
CELLIFT: Leveraging Cells for Scalable and Precise Dynamic
Information Flow Tracking in RTL

Flavien Solt
ETH Zurich

Ben Gras
Intel Corporation

Kaveh Razavi
ETH Zurich

Abstract
Dynamic Information Flow Tracking (dynamic IFT) is a well-
known technique with many security applications such as
analyzing the behavior of a system given an input and detect-
ing security violations. While there are many widely used
open dynamic IFT solutions that scale to large software, the
same level of support is unfortunately lacking for hardware.
This gap is becoming more pronounced with the increasing
complexity of open-source hardware and the plethora of re-
cent hardware attacks.

We introduce CELLIFT, a new design point in the space of
dynamic IFT for hardware. CELLIFT leverages the logical
macrocell abstraction (e.g., an adder) to achieve scalabil-
ity, precision and completeness when instrumenting a given
Register Transfer Level (RTL) hardware design. Cell-level
dynamic IFT does not suffer from the scalability problems
that are inherent to lower levels of abstraction such as gates,
yet it achieves completeness given the limited number of cell
types. We show the versatility of CELLIFT by instrument-
ing five distinct RISC-V designs, one of which is a complete
SoC. The only existing complete solution already fails to
instrument two of these designs. Our extensive evaluation
using microbenchmarks and standard RISC-V benchmarks on
the instrumented designs shows that CELLIFT is 21× to 61×
faster than the state of the art in terms of simulation runtime
without losing precision. We further show-case concrete appli-
cations of CELLIFT in four scenarios by detecting: 1) sources
of microarchitectural information leakage, 2) microarchitec-
tural bugs such as Meltdown, 3) speculative vulnerabilities
such as Spectre-BCB, and 4) SoC-wide architectural design
flaws. We release CELLIFT as open source to enable RTL-
level security research for the wider community.

1 Introduction

Despite substantial design verification efforts, there is a con-
tinual discovery of security-critical hardware design flaws
that are exploitable from software [1, 6, 8, 11, 37, 38, 46, 48,

55, 56, 59, 60, 62, 69, 71, 72]. These vulnerabilities are often
difficult to mitigate post-silicon, leaving systems exposed for
long periods of time. While critical, current tools and tech-
niques are unfortunately incapable of capturing these issues
in large designs. There is hence an urgent need for empower-
ing Electronic Design Automation (EDA) tools for detecting
security vulnerabilities during hardware design.

Dynamic Information Flow Tracking. A promising ap-
proach for analyzing the state of a system given an input
and verifying certain security properties is Information Flow
Tracking (IFT). Static IFT either needs to consider all pos-
sible states which does not scale beyond very simple de-
signs [13, 17, 20] or it over-approximates, leading to preci-
sion problems [65]. In contrast, dynamic IFT only considers
changes to the state made in a single execution, allowing it
to potentially scale to larger hardware designs for checking
design-wide security properties. As an example, many of the
recently discovered security flaws [8, 37, 38, 55, 56, 69, 71, 72]
can be formulated as a dynamic IFT constraint. While there
are many popular dynamic IFT tools that scale to large soft-
ware [36,47,66], the same level of support is currently lacking
for hardware. With the increasing popularity of open-source
hardware, an open-source dynamic IFT solution that scales
to larger designs has the potential to significantly improve
security testing and enable new security applications.

CELLIFT. It is possible to instrument a given design at one
of the two extreme abstraction levels for dynamic IFT: either
by considering its low-level gate netlist [67]; or by consider-
ing the high-level Hardware Description Language (HDL) [2].
Unfortunately, both abstraction levels come with significant
shortcomings: instrumenting the gates has severe scalability
issues while instrumenting the HDL requires managing com-
plex language constructs, making it challenging to achieve
completeness. We make a key observation that instrumenting
the macrocells, which are at a slightly lower abstraction level
than HDL, preserves the benefits of both extremes without



their shortcomings. There are a manageable number of cell1

types (e.g., adder, shifter, multiplexer, etc.) for which we can
create shadow cell types that precisely track the information
flows and scale comfortably to larger designs. Unlike gates,
these shadow cells map efficiently to large units available
in commodity CPUs (e.g., registers or arithmetic and logic
units), significantly improving the performance of dynamic
IFT during simulation. To design these shadow cells, we
introduce a generic precise information flow tracking logic
scheme called m-replica based on cell replication. To make
this scheme scale efficiently with increasing cell widths while
preserving precision, we exploit the cells’ mathematical prop-
erties of monotonicity, transportability and translatability
that we formally define and leverage for the first time. We
then prototype CELLIFT, our dynamic IFT solution that in-
struments a given Register Transfer Level (RTL) design by
leveraging the design of our shadow cell types.

