreover, concepts like ordering
and contiguity are not as obvious as for physical addresses and are more limited
in scope.

To define these concepts, we first need a measure of hardware proximity of
two DRAM addresses. We say two addresses are co-located on a particular hier-
archy level if they compare equal on all fields up to and including that level (e.g.
two addresses are bank co-located if they have identical channel, DIMM, rank
and bank fields). Ordering is well defined on subsets of co-located addresses, such
as columns in a row or rows in a bank, and carries meaning about the relative
positioning of hardware subassemblies. A more general ordering, such as com-
paring field-by-field, while possible, carries little meaning beyond convenience
and does not necessarily reflect any aspect of reality. Co-location also enables us
to define a limited form of contiguity at memory cell level: we say two DRAM
addresses are contiguous if they are row co-located and have consecutive column
indexes.

Address Mapping As we have discussed in Section 2.1 translation between
physical and DRAM addresses is performed chiefly by the memory controller.
The exact mapping used varies between models, naturally, but individual con-
trollers often have many configuration options for supporting various memory ge-
ometries and standards as well as performance tweaks. As an example, AMD [2]
documents 10 DDR3 addressing modes for bank, row and column addresses,
with multiple other options for controlling channel, DIMM and rank selection as
well as features such as bank swizzle, interleaving and remapping the PCI hole.
It is therefore necessary for an accurate model to account for all (sane) combina-
tions of memory controller options, ideally by implementing the mapping logic
described in documentation. When documentation is unavailable, mappings can
be reverse-engineered and further improved by observing side-channels such as
memory access timings and Rowhammer bit flips.



Remapping In Section 2.1 we presented the fact that DRAM addresses can be
altered by circuitry in between the memory controller and DRAM ICs, as long as
memory access semantics are not violated. We used as an example DDR3 rank
address mirroring, where bank bits BAy and BA1, as well as address bits A3 and
Ay, As and Ag, A7 and Ag, are respectively interchanged in order to make the
circuit layout simpler on the “rank 1”7 side of DIMMs. Rank address mirroring
is part of the DDR3 standard [10] and its presence is usually accounted for
by compliant memory controllers by “pre-mirroring” the affected pins, making
it transparent to the CPU. However, as we will discuss in Section 5, we have
found several DIMMs behaving like rank-mirrored devices when viewed from
software, a fact significantly affecting the effectiveness of Rowhammer. While
this information is public, previous work has mostly ignored it [17,22].

In addition to standard-compliant rank mirroring, other custom address
remappings can exist. During our research we discovered one particular on-
DIMM remapping among several particularly vulnerable DIMMs: address pin
Ajz is XORed into bits As and A;. We came across this after discovering peri-
odic sequences of 8 row pairs either exhibiting many bit flips or none at all on
some very vulnerable DIMMSs. That lead us to try linear combinations of the 4
least significant DRAM bits until we consistently triggered bit flips over all row
pairs — and therefore reverse-engineered the remapping formula.

We remark that on-DIMM remappings can be arbitrarily composed, and we
found several DIMMs where both rank mirroring and the custom remapping was
in effect, as we will show in Section 5.

Efficiency Considerations An issue worth addressing is the efficient mapping
of a physical memory area to DRAM address space — computing the DRAM
addresses of all memory words in the area. Most generally, one would have to
translate the addresses of every word, since there are no contiguity guarantees.
To address this, we define a property named mapping granularity, which spec-
ifies the maximum length of an aligned physically-contiguous area of memory
that is guaranteed to be contiguous in DRAM address space for a particular
combination of memory controller and chain of remappings, taking into account
any interaction between them. This mapping granularity is often much larger
than a memory word, reducing the number of required computations by several
orders of magnitude.

3.2 Implementation

We implemented RAMSES as a standalone C library in less than 2000 lines
of code. We provide mapping functions for Intel Sandy Bridge, Ivy Bridge and
Haswell memory controllers based on functions reverse engineered in previous
work [17]. Support for DDR4 memory controllers, as well as AMD CPUs is a
work in progress. We provide DDR rank mirroring and the on-DIMM remap-
pings discussed in the previous section, with the possibility to easily add new
remappings once they are discovered.



