
CHaRM: Checkpointed and Hashed Counters for Flexible and
Efficient Rowhammer Mitigation

Ali Hajiabadi
ETH Zürich
Switzerland

ahajiabadi@ethz.ch

Michele Marazzi
ABB Research
Switzerland

michele.marazzi@ch.abb.com

Kaveh Razavi
ETH Zürich
Switzerland

kaveh@ethz.ch

Abstract
Despite efforts by DRAM vendors to mitigate Rowhammer, it is
still a potent attack vector. CPU vendors are reluctant to deploy
deterministic mitigations against Rowhammer due to the high cost
that needs to be paid for the most vulnerable DRAM device, even
though an average DRAM device is considerably less vulnerable.
The main reason for this high cost is the need to track an increas-
ing number of aggressor rows with the worsening Rowhammer
threshold. Our proposed in-CPU mitigation, called CHaRM, breaks
this dependency by efficiently mapping a large number of rows
to a fixed number of hashed counters. Since multiple rows are
now mapped to a limited number of counters, collisions can occur.
To avoid excessive mitigative refreshes upon collisions, CHaRM
deploys a checkpointing mechanism that saves the state of rows
evicted from the table. When a row is activated again, CHaRM re-
stores its checkpointed value and resumes tracking. Our evaluation
shows that CHaRM incurs negligible slowdown, below 1% across all
Rowhammer thresholds, while improving area, power, and energy
by 3.8×, 4.4×, and 8.2×, respectively, for Rowhammer threshold of
1K compared to the state of the art.

CCS Concepts
• Security and privacy → Hardware attacks and countermea-
sures; • Computer systems organization→ Architectures.

Keywords
Rowhammer, DRAM, Memory Controller, Reliability

ACM Reference Format:
Ali Hajiabadi, Michele Marazzi, and Kaveh Razavi. 2025. CHaRM: Check-
pointed and Hashed Counters for Flexible and Efficient Rowhammer Mit-
igation. In Proceedings of the 2025 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765021

1 Introduction
Rowhammer is a phenomenon in DRAM devices first reported in
2014 [26], where repeatedly activating an aggressor DRAM row
causes bits to flip in physically adjacent victim rows. Rowhammer
has been exploited in numerous attacks to compromise the security
of modern computing systems [5, 11, 23, 29, 31, 39, 43, 46, 49, 51, 52].

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765021

Mitigations deployed by the DRAM vendors have proven to be in-
sufficient [12, 16, 20], and the CPU vendors are reluctant to deploy
deterministic mitigations since they require a large number of ex-
pensive counters to provide comprehensive security guarantees
for all possible DRAM devices, particularly for those that are most
vulnerable to Rowhammer. We show in this paper that by breaking
the dependency between the number of counters and the degree
of Rowhammer vulnerability, it is possible to design an in-CPU
Rowhammer mitigation using a very small number of counters
with strong deterministic security guarantees.

Optimal frequent item tracking. A deterministic Rowhammer
mitigation requires tracking the activation count of rows, and once a
counter reaches a certain threshold (adjusted based on the Rowham-
mer threshold), it triggers mitigative actions. State-of-the-art mit-
igations [36, 37, 44] deploy a classic algorithm, Misra-Gries [35],
that provides the optimal number of counters to track frequent
items in a stream of items that have appeared more than a specific
threshold. The number of counters in the Misra-Gries algorithm is
specified based on the Rowhammer threshold that the mitigation
targets to support; to support lower thresholds, more counters are
needed, introducing two challenges:

Challenge 1: The first limitation of using optimal trackers is
lack of flexibility; a comprehensive in-CPU mitigation requires
to support arbitrary Rowhammer thresholds. Such a mitigation
hence needs to provision for the worst-case thresholds, and for such
thresholds, the optimal number of counters using the Misra-Gries
algorithm become prohibitively large (thousands per bank). This
limitation renders state-of-the-art in-CPU mitigations impractical
for real-world deployment.

Challenge 2: The second limitation of optimal trackers is their
inefficient use of the counters. The Misra-Gries algorithm requires
to look up all the entries upon each row activation and check if
the activated row hits in the counter table, and based on its ex-
istence, it either increments the associated counter or updates a
spillover counter. Unfortunately, implementing such counters using
searchable CAM structures is complex and incurs high area, power,
and energy overheads. This becomes even more impractical to im-
plement for low Rowhammer thresholds where the Misra-Gries
algorithm requires thousands of counters for a DRAM device (e.g.,
1.3𝑘 counters for a Rowhammer threshold of 2K and 5.3𝑘 counters
for a threshold of 512).

Breaking the counter-threshold dependency. Our goal is
to develop a tracker that is (1) flexible — providing a configurable
security-efficiency trade-off, and (2) efficient — using only sim-
ple SRAM structures without requiring expensive operations for
each counter update. We make a key observation that breaking
the dependency between the required number of counters and

https://doi.org/10.1145/3719027.3765021
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765021

CCS ’25, October 13–17, 2025, Taipei, Taiwan Ali Hajiabadi, Michele Marazzi, and Kaveh Razavi

a target Rowhammer threshold can achieve this goal. Breaking
the counter-threshold dependency enables the design of a mitiga-
tion that do not require searching in the CAM structure and voids
the need for a large number of counters for tracking aggressors.
We achieve this objective in the design of CHaRM (Checkpointed
Hashed Rowhammer Mitigation), the first tracker to require fewer
counters than the optimal number used by the Misra-Gries algo-
rithm, while relying on much simpler SRAM structures, enabling
practical adoption. The main idea behind CHaRM is to use a simple
SRAM-based counter table, where each entry keeps track of the acti-
vation count for the most-recently accessed rows. These entries are
mapped using a hash function, similar to many existing structures
inside CPUs (e.g., a fixed-size CPU data cache handling a variable
amount of DRAM). Having fewer counters than the number of rows,
CHaRM needs to handle evictions efficiently and securely. Our per-
formance evaluation, however, shows that naively mitigating every
row that gets evicted from the table introduces an intractable per-
formance overhead; 29% on average for SPEC CPU2017 applications
even when using a very large 512-entry counter table.

Checkpointing hashed counters. We notice that the main
reason for the excessive performance overhead is that the majority
of evicted (and mitigated) rows are still far from reaching the acti-
vation threshold. To avoid this, CHaRM checkpoints the counter
values upon eviction, rather than triggering a mitigation. By check-
pointing the counter values, we ensure that we will not lose the
tracking of the evicted rows and if these rows are activated again,
we initialize their counter with the checkpointed value. To store
counter checkpoints, we use a second table, similar to the counters
table: a SRAM structure where a hash function assigns rows to the
checkpoint entries. Since we avoid storing per-row checkpoints,
multiple rows can share checkpoint entries, and we always apply
positive updates to ensure tracking the maximum activation count.
Finally, a mitigation is triggered only if the counter value or the
checkpoint value of an activated row reaches the threshold. This
design guarantees deterministic and precise row tracking while
remaining efficient and flexible.

Given CHaRM’s flexibility, it can be configured to either optimize
for performance, or power/area/energy, while providing a compre-
hensive security for arbitrary Rowhammer thresholds. We show
that with only a 16-entry counters table and a 128-entry check-
points table (i.e., 0.2𝐾𝐵 SRAM per bank), CHaRM incurs only 0.49%
performance overhead for Rowhammer threshold of 2𝐾 . To support
a low threshold of 512, CHaRM incurs 0.85% performance overhead
with a 128-entry counters table and 512-entry checkpoints table
(i.e., 0.8𝐾𝐵 SRAM per bank). Compared to the state of the art [36],
CHaRM incurs negligible performance overhead and significantly
improves area, power, and energy, for example, by 3.8×, 4.4×, and
8.2×, respectively, for Rowhammer threshold of 1𝐾 with simpler
hardware. Finally, we further discuss and evaluate the deployabil-
ity of CHaRM when considering the maximum number of DRAM
devices that can be installed in client and server systems.

Contributions. Summarizing, our contributions are as follows:

• We present CHaRM, a novel in-CPU mitigation that breaks the
dependency between the number of required counters and the
target Rowhammer threshold. This allows CHaRM to securely

(b) DRAM Device

Rank 1

Bank 1 Bank 32

Row Buffer

D
ec

od
er

A
dd

re
ss

D
ec

od
er

(c) active bank (d) precharged bank

CPU

Memory Controller

Addressing Function

DRAM Device

commands data

(a) DRAM Integration with the CPU

Core nCore 1

External
device

DMA

Row Buffer

Figure 1: (a) The integration of CPU and DRAM; Memory
Controller (MC) orchestrates and monitors DRAM accesses,
including Direct Memory Access (DMA) requests. (b) DRAM
organization; data address is used to select a rank, a bank and
a row to store the data. (c) In reading and writing data, the
associated row is activated using the ACT command, which
connects it to the row buffer, and (d) the bank is deactivated
using a precharge PRE command.

support a flexible Rowhammer threshold with a fixed area
overhead, making its practical deployment attractive.

• We show how to efficiently realize CHaRM using checkpointed
hashed counters to avoid excessive mitigative refreshes when
many rows are mapped to a limited number of activations
counters;

• We extensively evaluate the efficiency and security of CHaRM
and demonstrate its significant benefits compared to the state-
of-the-art mitigations;

• We discuss and evaluate deploying CHaRM in real-world se-
tups where multiple devices can be attached to the CPU.

Artifacts. You can find more information about CHaRM, includ-
ing artifacts for the experiments in this paper, using the following
link: https://comsec.ethz.ch/charm.

2 Background
We provide the necessary background to understand the motiva-
tions and details of this paper. Section 2.1 provides a brief discussion
about the DRAM architecture and its operations. Section 2.2 intro-
duces Rowhammer attacks and Section 2.3 discusses the existing
mitigations and their limitations.

2.1 DRAM Organization and Operations
DRAM is themost commonmainmemory technology used by CPUs
to store data. Memory Controller (MC) is the unit in a CPU that
orchestrates and monitors memory accesses (Figure 1(a)). In case of
a Last-Level Cache (LLC) miss, MC uses an addressing function to
select the location of the data inside the DRAM and uses different
commands to operate the DRAM devices. In addition, while Direct
Memory Access (DMA) requests from other devices bypass the CPU
cores, they are still routed through the MC, which is the only unit
that communicates with the DRAM devices.

DRAM organization. A DRAM device is organized as a hi-
erarchy of different structures, consisting of multiple ranks and

https://comsec.ethz.ch/charm

CHaRM: Checkpointed and Hashed Counters for Flexible and Efficient Rowhammer Mitigation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 1: DDR5 timing parameters.

Parameter Description Timing

tRC the minimum time between same-bank ACTs 46 ns
tRP the time to precharge an open row 14 ns
tRAS the minimum time for a row to be open 32 ns
tREFI the average time period of consecutive REFs 3.9 µs
tREFW the refresh window 32ms
tRFC the execution time of the REF command 410 ns

each rank has multiple banks. Each bank is organized as a matrix
where each cell stores one bit of information (using a capacitor).
Figure 1(b) shows an overview of the DRAM organization. The
addressing function uses the data address to select a specific rank,
bank, and row to read/write the data.

DRAM commands and operations. The MC determines the
location of data that needs to be read or written. Then, using the
addressing function, it sends an ACT command to activate the spec-
ified row. Once the row is activated, its cells are connected to a
row buffer, which is used to read or write the data. To deactivate
the bank, the MC sends a PRE command that precharges the bank.
Since DRAM cells (capacitors) lose charge over time, MC needs to
periodically send REF commands to refresh the cells.

DRAM timings. JEDEC standards [22] specify the timing re-
quirements of a DRAM technology, which the MC should respect
to ensure correct functionality of the device. Table 1 shows some
of the timing parameters of DDR5. For example, the MC is required
to send REF commands periodically on average every tREFI . Peri-
odic REFs are necessary to ensure the DRAM device can internally
refresh all rows within a specific window, referred to as tREFW . In
other words, the DRAM ensures that all rows are refreshed at least
once within a tREFW .