To show the versatility of CELLIFT, we use it to instrument
five RISC-V cores, one of which integrated in a System on a
Chip (SoC) which we also instrument to show that CELLIFT
can successfully be applied on various complex and heteroge-
neous designs. The only existing (gate-level) solution that can
handle generic designs [67] already fails at instrumenting and
simulating two of these five designs. Our evaluation shows
that compared to instrumenting gates, CELLIFT is more pre-
cise, more than 5× faster with instrumentation and synthesis
while requiring 5× less memory, and more than 21× faster
during simulations. We show-case the benefits of CELLIFT
in four different scenarios using our instrumented designs:
first, we show how CELLIFT can be used to measure changes
to the microarchitectural state as a result of executing an in-
struction or a memory access. This information can be used
to detect various sources of timing-based information leak-
age [40, 52, 75]. Second and third, we show how CELLIFT
can enable the detection of microarchitectural vulnerabilities
such as Meltdown [38] or MDS [59, 71], or speculative exe-
cution attacks such as Spectre [37] respectively. Finally, we
use CELLIFT to detect design flaws that can lead to architec-
tural security vulnerabilities using various scenarios from a
hardware hacking challenge [17].

In summary, we make the following contributions:

• We present a scalable, precise and complete cell-level
dynamic IFT design.

• We implement CELLIFT based on this new design as
new passes into the Yosys open-source synthesizer [74].

• We evaluate CELLIFT on five RISC-V designs: Ibex [43],
Ariane [76], Rocket [3], BOOM [4] and the PULPissimo
SoC from the Hack@DAC’18 competition [17].

• We use CELLIFT in several scenarios to show the benefits
of scalable and precise dynamic IFT support as part of
the hardware design toolchain.

1We use the terms cell and macrocell interchangeably.

Open sourcing. To enable reproducibility and to let re-
searchers and practitioners benefit from CELLIFT, we publish
the source code of CELLIFT, the experiments and the instru-
mented designs at this URL:
https://comsec.ethz.ch/cellift.

2 Background

In this section, we provide a brief background on existing
techniques for detecting architectural vulnerabilities, their
(in)effectiveness against recent microarchitectural vulnerabili-
ties, and discuss how hardware dynamic IFT mechanisms can
provide a better alternative.

2.1 Detecting architectural vulnerabilities
Hardware designers employ various methods in an attempt
to detect flaws in the RTL representation. These methods are
manual or automatic; automatic methods are local or global.

Manual inspection. Dessouky et al. [17] recently showed
that existing verification methods do not effectively cover
many of the cross-layer bugs resulting from subtle hardware-
software interactions. Hardware designers often resort to
manual inspection of the RTL and simulation of hand-crafted
input to detect these complex cases. Unfortunately, this ap-
proach is cumbersome, error-prone, and incompatible with
any form of continuous integration that can catch subtle vul-
nerabilities introduced after the initial hardware design. Errata
of recent complex designs such as 12th generation Intel R©
CoreTM processors contain an overwhelming proportion of
such bugs [14].

Local methods. Hardware designers often rely on Sys-
temVerilog assertions (SVA) [50] to ensure correct behav-
ior and capture unintended behavior that can lead to bugs at
all design stages. These assertions express local properties
such as compliance to a given bus protocol, or compliance
of a state machine with some expected properties. Assertion-
based verification formal methods such as Formal Property
Verification (FPV) [22, 23] can provably check whether these
assertions can be triggered in a given RTL design and provide
examples when they do. These formal methods unfortunately
suffer from state explosion due to their static nature, limiting
their scalability. Therefore, hardware designers and verifica-
tion engineers often deploy Constrained Random Verification
(CRV) extensively [49]. CRV tries out a series of signals
while respecting some constraints, such as complying with
some input bus protocol, to empirically find out whether local
assertions can be triggered.

Global methods. Many security properties are not express-
ible in the form of local assertions. For instance, a local
assertion cannot infer the origin or destination of some data
transfer and therefore cannot verify confidentiality proper-
ties in the general case. Formal methods such as Security
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Path Verification (SPV) [9] and Formal Security Verification
(FSV) [64] are designed to statically catch unauthorized infor-
mation flows. However, these methods are reported to suffer
from the same scalability issues as local formal methods and
typically requires black-boxing parts of the design [15], ham-
pering their ability to detect information flows across the
entire design.