4 Applications of RAMSES

In this section we discuss applications of the end-to-end memory addressing
models provided by RAMSES. We first look at a Rowhammer test tool and
profiler, which we will compare with the state of the art in Section 5 as well
as use it to evaluate existing defenses. We then briefly discuss the output of
our profiler — flip tables. Finally, we present an attack simulator to use the
profiler’s output to quickly evaluate the feasibility of Rowhammer attacks. These
applications, along with miscellaneous small related utilities are released together
as Hammertime.

4.1 Hammering with RAMSES

Targeting The most used hammering technique thus far, double-sided Row-
hammer, relies on alternately activating two “target” rows situated on each side
of a “victim” row. Given that modern DRAM modules have up to millions of
individual rows, target selection becomes important. We have already discussed
how present attacks use heuristics to select targets in Section 2.3. A quite dif-
ferent strategy is to assume (near-)perfect knowledge about all aspects of the
memory system, which in our case is provided by RAMSES. Armed with such a
mapping function, a Rowhammer test tool can accurately select both target and
victim rows, minimizing the search space to precisely target the DRAM region of
interest. A benefit of such precision, aside from the obvious speedup, is the abil-
ity to study Rowhammer and argue about the results in terms of actual physical
DRAM geometry entirely from software. In particular, Rowhammer itself can
be used as a side-channel to reverse-engineer memory mappings, a method we
ourselves used to pin down the non-standard DRAM address remapping dis-
cussed in Section 3.1. This opens the door to commodity hardware being used
for rapid data collection about different aspects of Rowhammer. Given that the
same commodity hardware is also likely to be targeted by a Rowhammer-based
exploit, making a fast and complete test is useful in assessing the vulnerability
of a given system.

Preparation and Hammering While our profiler is designed to work with
arbitrary memory allocations, some options are provided that can increase ef-
fectiveness or fidelity. Namely, memory locking informs the kernel to keep
page allocations unchanged throughout the lifetime of the buffer. This prevents
swapout or copy-on-write events from changing page mappings, which would in-
validate target selections. Huge Pages can allocate the buffer using huge page
sizes (2MiB or 1GiB on x86_64). This forces the buffer to be more contiguous
in physical memory, potentially increasing the number of targetable rows. In
addition, huge pages are also implicitly locked.

Because sandboxing or program privileges are no issue in implementing our
profiler, we are free to make use of hardware features to bypass the cache, which
on x86 is the unprivileged native instruction c1flush. The number of reads for a



hammer attempt is automatically calibrated at runtime to saturate the memory
bus for a set number of refresh intervals.

4.2 Flip Tables

To keep the experimental data obtained from the profiler reusable, we keep all
addresses used in output in a format as close to the hardware as possible, namely
DRAM addresses. This allows examining the effects of Rowhammer on various
DRAM modules at the hardware level, regardless of the particularities of the
system the data was collected on. Profiler output is a sequence of hammerings,
each consisting of a set of target addresses along with bit flip locations in the
victim rows, if any occur. We collect this output in a machine-readable plain
text file we term the flip table. We release all flips tables for the DIMMs we
experimented with as part of Hammertime and will further maintain a repository
so that others can contribute additional flip tables.

4.3 Attack Simulator

Design The goal of simulation is to provide a lightweight alternative to full
program execution for evaluating the feasibility of Rowhammer-based attacks.
What exactly constitutes a useful bit flip is up to each individual attack to
decide. A page table entry (PTE) attack could, for example, be interested in
0 — 1 bit flips at page offsets corresponding to read/write flags in PTEs. A user
of the Hammertime simulator would specify bit flip positions of interest and
receive realistic estimates of success rate and average time to find the first bit
flip for a large number of DIMMs. At the same time, the simulator allows for
more complex attack plans if desired.

Implementation To make the simulation interface user-friendly and easily ex-
tensible we implemented it in Python. It consists of two programming interfaces:
a lower-level view of flip tables, allowing their contents to be programatically ac-
cessed, and a higher-level exploit simulation interface which presents bit flips as
they would occur in software: as bit offsets within a virtual page.