2.2 Rowhammer
Rowhammer is a phenomenon that occurs because of charge leak-
age of a row inside DRAM when one of its physical neighbors is
repeatedly activated. By repeatedly activating an aggressor row,
the adjacent rows (i.e., the victim rows) lose charge faster, and
over time, it becomes more probable that a bitflip occurs in victim
rows before they are naturally refreshed within the refresh window
(tREFW). Kim et al. [26] explore the implications of this phenom-
enon for the first time on real DRAM devices and show that they
can cause bitflips with 139𝐾 aggressor activations in DDR3. Later
studies show that DDR4 devices can experience a bitflip with much
fewer activations (9.6𝐾 activations in LPDDR4 [24]). Recent studies
also demonstrate bitflips in modern DDR5 devices [13, 21].

Figure 2 shows two Rowhammer attack patterns: (a) single-sided,
and (b) double-sided. In a single-sided pattern, an aggressor row
is activated 𝑁 times (row 𝐴𝑛 in Figure 2(a)) that means the two
adjacent victim rows are hammered 𝑁 times (rows 𝐴𝑛−1 and 𝐴𝑛+1
in Figure 2(a)). A double-sided pattern amplifies the Rowhammer
effects by sandwiching a victim row (row𝐴𝑛 in Figure 2(b)) with two
aggressor rows (rows 𝐴𝑛−1 and 𝐴𝑛+1 in Figure 2(b)). By activating
each aggressor row 𝑁 times, the sandwiched victim is hammered
2 × 𝑁 times. In Rowhammer literature, blast radius (𝐵) refers to the
number of physical adjacent rows on each side of an aggressor that

Row A	!
Row A	!"#

Row A	!$#Victim

Aggressor

(a) Single-sided victim hammering

Victim

Aggressor

Victim

(b) Double-sided victim hammering

Aggressor

Row A	!
Row A	!"#

Row A	!$#

Figure 2: Rowhammer attack: (a) single-sided pattern, and
(b) double-sided pattern.

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

0 128 256 384 512 640 768 896 1024

N
um

be
r

of
 O

pt
im

al

C
ou

nt
er

s
in

 M
is

ra
-G

ri
es

Activation Threshold

Figure 3: Number of optimal counters based on the Misra-
Gries algorithm and a target activation threshold.

are hammered when the aggressor is activated. For example, a blast
radius of 1 means that only the two immediate physical neighbors
of the aggressor are affected.

Throughout this paper, we refer to Rowhammer threshold (i.e.,
𝑅𝑡ℎ𝑟𝑒𝑠ℎ) as the cumulative required number of activations to the
adjacent aggressor(s) for causing a bitflip in a victim row. This defini-
tion does not put any constraint on either the number of aggressors
or how the activations are distributed between the aggressors. For
example, for 𝑅𝑡ℎ𝑟𝑒𝑠ℎ = 512 and 𝐵 = 2, three of the aggressors can be
activated 32 times and one aggressor 416 times. Considering a blast
radius 𝐵 = 1, a double-sided Rowhammer threshold (i.e., 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝐷)
is half of the 𝑅𝑡ℎ𝑟𝑒𝑠ℎ , because each aggressor in the double-sided
pattern needs to be activated only half as often. Some prior mitiga-
tions [36, 42, 44] present the double-sided Rowhammer threshold
(𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝐷) as the supported Rowhammer threshold and implicitly
assume a blast radius of 1.

2.3 Rowhammer Mitigations
There have been extensive research on Rowhammer mitigation
in the past 11 years. All mitigations can be categorized into (1)
deterministic [36, 37, 42], and (2) probabilistic approaches [26]. In
this work, we focus on deterministic mitigations as they provide
more comprehensive and deterministic guarantees. In Section 10.1,
we provide a more detailed discussion about the limitations of
probabilistic mitigations.

A deterministic mitigation mainly requires a tracker that moni-
tors the row activations and issues additional refreshes (referred to
as victim row refreshes) to mitigate the rows that have reached a crit-
ical activation threshold (referred to as 𝐴𝑡ℎ𝑟𝑒𝑠ℎ). A naive approach
to implement a tracker is to store per-row activation counters, but
this approach is not efficient and requires prohibitively large space
(2.5𝑀𝐵 for a DRAM device with 32 banks and 64𝐾 rows per bank).

Misra-Gries. State-of-the-art mitigations rely on frequent item
tracking methodologies like Misra-Gries [35] to implement more

CCS ’25, October 13–17, 2025, Taipei, Taiwan Ali Hajiabadi, Michele Marazzi, and Kaveh Razavi

Table 2: Flexibility ofABACuS vs. CHaRM. Each cell shows the performance overhead for SPECCPU2017 for a givenRowhammer
threshold and storage budget. ✗ means that the design does not support the specified threshold with the given storage budget.

𝑅𝑡ℎ𝑟𝑒𝑠ℎ

ABACuS [36] CHaRM (this work)
Storage (CAM)* Storage (SRAM)*

1KB 2KB 5KB 10KB 20KB 40KB 1KB 2KB 5KB 10KB 20KB 40KB
512 (extreme case) ✗ ✗ ✗ ✗ ✗ 0.14% 32.6% 26.0% 15.4% 7.2% 1.9% 0.16%
1024 ✗ ✗ ✗ ✗ 0.0% 0.0% 25.3% 16.1% 6.0% 1.2% 0.0% 0.0%
2048 (near future) ✗ ✗ ✗ 0.0% 0.0% 0.0% 15.2% 6.4% 0.8% 0.0% 0.0% 0.0%
4096 ✗ ✗ 0.0% 0.0% 0.0% 0.0% 5.6% 0.8% 0.0% 0.0% 0.0% 0.0%
8192 (current) ✗ 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0%

* Here, the storage numbers do not distinguish between SRAM and CAM structures. However, CHaRM only
uses efficient SRAM structures while ABACuS uses complex CAM structures to implement counters.

area-efficient trackers where they use fewer, but optimal number
of counters to track all the rows that have been activated more
than a certain threshold. Upon each row activation, Misra-Gries
algorithm searches all entries of an 𝑁 -entry table to check if the
activated row already exists inside the table. In case of a table hit,
the associated counter of the entry is incremented. In case of a table
miss, a spillover counter determines the insertion of the row into
the table. The spillover counter contains the maximum activation
count of all rows that are not tracked in the table. Hence, if an entry
inside the table has the same counter value of the spillover counter
its row address is replaced by the activated row. Otherwise the
spillover counter is incremented.

Misra-Gries algorithm specifies that 𝑁𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 is the optimal
number of counters to track all the rows activated more than 𝑇
times during the last𝑊 activations:

𝑁𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 >
𝑊

𝑇
− 1 (1)

For example, if a tracker wants to track all the rows activated more
than 𝑇 = 512 during a refresh window (tREFW = 32ms):

𝑊 =
tREFW − 8192 × tRFC

tRC
= 623𝐾

then it requires𝑁𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 = 623𝐾
512 +1 = 1360 counters. Figure 3 plots

the number of optimal counters for a target activation threshold.
As you can see, the number of required counters exponentially
increases for lower threhsolds.

Several prior work deploy the Misra-Gries algorithms to size the
number of counters to track aggressor rows and their activation
count [25, 33, 36, 37, 44, 45]. While Misra-Gries provides the optimal
number of counters, it still suffers from two fundamental limita-
tions: (1) it lacks the trade-off flexibility between the supported
threshold, storage, and performance. Performance overhead and
storage is solely determined by the target threshold. (2) It requires
complex and inefficient CAM structures since it needs to search
all the entries at every row activation. To remedy this issue, ABA-
CuS [36], the state of the art, proposes sharing the counters among
all banks, instead of using a copy for each individual bank. While
this approach improves the area and efficiency of prior work [37], it
still suffers from the same fundamental limitations of such optimal
aggressor tracking and requires thousands of counters to support
low thresholds (e.g., 5.3𝐾 counters to support 𝑅𝑡ℎ𝑟𝑒𝑠ℎ = 512). It
is prohibitively expensive to implement such large numbers of
counters using CAM structures.

In this work, we take a step back and rethink how to design an
in-CPU tracker that is both flexible and efficient, advancing the
state-of-the-art at both fronts, and more importantly, enabling the
adoption of a strong and practical Rowhammer mitigation in CPUs.

3 Motivation
As we discussed in Section 2.3, state-of-the-art in-CPU trackers
use Misra-Gries to size the counter tables to support a specific
𝑅𝑡ℎ𝑟𝑒𝑠ℎ . However, they come with two fundamental limitations: (1)
flexibility, and (2) efficiency. We elaborate on these challenges.

3.1 Challenge 1: Flexibility
According to Equation 1, to support a specific Rowhammer thresh-
old using the Misra-Gries algorithm, the number of counters is fixed
and cannot provide any guarantees for lower thresholds. Table 2
shows the performance overhead of ABACuS for SPEC CPU2017
workloads for different Rowhammer thresholds and a given stor-
age budget for the tracker. While ABACuS shows negligible per-
formance overhead for the thresholds that it supports, it cannot
provide any security guarantees for lower thresholds when the
storage is fixed. This trade-off is not appealing for CPU vendors to
implement a Rowhammer mitigation, because of two main reasons:
(1) A comprehensive mitigation requires to support any arbitrary

Rowhammer threshold (both to supportmore vulnerable DIMMs
in the future, and also, to support different existing DIMMs that
can have different Rowhammer thresholds), and this means
that they have to be prepared for the extreme cases (like
𝑅𝑡ℎ𝑟𝑒𝑠ℎ = 512) which requires at least 40𝐾𝐵 of CAM coun-
ters for ABACuS.

(2) A practical mitigation requires minimal complexity and area
overhead, where ABACuS provides this only at high thresholds
(e.g.,𝑅𝑡ℎ𝑟𝑒𝑠ℎ = 8𝐾) whichmight be sufficient for average DDR4
devices [17], but will not provide any security guarantees at
lower thresholds.

Hence, an in-CPU mitigation should provide a flexible trade-
off between security and efficiency to achieve both practicality
and comprehensive security guarantees for future Rowhammer
thresholds (even if the cost is higher performance overhead).

Challenge 1: How to design a flexible in-CPU mitigation to
support arbitrary Rowhammer thresholds with a limited and
fixed storage budget?

CHaRM: Checkpointed and Hashed Counters for Flexible and Efficient Rowhammer Mitigation CCS ’25, October 13–17, 2025, Taipei, Taiwan

We will present our tracker, CHaRM, in Section 5 to meet the
flexibility requirement of in-CPU trackers. Table 2 demonstrates
the flexibility of CHaRM which supports any given 𝑅𝑡ℎ𝑟𝑒𝑠ℎ with
any storage budget. For example, while ABACuS fails to provide
protection for 𝑅𝑡ℎ𝑟𝑒𝑠ℎ = 4096 with 2𝐾𝐵 storage, CHaRM provides
protection with a performance overhead of only 0.8%. CHaRM
incurs higher performance overhead for extremely small thresholds
and low storage budgets, but it is still able to provide strong security
guarantees and allows the CPUs to have a mitigation in place for
such extreme cases. CHaRM achieves this flexibility by breaking
the dependency between the number of required counters and the
target Rowhammer threshold for the first time.

3.2 Challenge 2: Efficiency
The next limitation of prior work is efficiency. As we discussed in
Section 2.3, an optimal frequent item tracker looks up the entire
counters table at each row activation using complex and expen-
sive CAM structures. To implement this tracker for near future
thresholds of sub-1000, thousands of entries are required. This is
prohibitively expensive for practical deployment inside the CPU.
A tracker ideally only uses efficient SRAM structures with tagless
entries. However, a naive approach of storing per-row counters for
each bank requires 2.5𝑀𝐵 (32 banks and 64𝐾 rows per bank) which
is also prohibitively large.

Challenge 2: How to design an efficient in-CPU tracker only
using tagless SRAM counter tables?

The design of CHaRM overcomes these challenges using hashing
and checkpointing. We begin with a simple SRAM-based counter
table, containing a small number of entries (N ≪ 64𝐾), and use
a hash function to assign each activated row to an entry. Each
entry tracks the activation count and the row address of the row
currently occupying the entry. In the event of a collision in the
counter table, we use a second table—again with a small number of
entries (C ≪ 64𝐾)—to store a checkpoint of the activation count for
the evicted row. Entries in the checkpoint table are also assigned
using a hash function.

In section 5, we provide a step-by-step and detailed description
of CHaRM mechanisms.