2.2 Microarchitectural vulnerabilities
While architectural security vulnerabilities already pose a
challenge for existing tools and techniques, microarchi-
tectural security vulnerabilities that do not explicitly col-
lide with architectural specifications pose an even greater
challenge. These security vulnerabilities are not only le-
gion [1, 6, 8, 11, 37, 38, 46, 48, 55, 56, 59, 60, 62, 69, 71, 72],
but industry leaders still struggle to mitigate them, sometimes
requiring multiple generations of attempts before reaching
an effective mitigation as seen in the recent MDS class of
vulnerabilities [11, 59, 70, 71]. Such vulnerabilities can lead
to confidentiality breaches, effectively enabling arbitrary read
primitives. Recent work [24] attempts to detect microarchi-
tectural vulnerabilities by exploiting the RTL description, but
requires tailoring to a specific design and vulnerability, with-
out providing exploitability insights. We hence urgently need
a design-agnostic solution that can detect different classes of
vulnerabilities with little effort.

2.3 Dynamic hardware IFT
Hardware dynamic IFT provides the possibility of following
how information flows propagate in a design [2, 67]. Con-
fidentiality, integrity, isolation, constant time and design in-
tegrity properties are canonical properties covered by dynamic
IFT [29]. As opposed to static methods, dynamic IFT does
not consider the entire set of possible states in a given de-
sign, but instead allows to dynamically prove properties in
a specific context. Consequently, it is immune to the state
explosion problem.

Dynamic IFT requires: a mechanism for tracking informa-
tion flows and policies expressed on top of this mechanism.
According to certain policies, signals are temporarily or per-
manently labeled as taint sources or taint sinks during runtime,
and an alarm is triggered when an information flow from a
taint source to a taint sink is detected through the mechanism.
Confidentiality policies inspect the data flow from secret data
locations (taint sources) to unauthorized entities (taint sinks).
Conversely, integrity policies inspect data flows from unau-
thorized entities (taint sources) to sensitive locations (taint
sinks). As an example, Meltdown-type [10] class of vulnera-
bilities [8, 11, 38, 55, 56, 59, 69, 71, 72] can be expressed as a
policy that disallows memory loads from a different domain.

Two hardware dynamic IFT mechanisms have been pro-
posed so far: GLIFT [67] and RTLIFT [2]. They add new
elements to the design to support dynamic IFT, but at dif-
ferent levels: GLIFT instruments the design at the level of

elementary logic gates (AND, NOT, OR and multiplexers),
and RTLIFT proposes to instrument the HDL directly. We
will show that GLIFT has critical scalability problems, and
(to the best of our knowledge) a complete RTLIFT has never
been implemented due to the tremendous engineering effort
required.

Table 1 summarizes all the verification techniques dis-
cussed in this section. While dynamic IFT is an attractive
alternative for detecting hardware vulnerabilities, existing
solutions such as GLIFT [67] and RTLIFT [2] have severe
limitations that hamper their adoption. In the following sec-
tion, we analyze these limitations and discuss how our new
hardware dynamic IFT design addresses them.

Table 1: Classification of design verification methods.
Local Global

Static FPV [22, 23] SPV [9], FSV [64]
Dynamic CRV [49] GLIFT [67], RTLIFT [2]

3 Dynamic Hardware IFT Using Cells

There are three properties that are significant for any hard-
ware dynamic IFT mechanism to see adoption: first, it should
be able to operate on any given (valid) digital design (i.e.,
the completeness property). Second, it should scale to large
designs with high instrumentation performance and usable
simulation overhead (i.e., the scalability property). Finally,
it should faithfully propagate tainted signals while minimiz-
ing the taint spilled to additional signals in the design (i.e.,
the precision property). Unfortunately, none of the existing
techniques cover all these important properties together.

The most common strategy is instrumenting designs with
IFT logic at the gate level [30–33, 67]. While achieving com-
pleteness due to the limited number of different gates, it suf-
fers from scalability problems: since IFT logic construction
occurs after logic synthesis (i.e., once the design is expressed
as a list of elementary logic gates), it incurs an exponential
worst-case time complexity at instrumentation time [33]. As
an example, instrumenting Ibex [43], a small RISC-V design,
requires 72× more elements when instrumenting the design
with gates, in comparison with the non-instrumented design.
Perhaps more importantly, the gate-level approach also in-
curs high overhead at simulation time, as it forces simulators
to simulate the design and the shadow logic gate by gate,
while a significant speed-up would result from simulating
higher-level constructs such as additions or comparisons.