Published Rowhammer attacks [7,9,19-22] rely on flipping bits at precise
memory locations for successful exploitation. To achieve this goal, attacks have
an initial “templating” phase where they look for vulnerable memory pages with
a bit flip at the desired offset within a page. The victim process (or kernel) is then
coerced into storing data structures within these pages. After that, the attacker
uses Rowhammer again in order to cause a bit flip in the target data structures.
Overlooking the problem of actually triggering Rowhammer, the simulation in-
terface provides a fast way of evaluating the prevalence of “good” victim pages
across a huge number of memory configurations.

An exploit is represented in the simulator by an Ezploit Model. In the simplest
case, an Fxploit Model provides a function answering one yes-or-no question: is
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Listing 1.1. Implementation of Dedup Est Machina in Hammertime’s simulator

class DedupEstMachina(estimate.ExploitModel):
def check_page (self, vpage):

useful = [
x for x in vpage.pulldowns
if x.page_offset ) 8 == 0 # Bits 0-7
or (x.page_offset % 8 == 1 and (x.mask & 0x7)) # Bits 8-10
or x.page_offset % 8 == 7 # Bits 56-63
or (x.page_offset % 8 == 6 and (x.mask & 0xf0)) # Bits 52-55

]

return len(useful) > 0

a given memory page useful to exploit. An example of an attack implemented
as exploit model can be seen in Listing 1.1. More advanced victim selection
strategies are also supported by providing hooks at single hammering or fliptable
granularity.

5 Evaluation

We tested Hammertime on two identical systems with the following configura-
tion:
CPU: Intel Core i7-4790 @ 3.6 GHz
Motherboard: Asus HO7TM-E
Memory: DDR3; 2 channels, 4 slots, max 32GiB
Kernel: Linux 4.4.22

The systems network-boot from a “golden” image and discard all local filesys-
tem changes on power off, ensuring that no state is kept between profiling runs
and that each test starts from a known clean state. This also prevents acci-
dental persistent filesystem corruption due to Rowhammer — a valid concern
considering the workloads involved.

We tested a total of 33 memory setups: 12 single DRAM modules and 21
dual-channel sets, of sizes ranging from 4 to 16 GiB. Out of these, 14 exhibited
Rowhammer bit flips during an initial test run and were selected for further
experimentation. The vulnerable memory setups in question are detailed in Ta-
ble 1. These initial results show that on DIMMs that we looked at, only 42% are
vulnerable when profiling is performed from the CPU, a contrast with 85% that
is reported in the original Rowhammer paper which uses an FPGA platform for
testing [13]. Given that realistic attack scenarios are performed from the CPU,
42% is more representative of the number of vulnerable DDR3 systems.

Profiling bit flips

Our profiling run consists of three hammer strategies: Single represents single-
sided Rowhammer. A single target row is selected and hammered along with
a second distant row, allocated in a separate buffer and automatically selected
in order to trigger a bank conflict. Amplified targets two consecutive rows for
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Table 1. Detailed information on the set of DIMMs vulnerable to Rowhammer used
for evaluating Hammertime and generating its flip tables.

. Size | Freq. Ranks | Rank |DIMM
Brand |Serial Number ID (GiB)|[MHZ] Ch. /DIMM |mirror| remap
CMD16GX3M2A1600C9 Ai| 16 | 1600 | 2 2 v v
Corsair CML16GX3M2C1600C9 Az| 16 | 1600 | 2 2 v
CML8GX3M2A1600COW As| 8 |1600 | 2 1
CMY8GX3M2C1600C9R A4l 8 1600 | 2 2 v v
Crucial |BLS2C4G3D1609ES2LX0CEU|B;| 8 | 1600 | 2 2 v
Geil GPB38GB1866C9IDC Ci1| 8 |1866 | 2 1
Goodram|GR1333D364L9/8GDC D:| 8 |1333]| 2 2 v
GSKill F3-14900CL8D-8GBXM Ei| 8 |1866 | 2 1 4
F3-14900CL9D-8GBSR E»| 8 |1866 | 2 1
Hynix |HMT351U6CFR8C-H9 Fi| 8 | 1333 | 2 2
Integral |IN3T4GNZBIX Gi| 4 1333 |1 2 v
PNY MD8GK2D31600NHS-Z Hy| 8 |1600 | 2 2 v
Samsung |[M378B5173QH0 Ii| 4 |1600 | 1 1 v
v V73T8GNAJKI Ji| 8 [1600 | 1 2 v