4 Threat Model
We assume an attacker that can run arbitrary code on the system
with the aim of causing a bit to flip in an attached DRAMdevice with
a Rowhammer threshold of 𝑅𝑡ℎ𝑟𝑒𝑠ℎ . We do not hold any assumption
on the specific locations inside DRAM that the attacker can affect;
all rows are assumed to be at the risk of corruption and accessible
by the attacker. The attacker can access DRAM at desired locations
and speed without violating the specification of the DRAM protocol.
We aim to design an in-CPU mitigation that stops the attacker from
accessing any row inside DRAM for more than 𝑅𝑡ℎ𝑟𝑒𝑠ℎ before the
adjacent rows are refreshed with a preventive mitigation. Physical
attacks on the system are outside the scope of this paper.

5 CHaRM Design
To solve Challenge 1 and Challenge 2, we propose CHaRM to
provide an efficient and flexible tracker. We build the final design of

CHaRM using two key insights: hashing and checkpointing. CHaRM
uses victim row refreshes for mitigation, and its high-performance
design minimizes the number of these additional refreshes. To
showcase the effect of our design choices, we show the fraction of
additional refreshes for memory-intensive workloads from SPEC
CPU2017 (i.e., the workloads with high row buffer misses per 1K
instructions). We provide the details of our simulation setup as well
as results from running the full SPEC CPU2017 in Section 7.

5.1 First Version: CHaRM-hashed
For the first version of CHaRM, we only include a Counters Table
(CNT) for each bank, with a configurable number of entries (denoted
as 𝑁). Ideally, we like to get an acceptable performance with a small
number of entries in the CNT.

CNT lookup. Upon an ACT command that activates row A, an
entry in the CNT needs to be assigned to the activated row to count
the number of its activations. One possibility to implement CNT
is to use a CAM structure to search for entries. However, as we
discussed CAM structures are inefficient w.r.t. to both power and
area, and it is more desired to only use SRAM structures. To achieve
this, we use a hash function to assign an entry in the CNT to an
activated row. Hash functions are widely used in CPUs to enable
fast lookups and an even distribution of items across table entries.
Figure 4 shows the CHaRM-hashed design:

Bank Bn

ACT countRow AddressOccupied Bit

1A1

ACT (Row A, Bank Bn)

ℎ!(𝑥)

A

ℎ!(A)
N

Counters Table (CNT)

Figure 4: CHaRM-hashed design.

CNT entry structure. For each entry, three fields are stored: (1)
Occupied Bit which indicates if the entry is empty or occupied by
an activated row, (2) Row Addresswhich indicates the address of the
occupying row, and (3) ACT Count which indicates the activation
count of the occupying row.

CNT insertions/evictions. Upon each ACT that activates row
A, we use the hash function ℎ1 (𝑥) to determine which entry of the
CNT is mapped to the row A (i.e., ℎ1 (A) is used as the index). If the
entry is already occupied by row A (i.e., the Occupied Bit is set
and the Row Address matches the address of row A), the counter is
incremented. Otherwise, if the CNT entry is occupied by another
row (i.e., the Occupied Bit is set and the Row Address does not
match row A), the current occupying row is evicted and immedi-
ately mitigated (issuing victim row refreshes). In other words, a
mitigation is triggered in this design under two conditions:

(1) an entry in the CNT is evicted;
(2) the counter of an entry reaches the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ .

Note, that we need to mitigate the evicted rows since they are not
tracked anymore once they are evicted.

This design can be appealing if we achieve an acceptable perfor-
mance with a reasonable storage for the CNT. For 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512,
each entry of the CNT requires 1 bit for the Occupied Bit, 16

CCS ’25, October 13–17, 2025, Taipei, Taiwan Ali Hajiabadi, Michele Marazzi, and Kaveh Razavi

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

505.mcf 510.parest 519.lbm 520.omnetpp 549.fotonik3d 557.xz

Fr
ac

tio
n

of
 v

ic
tim

 r
ow

 r
ef

re
sh

es

(a) CHaRM-hashed

N=64 N=128 N=256 N=512

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
=
64

C
=
12

8

C
=
25

6

C
=
64

C
=
12

8

C
=
25

6

C
=
64

C
=
12

8

C
=
25

6

C
=
64

C
=
12

8

C
=
25

6

C
=
64

C
=
12

8

C
=
25

6

C
=
64

C
=
12

8

C
=
25

6

505.mcf 510.parest 519.lbm 520.omnetpp 549.fotonik3d 557.xz

Fr
ac

tio
n

of
 v

ic
tim

 r
ow

 r
ef

re
sh

es (b) CHaRM-checkpointed

N=8 N=16 N=32

Figure 5: The fraction of victim row refreshes compared to the total number of refreshes in CHaRM: (a) CHaRM-hashed where
only a Counters Table is used per bank, (b) CHaRM-checkpointed where a Counters Checkpoint Table is added. A performant
design should have a low number of additional victim row refreshes (near zero fraction of normal refreshes). 𝐴𝑡ℎ𝑟𝑒𝑠ℎ is 512.

bits for the Row Address (considering 64𝐾 rows per bank), and
𝑙𝑜𝑔2 (𝐴𝑡ℎ𝑟𝑒𝑠ℎ) = 9 bits for the ACT Count (i.e., 26 bits per entry).
The storage cost of the CNT is 26 × 𝑁 bits. Figure 5(a) shows the
fraction of mitigative victim row refreshes compared to the total
number of refreshes (i.e., 90% means that 90% of the total refreshes
are mitigative victim refreshes and only 10% of them are for natural
refresh traffic), and different number of CNT entries within a 2𝐾𝐵
budget per bank (i.e., 𝑁=64, 128, 256, 512); it appears that the rate of
mitigations is significant in all these cases, with more than 90% of
refreshes for mitigation, that results in 28.9% performance overhead
across SPEC CPU2017 workloads when 𝑁=512. Even a large CNT
with 2048 entries incurs a performance overhead of 20.2%.

The main limitation of the CHaRM-hashed is that evictions are
very expensive: each CNT eviction triggers a mitigation. However,
not all evicted rows need mitigation since in most cases their acti-
vation count have not reached the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ .

Question: How to avoid issuing victim row refreshes for an
evicted row without losing its tracked state (i.e., the activation
count)?

The second version of CHaRM aims to address this question.

5.2 Second Version: CHaRM-checkpointed
Our key insight to address the excessive rate of victim row refreshes
upon CNT evictions is to add a Counters Checkpoint Table (CCT).
The main idea of the CCT is to keep track of the activation count
of the rows that are evicted from the CNT, and if the evicted row is
activated again in the future, to initialize its ACT Count with the
checkpointed value. Figure 6 shows an overview of the CHaRM-
checkpointed design.

Bank Bn

ACT countRow AddressOccupied Bit

CCT[ℎ!(A)]A1

ACT (Row A, Bank Bn)
A

ℎ!(A)

Checkpoint

N

Counters Table (CNT)Counters Checkpoint
Table (CCT)

C
ℎ!(𝑥)ℎ"(𝑥)ℎ"(A)

Figure 6: CHaRM-checkpointed design.

CNT entry eviction. Upon each CNT entry eviction, we use a
second hash function ℎ2 (𝑥) to assign an entry in the CCT to the
evicted row. The checkpoint value in this entry is updated if the
activation count of the evicted row is higher than the current value.

CNT entry insertion. Upon the insertion of row A to the CNT,
the ℎ2 (A) is used to get the checkpointed activation count for row
A from the CCT, and this checkpoint value is used to initialize the
ACT Count when inserting this row to the CNT. Note, that if the
checkpoint value retrieved for row A is 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1 then it means
that this row requires mitigation, and we issue mitigative refreshes
without inserting the row to the table.

CCT and CNT resets. Since the checkpoint values in the CCT
only increase over time and will eventually reach the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ , we
reset both CCT and CNT tables every tREFW (32ms in DDR5). Note,
that an in-CPU mitigation cannot perform fine-grained counter
resets at REFs since it does not have the knowledge of which specific
rows are internally refreshed at each REF. In Section 6, we discuss
the impact of table resets on the supported Rowhammer threshold
𝑅𝑡ℎ𝑟𝑒𝑠ℎ .

This design prevents issuing mitigative victim row refreshes
upon each CNT entry eviction. Victim row refreshes are issued
only if the ACT Count of a CNT entry reaches the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ (or if the
checkpointed value of an activated row in the CCT is 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1).
The results in Figure 5(b) shows that using a CCT with C = 128
entries, almost all memory-intensive workloads barely issue victim
row refreshes which results in 0.95% performance overhead with
a CNT size of only 8 entries. Figure 7 shows the storage cost of
CHaRM-checkpointed and its associated performance overhead for
all SPEC CPU2017 workloads.

For a negligible performance overhead, CHaRM-checkpointed
requires only 170 bytes per bank for𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512 (0.95% overhead
for N = 8 and C = 128). In addition, while Figure 7(b) shows that
the cost of CHaRM-checkpointed increases for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128, it
incurs only 1.91% performance overhead with N = 64 and C = 512
which translates to only 544 bytes per bank for such low thresholds.
Note that CPU vendors can also now handle such low thresholds
without significant counter over-provisioning thanks to CHaRM’s
flexibility while remaining efficient and practical.

CHaRM: Checkpointed and Hashed Counters for Flexible and Efficient Rowhammer Mitigation CCS ’25, October 13–17, 2025, Taipei, Taiwan

(a) 𝑨𝒕𝒉𝒓𝒆𝒔𝒉 = 𝟓𝟏𝟐

0.692.616.02

1.324.359.52

1.915.6912.13

2.277.1614.12

(b) 𝑨𝒕𝒉𝒓𝒆𝒔𝒉 = 𝟏𝟐𝟖

128
112B

256
224B

512
448B

C (#checkpoints) & Storage

0.162.135.80

0.513.558.86

0.764.8911.77

0.955.5713.50
32
36B

64
72B

128
144B

C (#checkpoints) & Storage

52B 16

104B 32

208B 64

26B 8

192B 64

384B 128

768B 256

96B 32

N
 (
c

ou
nt

er
s)

 &
St

or
ag

e

Figure 7: The performance and SRAM cost of CHaRM-
checkpointed for two 𝐴𝑡ℎ𝑟𝑒𝑠ℎ of 512 and 128. The storage of
each design point is the sum of storage value on the y-axis
(CNT size) and the x-axis (CCT size), and each box shows
the geo-mean performance overhead (%) of SPEC CPU2017.
Colors indicate the acceptance level of the slowdown.

5.3 Final Version: Mitigation Management
In the previous section, we explained that CHaRM issues mitigative
refreshes for an aggressor row when either its counter in the CNT
or its checkpoint in the CCT reaches 𝐴𝑡ℎ𝑟𝑒𝑠ℎ . To perform precise
mitigative refreshes, we envision that an in-CPU mitigation can
use the DRFM command in DDR5, which internally refreshes the
victim rows of a specified aggressor row [22].

Since mitigative refreshes also cause activations and can po-
tentially hammer their own victims [27], CHaRM counts victim
refreshes as well. Counting mitigative refreshes can lead to sce-
narios like the one shown in Figure 8, where a single activation
triggers back-to-back mitigations. Figure 8 illustrates a situation
in which the checkpoint values of multiple adjacent rows reach
𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1. Activating any of these rows results in consecutive
mitigations for their neighboring rows.

Row A-3
Row A-2
Row A-1
Row A

Row A+1
Row A+2
Row A+3

𝐴!"#$%" − 1

𝐴!"#$%" − 1

𝐴!"#$%" − 1

𝐴!"#$%" − 1

Counters Checkpoint Table
(CCT)

Original Aggressor

Upward direction
(Op Mode = 1)

Downward direction
(Op Mode = 2)

1

2

3

Figure 8: Handling back-to-back mitigations in CHaRM.

When row A in Figure 8 is activated 1 , it is looked up in the
CCT and immediately triggers amitigation because its checkpoint is
𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1. Mitigating row A refreshes its neighboring victim rows
A-1 and A+1 (assuming a blast radius of 1), and as discussed earlier,
these refreshes are also counted as activations. Since both A-1 and
A+1 have checkpoint values of 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1, mitigation continues
recursively to their victims.