Another issue with gate-level IFT logic is its precision.
While precise IFT for a given design is an undecidable prob-
lem [16], doing so at the (low) level of gates exacerbates the
problem. While there exists precise IFT logic for individual
gates, the interaction of IFT logic from different gates leads
to imprecision (i.e., overtainting).

To improve this situation, it is possible to generate the
IFT logic at a higher level of abstraction. Previous work on
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Figure 1: Different levels of instrumentation and their char-
acteristics.

elevating the abstraction level uses HDL [2, 77]. They either
introduce new language features that require porting by a
human expert at significant time and backward-compatibility
cost [77], or it is challenging to make them complete given
the many possible language constructs to be supported [2].

IFT logic based on macrocells. We argue that to gain the
benefits of both strategies, we need to operate at a different
level of abstraction than gates or HDL. This level should
be high enough to achieve high performance and precision,
while generic enough to achieve completeness and backward-
compatibility. Macrocells, to which we refer as cells, de-
note higher-level intermediate representations of synthesiz-
able hardware primitives (such as an adder, comparator, etc.).
Cells are limited in types but are parametrizable in widths and
in other important properties such as signedness. Whereas
working at gate-level requires breaking these primitives, cells
are close to HDL and often map directly to HDL constructs.
Therefore, cells form typical intermediate representations in
hardware tools, explicitly in LLHD [58] and Yosys [74], and
in Verilator which maps similar constructs to the simulating
machine’s ISA [73]. This makes cells an ideal candidate for
generating the IFT logic as shown in Figure 1. Because all
cells correspond to HDL constructs, CELLIFT’s shadow logic
design is also a necessary basis for any HDL instrumentation
that would strive to achieve completeness in the future.

Designing a scalable and precise IFT logic for general-
purpose digital designs, however, poses certain challenges.
First, it is unclear whether we can follow a generic approach
for designing a precise IFT logic for any given cell, leading
us to our first research question:

RQ1. Is there a generic IFT logic pattern that could pre-
cisely instrument any combinational cell?

Second, while a generic approach will enable us to achieve
completeness as we will soon discuss, it will come at a high
cost. To reduce this cost, we can perhaps make use of the
structure of the cells themselves, leading to our second re-
search question:

RQ2. Do cells have certain logical properties that we can
exploit to scale the resulting IFT logic?

Section 4 answers the first question by introducing a novel
m-replica architecture which can be adapted to implement the
IFT logic with perfect precision for any given combinational

cell. This architecture, however, scales exponentially with
the cell’s width. Section 5 answers the second question by
introducing three fundamental logical properties of different
cells, namely monotonicity, transportability, and translatabil-
ity that can be leveraged to adapt the m-replica architecture
for creating efficient per-cell IFT logic.

4 The Canonical M-replica Architecture

We introduce a replication-based architecture that can be used
to generate IFT logic for any given cell with perfect precision.

4.1 Precise information propagation
Let C be a combinational cell, and Ct its IFT logic. C has some
input bits (I j)0≤ j<Ni and output bits C(I) := (Yj)0≤ j<No

2. We
define (It

j)0≤ j<Ni and Ct(I, It) := (Y t
j )0≤ j<No to be the taint

signals corresponding to C’s input and outputs, respectively.
The terms Ni and No represent the number of input bits and
the number of output bits of the cell. This means that It

j = 1 if
the input signal I j is tainted, and similarly Y t

j = 1 if the output
signal Yj is tainted.

Because some cells, such as adders, have two inputs A
and B of identical width, we define A j := I j and B j := I

j+Ni
2

.
We refer to the index j in A j or B j as operand position, as
opposed to the position in the aggregated input I.

Precise information propagation rule. Information prop-
agates from the set of tainted input signals {I j | It

j = 1} to
some output signal Yj if there exists another input vector Ĩ for
C, which differs from I only on tainted input bits, and such
that the two input vectors I and Ĩ cause distinct values for Yj.
Equation 1 formalizes this rule. ⊕ denotes exclusive or.

Ct(I, It) j = 1 ⇐⇒

∃Ĩ | (I⊕ Ĩ)∧ It = 0 and C(Ĩ) j =C(I) j
(1)

Equivalently, for a given input I with taint vector It , and
for a given output bit Yj, Yj is tainted if the value of Yj can
be changed by only changing the value of I at some tainted
indices. We use this insight in the design of IFT logic using
cell replication.