hammering. Double represents double-sided Rowhammer and selects as targets
rows separated by one victim row. We ran each strategy with all-ones/all-zeroes
and all-zeroes/all-ones data patterns for victim/target rows, respectively, and
with a hammer duration of 3 refresh intervals. We profiled 128 MiB of each
memory setup, allocated using 1GiB hugepages for 8 GiB and 16 GiB setups
and 2 MiB hugepages for 4 GiB setups.

Table 2 shows the results of the three hammer strategies mentioned earlier
applied to the 14 memory setups. Overall we see double-sided Rowhammer by
far outperforming single-sided and amplified Rowhammer on all memory setups.
Using single-sided Rowhammer as a baseline, the “Amplified” strategy manages
to be significantly more effective for some setups (As, Ea2, Hp), while proving
inferior for others (A4, Bi, E1). We also see the breakdown of bit flip num-
bers into 0 — 1 (pullups) and 1 — 0 (pulldowns). Several setups (As, Eq, G1,
Hy, Jp) show a significant difference in the ratio of pullups versus pulldowns
between single-sided and amplified /double-sided hammer strategies, which sug-

gests different Rowhammer variants induce intereferences of different nature at
the DRAM level.

We evaluate the reliability with which bit flips occur repeatedly by perform-
ing 10 consecutive 32 MiB profiling runs on a subset of memory setups and com-
paring the obtained flip tables. We found that the vast proportion (80 — 90%)
of bit flips show up reliably in all runs, with minor variation between memory
setups.

Figure 3 shows the effectiveness of newly discovered addressing information
such as on-DIMM remapping and rank mirroring on the number of discovered
bit flips using different set of vulnerable DIMMs. In particular, we see that both
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Table 2. Profiling results for vulnerable DIMMs.

D Single Amplified Double
Vuln. Total Vuln. Total Vuln. Total

rows[%] flips 0—=11-0 rows[%] flips 0—=11-0 rows[%] flips 0—=11-0
Ay 0.56 92 0 92 0.08 13 0 13 98.95 200468| 4367 196107
Ag 0.98 161 159 2 20.29 5404| 5404 0 69.13 21542|21538 4
As 3.01 512 18 494 4.54 809| 438 371 16.13 2926, 1541 1385
Ay 0.99 161 1 160 0.18 29 1 28 99.58 256359| 5577 250796
By 2.17 358 0 358 1.62 272 0 272 8.77 1504 1 1503
Cq 0.01 1 0 1 0.00 0 0 0 63.01 16489| 1365 15124
Dy 2.93 488 0 488 2.30 385 0 385 12.14 2131 0 2131
Eq 1.10 181 0 181 0.19 31 0 31 99.77 202630| 4175 198464
FEo 13.69 3108 142 2966 24.58 6273| 4183 2090 74.56 2458716320 8267
Fy 2.63 442 0 442 0.70 116 0 116 88.67 413796| 5927 407906
Gy 12.98 2447 154 2293 18.61 3803| 1934 1869 62.95 15990| 7851 8139
Hy 9.79 1983 55 1928 18.46 3930| 2575 1355 59.31 16087|10608 5479
I 0.49 78 2 76 0.09 15 2 13 99.29 130187 4781 125410
J1 4.50 811 15 796 9.29 1741 1153 588 35.25  7185| 4725 2460
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Fig. 3. Effect of address remapping strategies on Rowhammer effectiveness

rank mirroring and custom remapping are required for the best results. This
was, however not the case for all DIMMs, as can be seen in Table 1.