To handle back-to-back mitigations, we deploy a simple mecha-
nism: we first continue mitigating in the upward direction from the
original aggressor 2 , and once completed, we handle mitigations
in the downward direction 3 . Figure 9 shows the final design
where we implement this mitigation management in CHaRM.

We introduce a new register called the Mitigation Management
Register (MMR), which contains two fields: (1) Op Mode, and (2)
Original Aggressor. The Op Mode has three states:

Bank Bn

ACT countRow AddressOccupied Bit

CCT[ℎ!(A)]A1

ACT (Row A, Bank Bn)
A

ℎ!(A)

Checkpoint

N

Counters Table (CNT)Counters Checkpoint
Table (CCT)

C
ℎ!(𝑥)ℎ"(𝑥)ℎ"(A)

Original AggressorOp Mode

Mitigation Management Register (MMR)

#counter

Saturated Checkpoints Counter (SCC)

Figure 9: Final design of CHaRM.

• Op Mode = 0: Normal mode, where no mitigation is issued
• Op Mode = 1: Mitigating in the upward direction
• Op Mode = 2: Mitigating in the downward direction
The Op Mode switches from 0 to 1 whenever a mitigation is

triggered, and the aggressor row that caused the mitigation is stored
in the Original Aggressor field of theMMR. The Op Mode remains
at 1 while mitigations continue in the upward direction. Once the
upward mitigations are completed, the Op Mode switches from 1 to
2. At this point, the Original Aggressor field is used to determine
whether mitigations should continue downward. Finally, the Op
Mode returns to 0 after all mitigations in the downward direction
are completed.

Additionally, we introduce a register called the Saturated Check-
points Counter (SCC), which tracks the number of entries in the
CCT that have reached 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1 (i.e., the counter increments
whenever a CCT entry is updated to 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1). When the SCC
reaches the size of the CCT, it indicates that our mitigation manage-
ment, discussed earlier, would refresh the entire bank. In this case,
we reset both the CNT and CCT tables. In normal, benign applica-
tions, the CCT does not fully saturate and full-bank refreshes do
not occur. However, in Section 8.5, we provide a detailed discussion
and experimental results for adversarial applications.

6 Security Analysis
We now analyze the security guarantees of CHaRM. First, we de-
scribe the guarantees given by the CNT and CCT tables. Then, we
extend the analysis considering the impact of the table resets.

Security guarantees given byCNT andCCT. The first guaran-
tee of CHaRM is that no row can be activated more than𝐴𝑡ℎ𝑟𝑒𝑠ℎ −1
times without inducing a mitigative refresh to its neighbor rows.
This is straightforward from the design of CHaRM. In the simplest
case, a row is repeatedly activated, and once the associated counter
in the CNT reaches 𝐴𝑡ℎ𝑟𝑒𝑠ℎ , CHaRM will issue a refresh operation.
Instead, if different rows cause collisions and evictions from the
CNT table, the amount of times a row can be activated without
inducing a mitigative refresh is either 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1 or less.

This arises from CHaRM design. The CNT count of an evicted
row is saved in the CCT, which is the value considered when the
evicted row is activated again. The saved CCT value is either pre-
served or increased, and it is not reset to zero upon a mitigative
refresh. If the collision happens only in the CNT entry, the aggres-
sor’s original CNT value will be restored from the CCT when the
row is activated again — this is equivalent to the simple case of
repeatedly activating one row. If the collision happens during an

CCS ’25, October 13–17, 2025, Taipei, Taiwan Ali Hajiabadi, Michele Marazzi, and Kaveh Razavi

(c) 𝑨𝒕𝒉𝒓𝒆𝒔𝒉 = 𝟓𝟏𝟐

0.692.616.02

1.324.359.52

1.915.6912.13

2.277.1614.12

(e) 𝑨𝒕𝒉𝒓𝒆𝒔𝒉 = 𝟏𝟐𝟖

128
112B

256
224B

512
448B

C (#checkpoints) & Storage

0.162.135.80

0.513.558.86

0.764.8911.77

0.955.5713.50
32
36B

64
72B

128
144B

C (#checkpoints) & Storage

52B 16

104B 32

208B 64

26B 8

192B 64

384B 128

768B 256

96B 32

(a) 𝑨𝒕𝒉𝒓𝒆𝒔𝒉 = 𝟐𝟎𝟒𝟖

0.000.674.02

0.042.296.64

0.364.129.46

0.615.1912.82
8

11B
16
22B

32
44B

C (#checkpoints) & Storage

28B 8

56B 16

112B 32

14B 4

(b) 𝑨𝒕𝒉𝒓𝒆𝒔𝒉 = 𝟏𝟎𝟐𝟒

0.092.166.17

0.393.729.09

0.634.9512.08

0.785.6313.89
16
20B

32
40B

64
80B

C (#checkpoints) & Storage

(d) 𝑨𝒕𝒉𝒓𝒆𝒔𝒉 = 𝟐𝟓𝟔

0.332.245.71

0.733.798.95

1.185.0511.74

1.605.9913.63
64
64B

128
128B

256
256B

C (#checkpoints) & Storage

100B 32

200B 64

400B 128

50B 16

27B 8

54B 16

108B 32

14B 4

N
 (
c

ou
nt

er
s)

 &
St

or
ag

e

Figure 10: The performance and SRAM storage of CHaRM for five 𝐴𝑡ℎ𝑟𝑒𝑠ℎ thresholds of 2048, 1024, 512, 256, 128. Single-core
SPEC CPU2017 applications are used to generate these trade-off matrices. The thick borders indicate the chosen configuration
to size the tables for each 𝐴𝑡ℎ𝑟𝑒𝑠ℎ .

insertion in the CCT, the counter value is only replaced for posi-
tive updates. Therefore, once the aggressor row is activated again,
either the same value or an increased one will be used, resulting
in 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1 or less activations before the mitigative refresh is
issued by CHaRM to the neighboring rows.

Because a victim row has multiple aggressors that can be used
to hammer (considering a blast radius of 𝐵), the second guarantee
of CHaRM is that no victim row can have its aggressors activated a
combined number of times higher than (𝐴𝑡ℎ𝑟𝑒𝑠ℎ−1)×𝐵×2 without
receiving a mitigative action. Given this guarantee, the maximum
number of combined victim hammer count before being refreshed
consists of three components:

(1) Maximum activation count of all aggressors before causing a
mitigation: (𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1) × 𝐵 × 2

(2) The final aggressor activation that causes a mitigation: 1
(3) The activations induced by mitigative refreshes before re-

freshing the furthest victim: 𝐵 − 1
Hence, the maximum combined number of aggressors’ hammers
before a victim refresh is:

(𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1) × 𝐵 × 2 + 1 + (𝐵 − 1) = 𝐵 × (𝐴𝑡ℎ𝑟𝑒𝑠ℎ × 2 − 1)

Note that we conservatively trigger a mitigation as soon as any of
the adjacent aggressors of a victim has reached𝐴𝑡ℎ𝑟𝑒𝑠ℎ −1, while in
practice the cumulative number of aggressors’ activations might not
be close to 𝑅𝑡ℎ𝑟𝑒𝑠ℎ when one of them reaches𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1. However,
such a conservative assumption is necessary for safe configuration
of𝐴𝑡ℎ𝑟𝑒𝑠ℎ for in-CPU mitigations because of the lack of knowledge
about the blast radius and physical layout of the rows. We provide
more detailed discussion in Section 9.4.

Security impact of the table resets. As described, the entries
of the CCT and CNT tables are reset every tREFW . In our analysis,
we consider tREFW as the time in which any row is refreshed at
least once within DRAM. These table resets are required to avoid
saturating the counters due to the normal DRAM activity. How-
ever, resetting the tables loses memory over the activated rows.
Effectively, this reduces the Rowhammer threshold that CHaRM
can secure for a given 𝐴𝑡ℎ𝑟𝑒𝑠ℎ . This is common in Rowhammer
mitigations, and similar to previous work [33, 37], the effective
secure threshold can be calculated considering an attack that is
performed before the table reset and after the table reset.

Before the tables are reset, each aggressor of the victim can be
activated 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1 times, without inducing a mitigative refresh.
After the reset, the counters are zero, therefore the attacker can

Table 3: Simulation configuration.

Out-of-order processor 4 cores, 4.2 GHz, 4-wide issue, 128 ROB entries
Last-level cache (LLC) 16 MB (4 MB per core), 16-way
Memory Controller MOP4 address mapping, Open Page policy

DRAM DDR5, 1 rank, 32 banks, 64K rows-per-bank

Table 4: CHaRM configurations (considering 𝐵 = 1).

𝐴𝑡ℎ𝑟𝑒𝑠ℎ 𝑅𝑡ℎ𝑟𝑒𝑠ℎ 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝐷
CNT CCT SRAM storage Total
entries entries per bank storage

2048 8188 4094 8 32 0.07 KB 2.25 KB
1024 4092 2046 8 64 0.10 KB 3.34 KB
512 2044 1022 16 128 0.19 KB 6.12 KB
256 1020 510 32 256 0.35 KB 11.12 KB
128 508 254 128 512 0.81 KB 26.00 KB

again activate each aggressors 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1 times. One last activa-
tion to an aggressor concludes the attack, as its counter becomes
𝐴𝑡ℎ𝑟𝑒𝑠ℎ reaching the highest activation count before a mitigative
refresh. Finally, mitigative refreshes induce 𝐵 − 1 activations. To
define the security of CHaRM, we consider the secure threshold as
the cumulative maximum activations minus one. Concluding, the
protected Rowhammer threshold in CHaRM is:

𝑅𝑡ℎ𝑟𝑒𝑠ℎ = (𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1) × 𝐵 × 2 + 𝐵 × (𝐴𝑡ℎ𝑟𝑒𝑠ℎ × 2 − 1) − 1
= 𝐵 × (𝐴𝑡ℎ𝑟𝑒𝑠ℎ × 4 − 3) − 1

7 Experimental Setup
Simulation. We implement CHaRM in Ramulator 2.0 [32], a cycle-
accurate DRAM simulator. Table 3 provides the details of the sim-
ulation setup that we used for the performance evaluation. The
timing parameters of the DRAM are provided in Table 1. In addition,
we use CACTI [2] to estimate area, static power, and access energy
of CHaRM and prior work.

Workloads.We evaluate all workloads from SPECCPU2017 [48],
YCSB [10], and TPC [50]. We use the SimPoint [15] representative
region and execute 200M instructions per region.

Prior work. We compare CHaRM with two prior work:
• ABACuS [36] is the state of the art that we discussed in Sec-
tion 3. It uses all-banks-shared counter tables and employs
the Misra-Gries algorithm to count the activations, reducing
the size of the tables.

CHaRM: Checkpointed and Hashed Counters for Flexible and Efficient Rowhammer Mitigation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 5: Storage, chip area, static power, and access energy comparison of CHaRM, ABACuS, and Hydra.

Design
𝑨𝒕𝒉𝒓𝒆𝒔𝒉 = 512 𝑨𝒕𝒉𝒓𝒆𝒔𝒉 = 128

#entries #bits per #tables CAM SRAM Total Area Power Energy #entries #bits per #tables CAM SRAM Total Area Power Energy
entry Storage Storage Storage (𝑚𝑚2) (𝑚𝑊) (𝑝𝐽) entry Storage Storage Storage (𝑚𝑚2) (𝑚𝑊) (𝑝 𝐽)

CHaRM (this work) - - - - 6.12KB 6.12KB 0.009 0.197 0.776 - - - - 26.00KB 26.00KB 0.031 0.545 1.844
Counters Table 16 26 32 - 1.62KB - 0.002 0.057 0.266 128 24 32 - 12.00KB - 0.015 0.258 0.901

Checkpoint Table 128 9 32 - 4.5KB - 0.007 0.140 0.510 512 7 32 - 14.00KB - 0.016 0.287 0.943
ABACuS - - - 4.14KB 5.32KB 9.46KB 0.031 0.751 5.010 - - - 15.26KB 21.23KB 36.49KB 0.075 2.267 11.154

Row ID Table 1360 16 1 2.65KB - - 0.014 0.333 2.544 5436 16 1 10.62KB - - 0.034 1.190 6.053
Counters Table 1360 9 1 1.49KB - - 0.010 0.259 1.927 5436 7 1 4.64KB - - 0.019 0.678 3.990

Siblings Vector Table 1360 32 1 - 5.32KB - 0.008 0.159 0.538 5436 32 1 - 21.23KB - 0.022 0.400 1.111
Hydra - - - - 61.56KB 61.56KB 0.053 16.507 3.420 - - - - 51.44KB 51.44KB 0.054 16.717 3.360

* Note, that the total storage numbers do not distinguish between SRAM and CAM structures, however, CAM counters are much more expensive to implement.