4.2 Replication-based design
Any digital circuit can be represented as an interconnection of
state-holding cells (flip-flops and latches) and purely combi-
national (stateless) cells. We discuss how we can instrument
these different cell types using replication.

State-holding cells. A simple replication suffices to instru-
ment state-holding cells: when a signal is delayed by entering
such a cell, the same delay affects the information carried by
this signal, as shown in Figure 2a. This means that for every
state-holding cell, we simply need an additional shadow cell
that stores the taint information for that cell.

2We use the := notation when defining new terms in this paper.
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Figure 2: Instrumentation of a) a state-holding cell, b) a
combinational block and c) an exclusive-or cell with single
input bit at gate level. Signals generated to feed the gate-level
IFT logic but absent at cell level are drawn in blue. The t
exponent indicates taint signals.

Combinational cells. Combinational blocks should be in-
strumented with combinational logic as illustrated in Fig-
ure 2b. As shown in Figure 2c, dividing combinational blocks
results in simulating more elements individually to generate
intermediate signals and limits performance and precision.

Based on Equation 1, precise information flow tracking
can be achieved by trying each possible input Ĩ, filtered by
the input taints It . This can be achieved by replicating 2Ni

instances of C. This canonical design can create precise IFT
logic for any cell, given that it uses copies of the cells.

Figure 3 shows the design of such an IFT logic for a combi-
national cell C with 2 inputs and 3 outputs. The four instances
C00, C01, C10, C11 are identical instances of C supplied with
distinct inputs depending on the input taint assignment. Equa-
tion 2 formalizes these instances as Cv(I, It), with v in un-
signed binary representation. In Equation 2, It has the role of
selector in multiplexers between I and v.

Cv :=Cv(I, It) :=C((I∧ It)∨ (v∧ It)) (2)

We call such IFT logic architectures m-replica, where m
is the number of instances of the original cell present in the
IFT logic. The canonical m-replica architecture requires an
exponential number of copies of C in the input size Ni. In the
following sections, we specialize this generic structure using
cells’ mathematical properties to improve its scalability.

5 Exploiting the Logical Properties of Cells

We exploit monotonicity (Section 5.1), transportability (Sec-
tion 5.2) and translatability (Section 5.3) properties to en-
hance the performance of replication-based cell IFT logic by
reducing its size without loss of precision.

5.1 Monotonic cells
Prevalent cells such as comparators and some logical reduc-
tions (e.g., multi-bit OR cells) feature a property which we
call monotonicity. Monotonicity allows pruning of the canon-
ical replica-based IFT logic to obtain a constant-complexity
2-replica IFT logic. We define three monotonicity properties:

0    1

0    1

0    1

0    1

0    1

0    1

0    1

0    1

2 6 26

22

Figure 3: IFT logic for a cell C with 2 input bits and 3 output
bits. The wires corresponding to the highest order output bit
are omitted, and those of the second output bit are dashed.
Stage (1) replaces the tainted inputs with all possible value
combinations. In stage (2), C is replicated 2Ni times to take
all input combinations. Stage (3) compares the outputs of all
replicas. Finally, for each output bit index, a taint is set if two
replicas have different output bits at the corresponding index.

1. bitwise non-decreasing. A cell is bitwise non-decreasing
in input offset j if no output bit of the cell can fall from
1 to 0 when I j is raised from 0 to 1. For example, an OR
cell is bitwise non-decreasing in all its input bits.

2. bitwise non-increasing. A cell is bitwise non-increasing
in input offset j if no output bit of the cell can raise from
0 to 1 when I j is raised from 0 to 1. For example, an
inverter cell is bitwise non-increasing in all its input bits.

3. bitwise monotonic. A cell is monotonic if with respect
to each of its input bits, the cell is non-increasing or
non-decreasing.

IFT logic for bitwise non-decreasing cells. Let C be bit-
wise non-decreasing in all its input bits. We build a 2-replica
IFT logic using polarization as described in Equation 3.

Y t =C0...0⊕C1...1 (3)
Proof. Let C be a bitwise non-decreasing cell in all its input
bits. Let 0 ≤ j < No (No is the output width of the cell),
and consider a fixed input taint vector It . If the output bit
Yj is zero for some input I, then Yj is also zero for the input
Ĩ0 := I∧ It given the non-decreasing property. Conversely, if
Yj is one for some input value Ĩ such that I∧ It = Ĩ∧ It (i.e., I
and Ĩ differ only on tainted bits), then Yj is also one for the
input Ĩ1 := I∨ It , again given the non-decreasing property. It
follows that all output bits that can be toggled by applying two
inputs I and Ĩ of tainted bits are also toggled between applying
Ĩ0 and Ĩ1. This allows us to reduce m-replica to 2-replica using
polarization: Y t =C(Ĩ0)⊕C(Ĩ1) =C0...0⊕C1...1.