Comparison

We compare the effectiveness in exploiting Rowhammer and finding bit flips of
Hammertime’s profile with several state-of-the-art double-sided Rowhammer
testing tools: Google Project Zero (GPZ) double-sided rowhammer [20], the na-
tive rowhammer binary from the Rowhammer.js project [9], and the binary pro-
vided by the Flip Feng Shui authors [19]. Each tool was tested on memory from
the A; set (one of the most vulnerable DIMMSs) under three setups:

Setup I: 15 min testing 4 GiB out of 8 GiB total; 1 channel, 1 DIMM, 2 ranks/DIMM

Setup II: 30 min testing 8 GiB out of 16 GiB total; 2channels; 1 DIMM /channel;
2 ranks/DIMM

Setup III: 30 min testing 8 GiB out of 16GiB total; 1channel; 2 DIMMs/channel;
2ranks/DIMM
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Information about memory geometry, in particular the number of DIMMs, was
configured for each tool using runtime flags or compile-time constants, where
possible. Memory allocation was done using regular (non-huge, 4 KiB) pages for
GPZ test and Rowhammer.js, and using 2 MiB hugepages for Flip Feng Shui.

To make comparison with other tools easier, profile ran with two config-
urations: the first, compatibility mode, allocated memory using regular pages,
and only used basic memory configuration — no support for rank mirroring or
on-DIMM remapping. The second, optimized run uses hugepage allocation, as
well as taking into account rank mirroring and on-DIMM remapping.

Table 3 shows the results of the test runs. The middle section presents the
relevant Rowhammer parameters of each run, namely the number of reads and
knowledge of memory geometry. The “Rows tested” column shows the number
of rows as reported by each test tool. As we have seen in Section 2.3 however,
different tools have different definitions of what a “row” is. The “Addr pairs
/ row pair” column highlights these differences, showing how many individual
address pairs the tool tries hammering for each individual row it tests. We also
provide the “MiB covered” column, which takes into consideration each tool’s
definition of a “row”, providing a common metric.

Table 3. Comparison between Hammertime profile and other Rowhammer test tools.

=] E EIE

EE § 5 g Row
Test tool Memory rez‘ids olalelal e Setup| pairs Addr pairs MiB | Bit flips
/ addr pair tested / row pair |covered|detected
I 4 0.5 0
mwhaiiir_ test 1.024 x 10° 11 6 4096 1.5 0
III 8 2.0 0
Rowhammer. s I 133 128 16.6 52
BN, J 1x10%|v| |v|v I 123 956 30.7 101
111 209 52.2 0
I 3 0.37 0
Flip Feng Shui 2.621 x 10° 1I 177] <1024 2 44.2 196
III 7 1.75 0
Hammertime I 7484 58.4 54480
(compat) ~1.2x10° 3|V/|/|V/ |V II | 13999 1 109| 129392
p III | 14023 109| 123333
Hammertime I 6678 52.1| 143810
(optimal) ~1.2x 10%|v|v/|v/|/|v/|| II | 13960 1 109 268203
p III | 13915 109 284032

First, we notice great variation in testing speed (i.e. number of rows tested per
unit time) between different tools and setups. This is indicative of the targeting
strategies used: the three tools all search over contiguous blocks, as presented
in Section 2.3, optionally with heuristics narrowing down the search space. The
GPZ test exhaustively tries all pages in these blocks, resulting in the slowest

! Accurate row address computation which takes rank mirroring and on-DIMM remap-
ping into account.

2 Address pairs selected using a timing side-channel.

3 Auto-calibrated for two 64ms refresh intervals.
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overall performance of the set. Rowhammer.js native, on the other hand, uses
some information about the memory controller and geometry to select its targets,
leading to better search speeds and adapting well to different memory setups.
Flip Feng Shui uses a pre-tuned timing side-channel to select potential targets.
Judging by the results, the hard-coded timing threshold it uses is tuned for dual-
channel memory: Setup IT has much improved search rate, while Setups I and IIT
are virtually identical to the exhaustive search done by the GPZ test. In contrast
to all of these, Hammertime’s profile uses extremely precise targeting to make
every test count, leading to consistent performance that is orders of magnitude
better than that of other tools.