• Hydra [42] features in-DRAM per-row counters to track
the activation counts on a per-row basis. With in-CPU fil-
tering and caching, Hydra avoids accessing the in-DRAM
counters by using per-subarray counters that keep the ag-
gregated activation count which allow filtering activations.
See Section 10 for more discussion.

Throughout our evaluation, we use the same 𝐴𝑡ℎ𝑟𝑒𝑠ℎ to com-
pare each design point of CHaRM and prior work; all evaluated
defenses provide similar 𝑅𝑡ℎ𝑟𝑒𝑠ℎ at the same 𝐴𝑡ℎ𝑟𝑒𝑠ℎ , according to
our definition in Section 6.

8 Evaluation
In this section, we aim to answer the following questions:

(1) How can we efficiently size the CNT and CCT tables in
CHaRM, optimizing for a target Rowhammer threshold?

(2) What are the area, power, and energy overheads of CHaRM,
and how do they compare to the state of the art?

(3) What is CHaRM performance overhead for single-core and
multi-core workloads?

(4) What are the performance bounds of CHaRM against adver-
sarial workloads?

8.1 Sizing the CHaRM Tables
Thanks to CHaRM’s flexibility, CPU vendors can size the CNT and
CCT tables based on the target workloads and find the best trade-off
between security and efficiency, without compromising the security
for any given Rowhammer threshold. For example, if CHaRM is
optimized for negligible performance overhead at the threshold
of 1024, it can still be configured to support lower thresholds, but
incurs higher performance overhead.

Figure 10 shows the security-performance-storage trade-off of
CHaRM,whichwe use to size the CHaRM tables for a given Rowham-
mer threshold. The setup is similar to Figure 7; each matrix shows
the geo-mean performance overhead of CHaRM for SPEC CPU2017
applications. The required storage of each design point is the sum of
CNT size (on the y-axis, specified in blue) and the CCT size (on the
x-axis). As you can see, by increasing the number of checkpoints,
CHaRM reaches a point where the performance overhead becomes
negligible (the last column in each matrix). For example, if CPU
vendors wish to optimize for a 𝐴𝑡ℎ𝑟𝑒𝑠ℎ of 512 then they can choose
a CNT size of 16 entries (52 bytes) and CCT size of 128 entries
(144 bytes), which results in a total storage of 196 bytes per bank
and 6.1𝐾𝐵 for 32 banks. Table 4 summarizes the chosen CHaRM
configurations that we will use for the rest of this section (e.g.,

Table 6: Detailed CHaRM andABACuS comparisonw.r.t. area,
static power, and access energy. A↑, P↑, and E↑ refer to the
area, power, and energy improvements of CHaRM, respec-
tively.

𝐴𝑡ℎ𝑟𝑒𝑠ℎ
Area (𝑚𝑚2) A↑ Power (𝑚𝑊) P↑ Energy (𝑝𝐽) E↑CHaRM ABACuS CHaRM ABACuS CHaRM ABACuS

2048 0.004 0.018 4.5× 0.095 0.482 5.1× 0.498 3.469 7.0×
1024 0.005 0.021 4.2× 0.117 0.503 4.3× 0.539 3.825 7.1×
512 0.009 0.031 3.4× 0.197 0.751 3.8× 0.776 5.010 6.5×
256 0.013 0.049 3.8× 0.297 1.320 4.4× 0.935 7.710 8.2×
128 0.031 0.075 2.4× 0.545 2.267 4.2× 1.844 11.154 6.0×

CHaRM with 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 1024 means that CNT is sized as 8 entries
and CCT as 64). We used the formulas from Section 6 to determine
the 𝑅𝑡ℎ𝑟𝑒𝑠ℎ and 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝐷 .

8.2 Area, Power, and Energy Analysis
We evaluate the chip area, static power, and access energy of
CHaRM and compare with two prior work, ABACuS and Hydra.
Table 5 shows the detailed analysis for𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512 and𝐴𝑡ℎ𝑟𝑒𝑠ℎ =

128.
Our results show that for𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512, CHaRM requires 6.12𝐾𝐵

total storage compared to 9.46𝐾𝐵 in ABACuS and 61.56𝐾𝐵 in Hydra.
In addition, CHaRM improves the area, power, and access energy by
3.44×, 3.81×, and 18.8×, respectively, compared to ABACuS. These
improvements become even more significant when compared to
Hydra: 5.9× better chip area, 83.8× better static power, and 4.5×
better access energy. This trend holds for extremely low thresholds
as well, where CHaRM can show significant improvements over
ABACuS and Hydra. Note, that Hydra incurs constant overheads
for different thresholds as it uses the same filtering structure for all
(just the numbers of bits for the activation counters change based
on the threshold, e.g., 61.56𝐾𝐵 and 51.44𝐾𝐵 storage for thresholds
of 512 and 128). However, this constant overhead of Hydra is sig-
nificantly larger than the ones in CHaRM for all threshold levels;
in an extreme case of 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128, CHaRM incurs negligible
performance overhead with 26𝐾𝐵 SRAM storage.

Table 6 summarizes the area, static power, and access energy
overheads of CHaRM andABACuS for five different threshold levels.
These results demonstrate at least 3×, 4×, and 6× improvement with
respect to area, power, and energy over the state-of-the-art.

8.3 Performance Evaluation
Figure 11 presents the performance overhead of CHaRM, ABACuS,
and Hydra for single-core workloads for five different thresholds.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Ali Hajiabadi, Michele Marazzi, and Kaveh Razavi

Hydra ABACuS CHaRM

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(e) Athresh=128

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(d) Athresh=256

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(c) Athresh=512

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(b) Athresh=1024

N
or

m
al

iz
ed

 IP
C

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(a) Athresh=2048

Figure 11: Performance of CHaRM, ABACuS, and Hydra for
single-core workloads. The y-axis shows the instruction per
cycle (IPC), normalized to the baseline with no protection.

Hydra ABACuS CHaRM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Athresh=128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Athresh=256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Athresh=512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Athresh=1024

N
or

m
al

iz
ed

 IP
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Athresh=2048

Figure 12: Performance of CHaRM, ABACuS, and Hydra for
4-core workloads. The y-axis shows the instruction per cycle
(IPC), normalized to the baseline with no protection.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

yc
sb

_a
bg

sa
ve

yc
sb

_a
se

rv
er

yc
sb

_b
se

rv
er

yc
sb

_c
se

rv
er

yc
sb

_d
se

rv
er

yc
sb

_e
se

rv
er

tp
cc

64

tp
ch

17

tp
ch

2

tp
ch

6

50
0.

pe
rl

be
nc

h

50
2.

gc
c

50
5.

m
cf

50
7.

ca
ct

uB
SS

N

50
8.

na
m

d

51
0.

pa
re

st

51
1.

po
vr

ay

51
9.

lb
m

52
0.

om
ne

tp
p

52
3.

xa
la

nc
bm

k

52
5.

x2
64

52
6.

bl
en

de
r

53
1.

de
ep

sj
en

g

53
8.

im
ag

ic
k

54
1.

le
el

a

54
4.

na
b

54
9.

fo
to

ni
k3

d

55
7.

xz

ge
o_

m
ea

n

yc
sb

_a
bg

sa
ve

yc
sb

_a
se

rv
er

yc
sb

_b
se

rv
er

yc
sb

_c
se

rv
er

yc
sb

_d
se

rv
er

yc
sb

_e
se

rv
er

tp
cc

64

tp
ch

17

tp
ch

2

tp
ch

6

50
0.

pe
rl

be
nc

h

50
2.

gc
c

50
5.

m
cf

50
7.

ca
ct

uB
SS

N

50
8.

na
m

d

51
0.

pa
re

st

51
1.

po
vr

ay

51
9.

lb
m

52
0.

om
ne

tp
p

52
3.

xa
la

nc
bm

k

52
5.

x2
64

52
6.

bl
en

de
r

53
1.

de
ep

sj
en

g

53
8.

im
ag

ic
k

54
1.

le
el

a

54
4.

na
b

54
9.

fo
to

ni
k3

d

55
7.

xz

ge
o_

m
ea

n

YCSB TPC SPEC CPU2017 All YCSB TPC SPEC CPU2017 All

Athresh=128 Athresh=512

N
or

m
al

iz
ed

 IP
C

Hydra ABACUS CHaRM

Figure 13: Performance overhead of CHaRM and prior mitigations for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128 and 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512. The y-axis shows the
instructions per cycle (IPC), normalized to the baseline with no protection.

All mitigations incur negligible performance overhead for single-
core workloads (below 1%). For example, CHaRM, ABACuS, and
Hydra each incur 0.85%, 0.13%, and 1.50% performance overhead,
respectively, for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128.

Figure 13 offers a more detailed comparison for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512
and 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128. At low thresholds, three SPEC CPU2017 work-
loads are challenging: 519.lbm, 520.omnetpp, and 549.fotonik3d
as they show high row buffer misses per kilo-instruction, as we
also discussed in Section 5 and Figure 5. For example, CHaRM in-
curs 18.1% performance overhead for 519.lbmwhen𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128,
which is reduced to 6.3% when 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 2048. Additionally, the
results show that ABACuS struggles with 520.omnetpp, incurring
8% performance overhead, and the main reason is that it brings the
spillover counter of ABACuS to the𝐴𝑡ℎ𝑟𝑒𝑠ℎ . In such cases, ABACuS
triggers an entire rank refresh and stops servicing all requests until
all rows are refreshed.

Figure 12 presents the performance overheads for a 4-core setup
where we run 10 workloads with a mix of SPEC CPU2017, YCSB,
and TPC applications. Multi-core workloads show higher perfor-
mance overhead as they introduce higher pressure and traffic on
the Rowhammer trackers. CHaRM and ABACuS incur 2.99% and
5.99% performance overhead for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 2048, respectively. Note
that CHaRM’s performance can be further improved by configuring
larger CNT and CCT tables. In contrast, ABACuS’s performance
and counter requirements are tightly coupled to the threshold and
cannot be improved.

For an extreme case of 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128, CHaRM and ABACuS
incur 5.61% and 3.26% performance overhead, respectively. While
ABACuS shows better performance compared to a specific config-
uration of CHaRM for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128 (as described in Table 4), as

we discussed earlier, CHaRM’s performance can be improved by
increasing the table sizes. Even with doubled table sizes, CHaRM
continues to offer a significantly better efficiency trade-off, as evi-
dent by the comparison in Table 6. More importantly, the primary
goal of CHaRM is to allow CPU vendors to configure its tables to
match the needs of average DRAM devices (e.g., 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 1024),
while still providing a mitigation in place for extreme cases where
devices have a lower threshold (e.g., 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128).

Additionally, Figure 12 shows that Hydra incurs high perfor-
mance overhead at low thresholds, 12.67% for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128, as its
in-CPU filtering saturates and starts accessing the in-DRAM coun-
ters most of the time. However, it shows acceptable overhead for
higher thresholds. Note that CHaRM still provides better efficiency
trade-offs with respect to storage, area, power, and energy for all
threshold levels.

8.4 LLC Size Sensitivity Evaluation
To evaluate CHaRM under different memory contention levels, we
perform a Last-Level Cache (LLC) size sensitivity analysis. We use
the same CNT and CCT configurations described in Table 4.

Figure 14 shows the performance of CHaRM for single-core
workloads, using four different LLC sizes per core: 1MB, 2MB, 4MB
(the default), and 8MB. The results reveal that CHaRM’s single-core
performance is only sensitive to extremely small LLC sizes and low
thresholds. For example, for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128, the slowdown is 6.88%
with a 1MB LLC, but drops to 1.9% with 2MB and 0.85% with 4MB.