Secondly, we look at the effectiveness with which tools induce bit flips in
memory. Project Zero’s test failed to detect any bit flips under all three setups,
suggesting that it has certain hard-coded assumptions about memory organi-
zation which turn out to be wrong. Rowhammer.js native, on the other hand,
successfully detects flips in both single-DIMM and dual-channel modes, while
none are reported for dual-DIMM. This is consistent with expectations, as the
memory addressing model used by this tool assumes dual-channel operation for
multiple DIMMs. Flip Feng Shui, unsurprisingly, produces bit flips only when
run under conditions it has been tuned for, similarly to how its search speed
varies. In keeping with its superior search rate, profile also detects orders of
magnitude more bit flips than the other tools. This is partly due to more rows
being tested, but also due to better sensitivity from knowing where to look —
other tools manage at most slightly above 1 flip per row, while Hammertime
consistently produces between 7 and 9 flips per row. Furthermore, in the last
setup, none of the testing tools could find any bit flips. This is particularly
important because it shows that DIMM setups that would be considered se-
cure by state-of-the-art tools, should now be considered vulnerable assuming
precise geometry information for Rowhammer attacks. These insights hint that
Rowhammer-vulnerable memory cells are much more prevalent than existing
software tools would suggest.

Defenses

We examine the effectiveness of published Rowhammer defenses using the new
insights we have gained about memory addressing.

Table 4. ANVIL evaluation Table 5. CATT evaluation
Defense Bit flips D Rank DIMM| CATT |Minimum Safe
Aq|As mirror| remap |guard row| guard
None 7328| 96 Al v 256 KiB| 128 MiB| X
ANVIL (default) [4238|45 Ayl v X 256 KiB| 128 MiB| X
ANVIL (aggressive)|4211| 45 By X v 128 KiB 2 MiB| X
X X 256 KiB| 256 KiB| v
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First, we examine ANVIL [5], which monitors memory accesses and selec-
tively refreshes what it considers neighboring rows when it discovers Rowhammer-
like activity. To do so, we built and deployed the ANVIL kernel module in two
configurations: default, and aggressive, with sample periods and thresholds re-
duced by a factor of 10, and ran profile on the protected system. We used the
source code freely provided by the authors [1], with a modification to disable its
use of the precise store event, as this was unavailable on the Haswell CPUs of
our test systems. We consider this change inconsequential to the results of this
evaluation as profile only uses loads to trigger bit flips.

Table 4 shows the results of an 8 MiB run for two memory setups. We see
a roughly 50% dropoff in bit flip counts when ANVIL is in use, while minimal
differences between the default and aggressive runs. This suggests that bit flips
got through not due to poor detection sensitivity, but rather due to fundamen-
tal issues in identifying which rows are in danger and, consequently, failure in
refreshing them. Indeed, the ratio between prevented / unprevented bit flips is
consistent with the increases in Rowhammer effectiveness due to new insights
into memory addressing, as previously shown in Figure 3. We propose enhancing
ANVIL with detailed models of memory addressing in order to better identify
potential Rowhammer targets and be able to accurately refresh them.

Second, we examine CATT [8], which attempts to mitigate the damage of
Rowhammer attacks crossing the kernel-userspace boundary by partitioning
the physical address space in two contiguous regions, one for kernel, one for
userspace, with a “buffer” or “guard” row in between. CATT computes the size
of this guard row by accounting for the number of banks, ranks, DIMMs, and
channels of memory in use, multiplying the standard DRAM row size (8 KiB)
by each of these in turn. This is a fine approach, assuming a linear and mono-
tonic mapping between physical and DRAM address spaces. However, as we have
shown before in Figure 1 this assumption can be false.