Figure 15 presents the corresponding results for multi-core work-
loads. Similarly, we observe increased slowdown under very small
LLC sizes—for instance, a 19.5% slowdown for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128 with

CHaRM: Checkpointed and Hashed Counters for Flexible and Efficient Rowhammer Mitigation CCS ’25, October 13–17, 2025, Taipei, Taiwan

1MB LLC 2MB LLC 4MB LLC 8MB LLC
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(e) Athresh=128

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(d) Athresh=256

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(c) Athresh=512

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(b) Athresh=1024

N
or

m
al

iz
ed

 IP
C

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(a) Athresh=2048

Figure 14: Performance of CHaRM for single-core workloads
with different LLC sizes. The y-axis shows the instruction per
cycle (IPC), normalized to the baseline with no protection.

1MB 2MB 4MB 8MBLLC capacity per core:
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(e) Athresh=128

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(d) Athresh=256

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(c) Athresh=512

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(b) Athresh=1024

N
or

m
al

iz
ed

 IP
C

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
(a) Athresh=2048

Figure 15: Performance of CHaRM for 4-core workloads with
different LLC sizes. The y-axis shows the instruction per cycle
(IPC), normalized to the baseline with no protection.

0

0.2

0.4

0.6

0.8

1

yc
sb

_a
bg

sa
ve

yc
sb

_a
se

rv
er

yc
sb

_b
se

rv
er

yc
sb

_c
se

rv
er

yc
sb

_e
se

rv
er

tp
cc

64

tp
ch

17

tp
ch

2

tp
ch

6

50
0.

pe
rl

be
nc

h

50
2.

gc
c

50
5.

m
cf

50
7.

ca
ct

uB
SS

N

50
8.

na
m

d

51
0.

pa
re

st

51
1.

po
vr

ay

51
9.

lb
m

52
0.

om
ne

tp
p

52
3.

xa
la

nc
bm

k

52
5.

x2
64

52
6.

bl
en

de
r

53
1.

de
ep

sj
en

g

53
8.

im
ag

ic
k

54
1.

le
el

a

54
4.

na
b

54
9.

fo
to

ni
k3

d

55
7.

xz

ge
o_

m
ea

n

yc
sb

_a
bg

sa
ve

yc
sb

_a
se

rv
er

yc
sb

_b
se

rv
er

yc
sb

_c
se

rv
er

yc
sb

_e
se

rv
er

tp
cc

64

tp
ch

17

tp
ch

2

tp
ch

6

50
0.

pe
rl

be
nc

h

50
2.

gc
c

50
5.

m
cf

50
7.

ca
ct

uB
SS

N

50
8.

na
m

d

51
0.

pa
re

st

51
1.

po
vr

ay

51
9.

lb
m

52
0.

om
ne

tp
p

52
3.

xa
la

nc
bm

k

52
5.

x2
64

52
6.

bl
en

de
r

53
1.

de
ep

sj
en

g

53
8.

im
ag

ic
k

54
1.

le
el

a

54
4.

na
b

54
9.

fo
to

ni
k3

d

55
7.

xz

ge
o_

m
ea

n

YCSB TPC SPEC CPU2017 All YCSB TPC SPEC CPU2017 All

Athresh=128 Athresh=512

N
or

m
al

iz
ed

 IP
C

Figure 16: Performance overhead of CHaRM against adversarial traces for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128 and 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512. The y-axis shows the
instruction per cycle (IPC), normalized to the baseline with no protection.

a 4MB shared LLC (i.e., 1MB per core). However, the slowdown is
reduced to 8.66% with an 8MB LLC (2MB per core), and to 5.61%
with a 16MB LLC (4MB per core).

Note that the CNT and CCT tables were sized for the default
4MB LLC per core. Thanks to CHaRM’s flexibility, CPU vendors
can adjust table sizes according to their specific CPU and cache
configurations. For example, by simply doubling the number of
entries in CNT and CCT for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128 (i.e., using a 256-entry
CNT and a 1024-entry CCT), CHaRM incurs only 7.93%, 2.62%, and
0.36% slowdown for shared LLC sizes of 4MB, 8MB, and 16MB,
respectively. Our analysis in Table 6 shows that even with doubled
table sizes, CHaRM offers significantly better efficiency trade-offs
compared to the state of the art.

8.5 Adversarial Performance Evaluation
As we discussed in Section 5.3, CHaRM would issue entire bank
refreshes when the SCC counter reaches the CCT size, i.e., when all
checkpoints in the CCT table are at 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1. This behavior can
be an opportunity for an adversary to force expensive refreshes and
block the DRAM devices, shared with a normal, benign workload.
Such an adversary can saturate the checkpoints in the CCT one
by one. Consider the CHaRM configuration for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512
in Table 4 where the CCT has 128 checkpoints. The adversary
repeatedly activates a row that maps to the first checkpoint entry
𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1 times and then evicts this row from the CNT with one
more activation (ensuring the CCT entry is updated). Hence, to
saturate all the entries in the CCT, the adversary requires 512×128 =
64𝐾 activations, which is achievable in a tREFW .

In theory, such an attacker would induce 2× performance over-
head; 64𝐾 × 46 ns to saturate all checkpoints and 64𝐾 × 46 ns to

refresh a bank with 64𝐾 rows. However, this is the case for a worst-
case scenario where the victim utilizes the entire activation band-
width. To better understand the impact on real applications, we
evaluate on a 2-core setup where the attacker runs on one core
and the victim runs on the other core. We assume a strong at-
tacker that has complete knowledge of the hash functions used
in CHaRM. As the victims, we test the SPEC CPU2017, YCSB, and
TPC workloads. Figure 16 shows the performance overhead for
the victims for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512 and 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128. In summary, the
attack incurs only 4.14% performance overhead with𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512,
and 13.69% overhead with 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128. Only memory-intensive
workloads (the same applications as in Figure 5) experience higher
slowdown and mainly for low thresholds. For example, 519.lbm
shows 74% overhead, and 549.fotonik3d shows 53% overhead for
𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 128. However, this overhead is reduced to 50% and 16% for
519.lbm and 549.fotonik3d, respectively, when 𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512.
Overall, our results demonstrate that such performance attacks
have no significant impact on real applications and victims.

9 Discussion
We discuss adding more resiliency to CHaRM against performance
attacks (Section 9.1), how CHaRM scales to systems with a large
number of DIMMs (Section 9.2), combining CHaRM and ABACuS
(Section 9.3), and victim hammer counting optimization in CHaRM
(Section 9.4).

9.1 Resiliency against Performance Attacks
While the results from Section 8.5 already show a low impact from
performance attacks for real applications, we discuss approaches to
make CHaRM even more robust against performance attacks with

CCS ’25, October 13–17, 2025, Taipei, Taiwan Ali Hajiabadi, Michele Marazzi, and Kaveh Razavi

respect to the theoretical performance bounds. The most straight-
forward approach to harden CHaRM is increasing the CCT size.
For example, by doubling the CCT size, the attacker would require
2× more activations to saturate all the entries. In an earlier exam-
ple (𝐴𝑡ℎ𝑟𝑒𝑠ℎ = 512 and CCT size of 128), the performance bound
of the attack reduces from 2× to 33% with a 256-entry CCT table
(128𝐾 × 46 ns for saturating the CCT and 64𝐾 × 46 ns for the stall
refreshing all rows). Our area, power, and energy analysis in Ta-
ble 6 demonstrates that even doubling the tables in CHaRM would
provide significant improvements compared to the state of the art.

Another potential strategy is an adaptive CHaRM design where
it would proactively mitigate some CNT evictions instead of check-
pointing in the CCT table. While our results in Figure 5 show that
naively mitigating all CNT evictions incurs high overhead, an adap-
tive CHaRM design can start mitigating some of the activations
once the SCC counter reaches a certain threshold (e.g., whenever
80% of the checkpoints are saturated). CPU vendors can tune this
mechanism to achieve the best trade-off for their target benchmarks.

Finally, some prior work proposed solutions to detect the adver-
sarial workloads which can be integrated with CHaRM as well [7].

9.2 Supporting Multiple DIMMs
It is common practice to report the overhead of hardware-level
Rowhammermitigationswhen considering the number of banks [36,
42]. Following the same practice, the results presented in Table 5
are for 32 banks. However, a practical deployable in-CPUmitigation
needs to consider the overhead when considering the maximum
number of DRAM devices that can be installed in the system.

We evaluate the SRAM overhead of CHaRM when considering
the maximum deployable DIMMs in a system. For a client CPU, it
is common to have two channels, where each channel is capable of
handling up to two dual-rank DIMMs. This configuration multiplies
the number of banks that CHaRM (and any other in-CPUmitigation)
needs to handle by a factor of 8. For a 𝑅𝑡ℎ𝑟𝑒𝑠ℎ of 2044 as an example,
the total required SRAM overhead is 48.96 KB. A lower-end Intel
Core i5 client CPU features 20MB of L3 cache. Given that L3 is
a subset of available on-die SRAM, CHaRM introduces less than
0.24% overhead for the entire chip when considering the maximum
number of supported DIMMs.

We similarly evaluate the overhead of CHaRMwhen considering
a server CPU that is heavily equipped with DRAM. A recent Intel
Xeon CPU can support up to 8 channels. Considering a two dual-
rank DIMMs per channel, CHaRM requires 195.84 KB of SRAM for a
𝑅𝑡ℎ𝑟𝑒𝑠ℎ of 2044 as an example. Considering 60MB of SRAM for such
a large CPU, CHaRM introduces less than 0.32% overhead for the
entire chip when considering the maximum number of supported
DIMMs. In summary, our analysis shows that CHaRM can mitigate
Rowhammer with a negligible cost when considering real-world
client and server deployments.

9.3 Combining CHaRM and ABACuS
The core idea behind ABACuS (i.e., all-banks-shared counters) is
based on the observation that rows with the same ID are activated
at similar times across all banks. This observation relies on the
assumption that activation counts are maintained individually per
row, similar to Misra-Gries, where each counter entry corresponds

to a single row ID. However, CHaRM uses hashing to evict conflict-
ing CNT entries and share CCT entries amongmultiple rows, which
makes the all-banks-shared observation not beneficial anymore. We
observed that a CHaRM variant that shares the tracker across all
banks experiences more frequent CNT evictions and faster satura-
tion of CCT entries compared to CHaRM alone, resulting in higher
performance overhead at the same storage budget.

Additionally, sharing the tracker across all banks exacerbates
the impact of performance attacks. If the shared tracker becomes
saturated, all banks are stalled. However, with CHaRM, only a
single bank is stalled while the others remain available. ABACuS
also suffers from this issue, as its spillover counter can quickly
exceed the 𝐴𝑡ℎ𝑟𝑒𝑠ℎ , requiring all rows in all banks to be refreshed
before any further requests can be serviced; this is implemented as
forced refreshes for the entire rank in the original paper [36].

9.4 Victim Hammer Counting in CHaRM
Based on the 𝑅𝑡ℎ𝑟𝑒𝑠ℎ definition in Section 6, a victim row experi-
ences a bit flip only if the cumulative number of activations to its
adjacent rows within the blast radius 𝐵 reaches the 𝑅𝑡ℎ𝑟𝑒𝑠ℎ thresh-
old. However, in our design, we conservatively trigger a mitigation
as soon as any aggressor row reaches 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1. To determine
a safe value for 𝐴𝑡ℎ𝑟𝑒𝑠ℎ in Section 6, we assumed a worst-case
scenario where all 𝐵 × 2 aggressor rows surrounding the victim
have independently reached 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1, pushing the cumulative
aggressor activation count close to 𝑅𝑡ℎ𝑟𝑒𝑠ℎ .

Example. Table 4 presents our 𝐴𝑡ℎ𝑟𝑒𝑠ℎ configuration for differ-
ent 𝑅𝑡ℎ𝑟𝑒𝑠ℎ thresholds. For instance, for 𝑅𝑡ℎ𝑟𝑒𝑠ℎ = 508 and 𝐵 = 1,
we configure 𝐴𝑡ℎ𝑟𝑒𝑠ℎ to 128, based on the assumption that a victim
row𝐴 experiences a bit flip if the cumulative number of activations
to its two aggressor rows 𝐴 ± 1 reaches 508. In CHaRM, we trigger
a mitigation whenever the activation count of any of the aggres-
sor rows reaches 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1 = 127. This conservative approach
assumes that the other aggressor row has also been activated 127
times, both before and after table resets, such that one additional
activation could induce a bit flip in the victim row. However, such
mitigation may be unnecessary if the other aggressor row has been
activated fewer than 127 times. As a result, this conservative as-
sumption guarantees comprehensive security but may be overly
restrictive for benign applications, and even for certain Rowham-
mer attack patterns that do not evenly distribute activations across
all aggressors (e.g., the Half-Double attack [27]).

A potential performance optimization for benign applications
would be to perform victim hammer counting, i.e., tracking the cu-
mulative activation count of all aggressor rows within the blast
radius of a given victim, and only trigger mitigations when the
victim’s hammer count reaches 𝑅𝑡ℎ𝑟𝑒𝑠ℎ − 1. While this approach
is feasible for in-DRAM mitigations [33], in-CPU mitigations like
CHaRM do not have knowledge about the blast radius and the
physical geometry of the rows. That is, two rows with consecu-
tive addresses (e.g., 𝐴 and 𝐴 + 1) may not be physically adjacent
in DRAM. Therefore, CHaRM adopts aggressor activation count-
ing, and determines a safe 𝐴𝑡ℎ𝑟𝑒𝑠ℎ threshold under the worst-case
assumption that all adjacent aggressors could be simultaneously
activated to 𝐴𝑡ℎ𝑟𝑒𝑠ℎ − 1 (Section 6). Note that in-CPU mitigations
are also not able to directly refresh victim rows of an aggressor.

CHaRM: Checkpointed and Hashed Counters for Flexible and Efficient Rowhammer Mitigation CCS ’25, October 13–17, 2025, Taipei, Taiwan

PARA CHaRM

N
or

m
al

iz
ed

 IP
C

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a) Athresh=2048

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) Athresh=1024

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(c) Athresh=512

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(d) Athresh=256

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(e) Athresh=128

Figure 17: Performance of PARA and CHaRM for SPEC
CPU2017 workloads. The y-axis shows the instruction per
cycle (IPC), normalized to the baseline with no protection.

However, by issuing a DRFM command for an aggressor row, the
DRAM device internally refreshes its physically adjacent victim
rows [22].

10 Related Work
To the best of our knowledge, CHaRM is the first flexible and deter-
ministic in-CPU mitigation that breaks the dependency between
the number of counters and the supported thresholds, while demon-
strating significantly lower efficiency overheads compared to the
optimal trackers for any given Rowhammer threshold. In this sec-
tion, we discuss prior proposals to mitigate Rowhammer.

10.1 In-CPU Rowhammer Mitigations
Since the introduction of Rowhammer in 2014, many works have
proposedmitigations to be implemented in thememory controller [26,
30, 36, 37, 42, 44]. These mitigations can be categorized into two
main classes: (1) probabilistic, and (2) deterministic. Probabilistic
mitigations [26, 44, 47, 54, 55] require negligible space as they do
not track the precise state of the activations; however, they lack
deterministic guarantees and incur prohibitively high performance
overheads as they issuemany unnecessarymitigations, especially at
lower thresholds. PARA [26], for example, is Intel’s deployed proba-
bilistic mitigation for DDR5 [19]. Figure 17 shows the performance
overhead of PARA and CHaRM compared to an unprotected base-
line for SPEC CPU2017 workloads. PARA incurs 14.3%, 8.7%, and
5.0% performance overhead for𝐴𝑡ℎ𝑟𝑒𝑠ℎ of 128, 256, and 512, respec-
tively. In comparison, CHaRM has significantly smaller overhead
(below 1% in all cases), while providing deterministic guarantees.

On the other hand, deterministic mitigations introduce low per-
formance overheads; however, they require a large amount of
space to precisely track the activation counts [30, 36, 37, 42, 44].
Graphene [37] was the first work that modeled Rowhammer mit-
igation as a frequent item tracking problem and deployed the
Misra-Gries algorithm to determine the optimal number of coun-
ters needed to track all the rows activated within a refresh window.
Several subsequent works also deployed the Misra-Gries algorithm
to size their counter tables [25, 33, 36, 44, 45]. However, as we
demonstrated in this paper, using the optimal number of counters
is prohibitively expensive. ABACuS [36] is the state-of-the-art that
improves the space requirements of optimal trackers by sharing
the counter tables among all banks, but it still requires thousands
of expensive CAM counters.

Hydra [42] is a relevant mitigation that does not rely on Misra-
Gries. Instead, it stores per-row counters inside DRAM itself. To

alleviate the latency of fetching and updating these per-row coun-
ters, Hydra deploys a set of per-subarray counters as a filtering
mechanism to decide whether it needs to update the per-row coun-
ters. That is, Hydra only needs to update the per-row counters if the
aggregated activation count of a subarray exceeds a certain group
threshold. While this design can be effective for high thresholds, it
incurs high performance overheads at lower thresholds, especially
when running multi-core workloads. This is because the group
thresholds are quickly reached, and the tracker must frequently
update the in-DRAM per-row counters. In addition, Hydra incurs
high area, power, and energy overheads compared to CHaRM (see
Table 4). Finally, Hydra uses the memory bandwidth for tracking
purposes, and more importantly, the in-DRAM counters themselves
become vulnerable to Rowhammer (as they are frequently accessed
inside DRAM, creating an opportunity for attackers to bypass the
mitigation).

10.2 In-DRAM Rowhammer Mitigations
An active line of research explores the possibility of mitigating
Rowhammer inside DRAM. The main challenges of in-DRAM miti-
gations are space and time. DRAM devices are more constrained in
terms of space for implementing a mitigation. In addition, unlike
in-CPU mitigation, earlier in-DRAM mitigations had to be proac-
tive, since they cannot stop servicing memory controller requests
(we will later discuss reactive in-DRAM mitigations).

ProTRR [33] and Mithril [25] propose deterministic in-DRAM
trackers that deploy Misra-Gries for proactive mitigation and size
the tables accordingly. While these mitigations can provide deter-
ministic security guarantees, they require a large amount of space
to implement an optimal tracker. Probabilistic in-DRAM mitiga-
tions [18, 41] address the space challenge by randomly sampling
activated rows in a tREFI for mitigation. However, these mitigations
still suffer from the time challenge of in-DRAM designs, since they
must borrow time from the natural refresh capacity of the device.

To solve the time and space challenge of in-DRAM trackers,
REGA [34] proposes a new circuitry to provide mitigating refreshes
on each activation. This allows REGA to avoid maintaining any
state or counters, or making any assumptions about the blast radius,
and instead continuously apply mitigations. The recent JEDEC
specifications [22] have also introduced RFM and PRAC standards
to address the time challenge of in-DRAM mitigations, which we
will discuss next.

10.3 Deployed In-DRAM TRR
Several mitigations have been introduced and advertised by DRAM
vendors. Since DDR4, DRAM devices have implemented a Target
Row Refresh (TRR) mechanism, though the implementation de-
tails are not documented by vendors. TRR usually does not incur
performance overhead as it uses the natural refresh capacity to
also refresh victim rows. However, many works have demonstrated
attacks that bypass TRR mitigations [12, 16, 20, 21].

Since DDR5, the JEDEC standards have introduced a Refresh
Management (RFM) mechanism. RFM requires the memory con-
troller to track the activations sent to each bank and issue a miti-
gating command, called RFM, to allow the DRAM to mitigate vul-
nerable rows. A more recent update in the JEDEC specification

CCS ’25, October 13–17, 2025, Taipei, Taiwan Ali Hajiabadi, Michele Marazzi, and Kaveh Razavi

introduces Per Row Activation Counting (PRAC). The PRAC stan-
dard maintains per-row counters inside the DRAM arrays, inspired
by Panopticon [3], to address the space challenge. PRAC also intro-
duces an Alert-Backoff (ABO) protocol that allows the DRAM to
request time for mitigation, enabling in-DRAM reactive mitigations.
Several recent works propose mitigations based on PRAC [8, 40, 53].
However, PRAC can introduce performance overheads as it mod-
ifies the timing parameters of the device (e.g., increasing the tRC
from 46 ns to 52 ns). Moreover, PRAC remains an optional feature
in DDR5 specifications.

10.4 Error-Correcting Code (ECC) Memory
Error-Correcting Code (ECC) memory provides a mechanism to
detect and correct bit flips, thereby reducing the attack surface
of the Rowhammer vulnerability. However, such error-correcting
mechanisms are orthogonal to Rowhammer mitigations, although
they can help mitigations like CHaRM become more efficient due
to higher 𝐴𝑡ℎ𝑟𝑒𝑠ℎ . The main reason Rowhammer mitigations are
still needed in the presence of ECC memory is that existing ECC
mechanisms can only correct a limited number of bit flips, and
attackers can still mount successful exploits by inducing uncor-
rectable errors. Prior work has shown that Rowhammer attacks can
bypass even advanced error correction schemes like Chipkill [9].
Other studies have also demonstrated systematic frameworks for
reverse engineering on-die ECC functions [38], enabling attack-
ers to improve the reliability of their Rowhammer attacks. Hence,
even in the presence of ECC, a mitigation like CHaRM is necessary
to provide comprehensive and deterministic security guarantees
against Rowhammer attacks.

10.5 Software-based Rowhammer Mitigations
Many prior works have proposed software-based mitigations to
avoid modifying hardware and to mitigate Rowhammer for existing
CPUs and DRAM devices [1, 4, 6, 28, 52, 57]. However, software
mitigations cannot provide comprehensive security, as they cannot
track all activations. As a result, some of these mitigations have
been defeated by newer attacks [14, 51, 56].

11 Conclusion
In this work, we present CHaRM a deterministic in-CPU mitigation
that efficiently breaks the dependency between the number of coun-
ters and the Rowhammer threshold. CHaRM allows CPU vendors
to configure the mitigation to support average DRAM devices with
negligible efficiency overhead, even scaling to real scenarios where
the CPU is connected to multiple DIMMs. To achieve this, CHaRM
has a fixed number of hashed counters where all rows are mapped
to these counters, called as the Counters Table. Counters Table
tracks the activation count for the most-recently activated rows.
Since now multiple rows are mapped to the same counter, many
collisions occur in the Counters Table and the we would need to
issue mitigative refreshes when evicting a row. However, majority
of these mitigations are unnecessary since the evicted rows have
not reached the threshold. To avoid excessive refreshes, we deploy
a checkpointing mechanism where we save the counter value of
the evicted rows in a Counters Checkpoint Table, instead of ad-
ditional refreshes. When a row is activated again, we restore the

checkpointed counter value in the Counters Table. Our evaluations
demonstrate that CHaRM incurs negligible performance overhead
across all Rowhammer thresholds, while significantly improving
area, power, and energy, e.g., by 3.8×, 4.4×, and 8.2×, respectively,
compared to the state of the art for Rowhammer threshold of 1K.

Acknowledgments
We thank the anonymous reviewers and shepherds for their insight-
ful feedback, which improved the final version of this paper. We
also thank Sandro Rüegge for his help with early drafts of the paper.
This work was supported in part by the Swiss State Secretariat
for Education, Research and Innovation under contract number
MB22.00057 (ERC-StG PROMISE).

References
[1] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,

Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL: Software-based
protection against next-generation rowhammer attacks. ACM SIGPLAN Notices
(2016).

[2] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) (2017).

[3] Tanj Bennett, Stefan Saroiu, Alec Wolman, and Lucian Cojocar. 2021. Panopticon:
A Complete In-DRAM Rowhammer Mitigation. In Workshop on DRAM Security
(DRAMSec).

[4] Carsten Bock, Ferdinand Brasser, David Gens, Christopher Liebchen, and Ahamd-
Reza Sadeghi. 2019. RIP-RH: Preventing rowhammer-based inter-process attacks.
In Asia Conference on Computer and Communications Security (AsiaCCS).

[5] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. 2016. Dedup Est Machina: Memory
Deduplication as an Advanced Exploitation Vector. In Symposium on Security
and Privacy (SP).

[6] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. 2017. CAn’t touch this: Software-only mitigation against Rowham-
mer attacks targeting kernel memory. In USENIX Security Symposium.