Table 5 presents the results for four representative memory configurations,
showcasing all combinations of the rank mirroring and on-DIMM remapping
features. For every setup we mark as unsafe we have repeatedly and consistently
found bit flips that are far enough away in physical address space from both of
their aggressor rows to “jump over” the guard area and thus defeat the linear
protection guarantees of CATT. In the “Minimum guard” column, we provide
the minimum size a CATT-like contiguous guard zone separating two physical
address areas needs to be in order to fully protect them against hammering each
other. In cases where this minimum contiguous guard distance is inconveniently
large, a non-wasteful isolation-based defense must support accurate memory
addressing and non-contiguous guard buffers.

Attack Simulator

To demonstrate Hammertime’s simulator, we implemented several published
Rowhammer attacks as exploit models: Page Table Entry Exploits rely on
flipping bits in memory used to hold page tables. Previous work [20] has sug-
gested exploiting flips in the page frame pointer bits of a PTE. Other potentially
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useful attacks are setting the U/S bit of a PTE, allowing userspace access to a
kernel page, and clearing of the NX bit, marking memory as executable. Dedup
Est Machina [7] which exploits 1 — 0 flips in bits 0 — 10 and 52 — 63 of
64-bit words in a page. The entire code is presented in Listing 1.1. Flip Feng
Shui [19] relies on triggering bit flips at specific page offsets in order to corrupt
the contents of sensitive files in the page cache.

We evaluated each model with
all double-sided flip tables pre-

Table 6. Results of attack simulation

sented in Section 5. The results are Attack |Run D Success li\/[/[elrr; Time
presented in Table 6. The “Min Rate (KiB] [s]
Mem” column represe.znts the mini- Bost |7y | 63.8% 16| 03
mum amount of physically contigu- | Pagetable |\ .. il 5.3% 152| 3.8
ous memory required (on average) PEN \Worst |B1|  0.3%| 2456 61.3
to find one single useful bit flip. The Best  |As| 3.5%| 232 5.6
“Time” column is an estimate of the nggtil?le Median|J; | 0.3%]| 2376| 59.3
mean time to the first bit flip, as- /8 bit Worst | B 0%| N/A|N/A
suming precise targeting and 200ms Pagetable Best |Fi| 23.0%| 40| 0.9
spent on each Rowhammer test. NX bit |Median| Eo 0.7%| 1152| 28.6
We see that an attack’s success Worst | Az 0%| N/A|N/A

Dedup |Best Ayl 98.4% 16| 0.2

Est Median|E>| 13.1% 64| 1.5
Machina |Worst [Az| <0.1%(65024| 1625
Best Fy 2.3%| 360| 8.8

rate depends not only on how vul-
nerable memory is, but also on the
specific bit flips pursued. Data de-

pendency is one issue: as evidenced FFS Median|Cy | 0.1%| 9328]233.1
in Table 2, memory can have- a p?ef— GPG  yworst B, 0%| N/A| N/A
erence for flipping in one direction Best  |F1] 23.0%| 40| 0.9
more than the other. An exploit such FFS Median|Cy| 0.9%| 880/ 21.9

as the Page Table U/S bit attack, sources.list|. o, o Bi| <0.1%|16256|406.4
which relies on 0 — 1 bit flips can

achieve relatively poor success rates on otherwise very vulnerable (albeit in the
opposite direction) RAM. The second issue is the “rarity” of the required bit
flips for each attack in terms of bit offsets in a given memory page. Attacks
such as Page Table PFN or Dedup Est Machina, which make use of flips located
at one of potentially many page offsets show significantly better results than
attacks which require flips in very precise positions, such as Flip Feng Shui.

6 Related Work

To our knowledge, there are no studies systematically applying accurate memory
addressing models to implement either Rowhammer attacks or defenses. Like-
wise, there are no studies looking into address manipulation beyond the memory
controller in the context of exploiting Rowhammer.

The first to describe the Rowhammer bug in widespread commodity hardware
were Kim et al. [13] in their study on the prevalence of bit flips on DDR3. Coming
from the hardware community, the researchers probed the DIMMs directly with
an FPGA. Besides identifying the phenomenon, the authors discovered that the
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root cause of the problem was the repeated toggling of the DRAM row buffer.
They also found that many bits are susceptible to flips and that flipping bits
requires modest amounts of memory accesses (in their experiments fewer than
150K).