[7] Oğuzhan Canpolat, A Giray Yağlıkçı, Ataberk Olgun, Ismail Emir Yuksel,
Yahya Can Tuğrul, Konstantinos Kanellopoulos, Oğuz Ergin, and Onur Mutlu.
2024. Breakhammer: Enhancing rowhammer mitigations by carefully throttling
suspect threads. In International Symposium on Microarchitecture (MICRO).

[8] Oğuzhan Canpolat, A Giray Yağlıkçı, Geraldo F Oliveira, Ataberk Olgun, Nisa
Bostancı, İsmail Emir Yüksel, Haocong Luo, Oğuz Ergin, and Onur Mutlu. 2025.
Chronus: Understanding and Securing the Cutting-Edge Industry Solutions to
DRAM Read Disturbance. In International Symposium on High Performance Com-
puter Architecture (HPCA).

[9] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. 2019. Exploit-
ing correcting codes: On the effectiveness of ecc memory against rowhammer
attacks. In Symposium on Security and Privacy (SP).

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Symposium on
Cloud Computing.

[11] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuffrida,
and Kaveh Razavi. 2021. SMASH: Synchronized Many-sided Rowhammer Attacks
from JavaScript. In USENIX Security Symposium.

[12] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. TRRespass:
Exploiting the many sides of target row refresh. In Symposium on Security and
Privacy (SP).

[13] Stefan Gloor, Patrick Jattke, and Kaveh Razavi. 2025. REFault: A Fault Injec-
tion Platform for Rowhammer Research on DDR5 Memory. In Microarchitecture
Security Conference (uASC).

[14] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell, Wolfgang Schoechl, and Yuval Yarom. 2018. Another flip in the wall
of rowhammer defenses. In Symposium on Security and Privacy (SP).

[15] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. Simpoint 3.0:
Faster and more flexible program phase analysis. Journal of Instruction Level
Parallelism (2005).

[16] Hasan Hassan, Yahya Can Tugrul, Jeremie S Kim, Victor Van der Veen, Kaveh
Razavi, and Onur Mutlu. 2021. Uncovering in-dram rowhammer protection
mechanisms: A newmethodology, custom rowhammer patterns, and implications.
In International Symposium on Microarchitecture (MICRO).

[17] Hasan Hassan, Yahya Can Tugrul, Jeremie S Kim, Victor Van der Veen, Kaveh
Razavi, and Onur Mutlu. 2021. Uncovering In-DRAM RowHammer Protection

CHaRM: Checkpointed and Hashed Counters for Flexible and Efficient Rowhammer Mitigation CCS ’25, October 13–17, 2025, Taipei, Taiwan

Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implica-
tions. In International Symposium on Microarchitecture (MICRO).

[18] Aamer Jaleel, Gururaj Saileshwar, Stephen W Keckler, and Moinuddin Qureshi.
2024. PrIDE: Achieving Secure Rowhammer Mitigation with Low-Cost In-DRAM
Trackers. In International Symposium on Computer Architecture (ISCA).

[19] Patrick Jattke, Michele Marazzi, Flavien Solt, MaxWipfli, Stefan Gloor, and Kaveh
Razavi. 2025. McSee: Evaluating Advanced Rowhammer Attacks and Defenses
via Automated DRAM Traffic Analysis. In USENIX Security Symposium.

[20] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi.
2022. BLACKSMITH: Rowhammering in the Frequency Domain. In Symposium
on Security and Privacy (SP).

[21] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej Bölcskei, and
Kaveh Razavi. 2024. ZenHammer: Rowhammer Attacks on AMD Zen-based
Platforms. In USENIX Security Symposium.

[22] JEDEC. 2024. JESD79-5C: DDR5 SDRAM Specifications. (2024).
[23] Ingab Kang, Walter Wang, Jason Kim, Stephan van Schaik, Youssef Tobah, Daniel

Genkin, Andrew Kwong, and Yuval Yarom. 2024. SledgeHammer: Amplifying
Rowhammer via Bank-level Parallelism. In USENIX Security Symposium.

[24] Jeremie S Kim, Minesh Patel, A Giray Yağlıkçı, Hasan Hassan, Roknoddin Azizi,
Lois Orosa, and Onur Mutlu. 2020. Revisiting rowhammer: An experimental
analysis of modern dram devices and mitigation techniques. In International
Symposium on Computer Architecture (ISCA).

[25] Michael Jaemin Kim, Jaehyun Park, Yeonhong Park, Wanju Doh, Namhoon
Kim, Tae Jun Ham, Jae W Lee, and Jung Ho Ahn. 2022. Mithril: Cooperative
row hammer protection on commodity dram leveraging managed refresh. In
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA).

[26] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors. In
International Symposium on Computer Architecture (ISCA).

[27] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nico-
las Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. 2022. Half-Double:
Hammering from the next row over. In USENIX Security Symposium.

[28] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis Andriesse, Her-
bert Bos, Cristiano Giuffrida, and Kaveh Razavi. 2018. ZebRAM: comprehensive
and compatible software protection against rowhammer attacks. In USENIX
Symposium on Operating Systems Design and Implementatio (OSDI).

[29] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. Rambleed:
Reading bits in memory without accessing them. In Symposium on Security and
Privacy (SP).

[30] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung Ho Ahn. 2019.
TWiCe: preventing row-hammering by exploiting time window counters. In
International Symposium on Computer Architecture (ISCA).

[31] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker Tadesse Aga,
Clémentine Maurice, and Daniel Gruss. 2020. Nethammer: Inducing Rowhammer
Faults through Network Requests. In European Symposium on Security and Privacy
Workshops (EuroSPW).

[32] Haocong Luo, Yahya Can Tuğrul, F. Nisa Bostancı, Ataberk Olgun, A. Giray
Yağlıkçı, , and Onur Mutlu. 2023. Ramulator 2.0: A Modern, Modular, and Exten-
sible DRAM Simulator.

[33] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh Razavi. 2022. Protrr:
Principled yet optimal in-dram target row refresh. In Symposium on Security and
Privacy (SP).

[34] Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo Takashi, and Kaveh Razavi.
2023. REGA: Scalable Rowhammer Mitigation with Refresh-Generating Activa-
tions. In Symposium on Security and Privacy (SP).

[35] Jayadev Misra and David Gries. 1982. Finding repeated elements. Science of
computer programming (1982).

[36] Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel, Haocong
Luo, Steve Rhyner, A. Giray Yaglikci, Geraldo F. Oliveira, and Onur Mutlu. 2024.
ABACuS: All-Bank Activation Counters for Scalable and LowOverhead RowHam-
mer Mitigation. In USENIX Security Symposium.

[37] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn, and
Jae W Lee. 2020. Graphene: Strong yet Lightweight Row Hammer Protection. In
International Symposium on Microarchitecture (MICRO).

[38] Minesh Patel, Jeremie S Kim, Taha Shahroodi, Hasan Hassan, and Onur Mutlu.
2020. Bit-exact ECC recovery (BEER): Determining DRAM on-die ECC functions
by exploiting DRAM data retention characteristics. In International Symposium
on Microarchitecture (MICRO).

[39] Rui Qiao and Mark Seaborn. 2016. A New Approach for Rowhammer Attacks. In
International Symposium on Hardware Oriented Security and Trust (HOST).

[40] Moinuddin Qureshi and Salman Qazi. 2025. MOAT: Securely Mitigating Rowham-
mer with Per-Row Activation Counters. In International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS).

[41] Moinuddin Qureshi, Salman Qazi, and Aamer Jaleel. 2024. MINT: Securely
Mitigating Rowhammer with a Minimalist In-DRAM Tracker. In International
Symposium on Microarchitecture (MICRO).

[42] Moinuddin Qureshi, Aditya Rohan, Gururaj Saileshwar, and Prashant J Nair. 2022.
Hydra: enabling low-overhead mitigation of row-hammer at ultra-low thresholds
via hybrid tracking. In International Symposium on Computer Architecture (ISCA).

[43] Kaveh Razavi, Ben Gras, Cristiano Giuffrida, Erik Bosman, Bart Preneel, and
Herbert Bos. 2016. Flip Feng Shui: Hammering a Needle in the Software Stack.
In USENIX Security Symposium.

[44] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant J Nair. 2022.
Randomized row-swap: mitigating Row Hammer by breaking spatial correlation
between aggressor and victim rows. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[45] Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and Moinuddin Qureshi.
2022. Aqua: Scalable rowhammer mitigation by quarantining aggressor rows at
runtime. In International Symposium on Microarchitecture (MICRO).

[46] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug
to gain kernel privileges. Black Hat (2015).

[47] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. 2017. Making
DRAM stronger against row hammering. InDesign Automation Conference (DAC).

[48] SPEC2017 [n. d.]. SPEC CPU2017 Benchmark Suite. Standard Performance
Evaluation Corporation. http://www.spec.org/cpu2017/

[49] Andrei Tatar, Radhesh Krishnan Konoth, Cristiano Giuffrida, Herbert Bos, Elias
Athanasopoulos, and Kaveh Razavi. 2018. Throwhammer: Rowhammer Attacks
over the Network and Defenses. In USENIX Annual Technical Conference (USENIX
ATC).

[50] TPC [n. d.]. TPC Benchmarks. Transaction Processing Performance Council.
https://tpc.org

[51] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clemen-
tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
2016. Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. In
Conference on Computer and Communications Security (CCS).

[52] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikrishnan Pad-
manabha Pillai, Giovanni Vigna, Christopher Kruegel, Herbert Bos, and Kaveh
Razavi. 2018. GuardION: Practical Mitigation of DMA-based Rowhammer Attacks
on ARM. In Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA).

[53] Jeonghyun Woo, Shaopeng Chris Lin, Prashant J Nair, Aamer Jaleel, and Gururaj
Saileshwar. 2025. Qprac: Towards secure and practical prac-based rowhammer
mitigation using priority queues. In International Symposium on High Performance
Computer Architecture (HPCA).

[54] A. Giray Yağlikçi, Ataberk Olgun, Minesh Patel, Haocong Luo, Hasan Hassan,
Lois Orosa, Oğuz Ergin, and Onur Mutlu. 2022. HiRA: Hidden Row Activation
for Reducing Refresh Latency of Off-the-Shelf DRAM Chips. In International
Symposium on Microarchitecture (MICRO).

[55] Jung Min You and Joon-Sung Yang. 2019. MRLoc: Mitigating Row-hammering
based on memory Locality. In Design Automation Conference (DAC).

[56] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi Wang, and Yuval
Yarom. 2020. Pthammer: Cross-user-kernel-boundary rowhammer through im-
plicit accesses. In International Symposium on Microarchitecture (MICRO).

[57] Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He, Wenhao Wang, Surya
Nepal, Yansong Gao, Kang Li, Zhe Wang, and Chenggang Wu. 2022. SoftTRR:
Protect page tables against rowhammer attacks using software-only target row
refresh. In USENIX Annual Technical Conference (USENIX ATC).

http://www.spec.org/cpu2017/
https://tpc.org

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM Organization and Operations
	2.2 Rowhammer
	2.3 Rowhammer Mitigations

	3 Motivation
	3.1 Challenge 1: Flexibility
	3.2 Challenge 2: Efficiency

	4 Threat Model
	5 CHaRM Design
	5.1 First Version: CHaRM-hashed
	5.2 Second Version: CHaRM-checkpointed
	5.3 Final Version: Mitigation Management

	6 Security Analysis
	7 Experimental Setup
	8 Evaluation
	8.1 Sizing the CHaRM Tables
	8.2 Area, Power, and Energy Analysis
	8.3 Performance Evaluation
	8.4 LLC Size Sensitivity Evaluation
	8.5 Adversarial Performance Evaluation

	9 Discussion
	9.1 Resiliency against Performance Attacks
	9.2 Supporting Multiple DIMMs
	9.3 Combining CHaRM and ABACuS
	9.4 Victim Hammer Counting in CHaRM

	10 Related Work
	10.1 In-CPU Rowhammer Mitigations
	10.2 In-DRAM Rowhammer Mitigations
	10.3 Deployed In-DRAM TRR
	10.4 Error-Correcting Code (ECC) Memory
	10.5 Software-based Rowhammer Mitigations

	11 Conclusion
	Acknowledgments
	References