While the authors identified the hardware bug as a potential security prob-
lem, it was unclear whether it could be exploited in practice. One year later,
Seaborn presented the first two concrete Rowhammer exploits, in the form of es-
caping the Google Native Client (NaCl) sandbox and escalating local privileges
on Linux [20]. In addition, Seaborn discovered that the bit flip rate increased
significantly with double-sided Rowhammer. The exploits relied on Intel x86’s
CLFLUSH instruction to evict a cache line from the CPU caches in order to read di-
rectly from DRAM. CLFLUSH was quickly disabled in NaCl, while Linux mitigated
the local privilege exploit by disabling unprivileged access to virtual-to-physical
memory mapping information (i.e., /proc/self/pagemap) used in the exploit to
perform double-sided Rowhammer. Soon after, however, Gruss et al. [9] showed
that it is possible to perform double-sided Rowhammer from the browser, with-
out CLFLUSH, and without pagemap—using cache eviction sets and transparent
huge pages (THP) [4]. They also found that hammering a pair of neighboring
rows, increases the number of flips in the rows adjacent to the pair. In addition,
Qiao et al. [18] showed how Rowhammer can be triggered using non-temporal
memory instructions in lieu of cache flushing. Bosman et al. showed that it is
possible to flip bits from JavaScript in a controlled fashion using probabilistic
double-sided Rowhammer without the need for huge pages [6]. Meanwhile, Xiao
et al. [22] presented a second cross-VM attack that built on the original Seaborn
attack while improving on our knowledge of DRAM geometry.

Research so far predominantly targeted DDR3 RAM and x86 processors.
Aichinger [3] then analyzed the prevalence of the Rowhammer bug on server
systems with ECC memory and Lanteigne performed an analysis on DDR4 mem-
ory [14]. Despite initial doubt among researchers whether the memory controller
would be sufficiently fast to trigger the Rowhammer effect, Van der Veen et
al. [21] demonstrated that ARM-based mobile devices are equally susceptible
to the Rowhammer problem. New attack techniques focus on the DRAM itself.
For instance, Lanteigne [14, 15] examined how data and access patterns influ-
enced on bit flip probabilities on DDR3 and DDR4 memory on Intel and AMD
CPUs. Meanwhile, Pessl et al [17] demonstrated that reverse engineering the
bank DRAM addressing can reduce the search time for Rowhammer bit flips.
These techniques are complementary to our work.

7 Conclusion

Rowhammer is constantly on the news and increasingly sophisticated Row-
hammer attacks surface both in industry and academia. In response, defenses
have quickly been developed, aiming to either prevent Rowhammer from occur-
ring or mitigating the security impact of bit flips. Both attacks and defenses
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however make simplifying assumptions about memory layout and addressing
which limits their generality, reproducibility and effectiveness.

To fill this gap, we took a closer look at precisely how an accurate memory
addressing model impacts Rowhammer. Our analysis shows that software’s abil-
ity to trigger, as well as protect against, Rowhammer is greatly influenced by the
addressing schemes used by the memory subsystem. We introduce an end-to-end
model of DRAM addressing, including the previously unexplored techniques of
rank mirroring and on-DIMM remapping. We show that by using such an address
model to select Rowhammer targets, attackers can trigger significantly more bit
flips than previously assumed and even trigger bit flips on DIMMs where the
state of the art fails, amplifying the relevance of existing attacks. We also show
that existing defenses do not properly account for memory addressing can be
bypassed by sufficiently informed attackers.

To support our work, we introduced Hammertime, a software suite for Row-
hammer studies. Hammertime allows researchers to profile a large set of DIMMs
for bit flips and later use the resulting data to simulate the Rowhammer defect
in software. More importantly, Hammertime makes Rowhammer research much
faster, more comparable, and more reproducible. For example, Hammertime’s
simulator allows researchers to quickly prototype a new Rowhammer vector and
evaluate its effectiveness on a given set of existing flip tables. To foster further
Rowhammer research and in support of reproducible and comparable studies,
we are releasing Hammertime as open source.
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