Table 2: 2-replica-based instrumentation of monotonic cells.
Logical reductions represent multi-input OR or AND cells
with single output. Comparisons represent <, ≤, ≥ and >.

Cell Replica 1 Replica 2
Reductions C0...0 ⊕ C1...1

Unsigned comparisons C00.0;11.1 ⊕ C11.1;00.0

Signed comparisons C10.0;01.1 ⊕ C01.1;10.0

Bitwise

Bitwise

a)

Transportability 
support

Polarization

Bitwise

Bitwise

b)

Transportability 
support

Polarization

Figure 4: 2-replica-based IFTL for a) an adder cell and b) a
subtractor cell.

IFT logic for bitwise monotonic cells. We now extend po-
larization to all bitwise monotonic cells. If C is non-increasing
with respect to an input bit at index i, then it is non-decreasing
in the negation of this input bit. Because bit inversion does
not affect taint propagation, any monotonic cell can similarly
be instrumented according to Equation 4, where di := 1 if C is
non-decreasing in input bit i, and di := 0 if C is non-increasing
in input bit i.

Y t =CdNi−1...d0 ⊕CdNi−1...d0 (4)

Summary. Table 2 shows the 2-replicas used to instrument
logic reductions and comparisons. Unsigned comparisons,
and or-/and-reductions are bitwise non-decreasing cells in
all input bits. Signed comparison cells are bitwise non-
decreasing on all bits except the most significant bit of the
operands, which is non-increasing.

5.2 Transportable cells
Abundant arithmetic cells such as addition and subtraction
cells can be instrumented in constant complexity thanks
to their transportability property. Transportable cells have
the same width for each operand, and information from an
operand bit always flows to the corresponding output bit. We
can instrument these cells using polarization (similar to mono-
tonic cells) complemented with transportability-supporting
IFT logic that implements a conjunction of the input bits.

5.2.1 Adder cells

We design the IFT logic of the adder cell as described by
Equation 5 and illustrated in Figure 4-a using polarization
conjuncted with the transportability term At ∨Bt . Appendix B
provides a proof of correctness and precision of this architec-
ture. Our proof considers a ripple carry adder which exposes

$eq(a)

A =

B =

$eq 0(b)

A =

B =

Figure 5: Examples of an equality (a) with tainted output,
and (b) without a tainted output. The equality cells compare
the top input bits with the corresponding bottom input bits.

an induction property in the taint propagation from the least
significant bits to the most significant bits of the operands A
and B. This proof generalizes to any adder implementation,
since different architectures provide the same mathematical
function for addition.

Y t =
[
C0...0⊕C1...1]∨At ∨Bt (5)

5.2.2 Subtractor cells

Similarly to the adder cell, we base the IFT logic of the sub-
tractor cell on a 2-replica polarized architecture supplemented
with transportability logic to form the IFT logic given in Fig-
ure 4-b. The first polarization term takes operand A with
tainted bits set to zero and operand B with tainted bits set
to one, and conversely for the second polarization term. A
proof by induction in all aspects is similar to the proof given
in Appendix B since subtraction can be formulated for this
architecture based on the identity A−B = A+B+1.

5.2.3 Negation cells

We define I as the data concatenation of the inputs (i.e.,
{A,B}), and It as the taint input concatenation (i.e., {At ,Bt})
The negation cell defined by Y = I+1 exposes the same prop-
erty as an adder, except that there is a single operand and
no carry bit in the negation cell. Therefore, we instrument it
in constant complexity using the same polarization replicas,
conjuncted with the transparency term It that corresponds to
a single operand.

5.2.4 (In)equality cells

(In)equality cells are transportable under the condition that
all non-tainted bit pairs are equal. More precisely, the output
bit of an (in)equality cell is tainted if and only if the two
following conditions are fulfilled: 1. At least one input bit
is tainted. 2. For each operand position where no input bit is
tainted, the two input bits are equal.

Figure 5 shows two equality cells. The equality cell (a) has
its output tainted because it fulfills the two conditions. How-
ever, cell (b) has its output non-tainted, because the leftmost
bits do not match and are not tainted. Note that the value
of tainted input bits never matters. We design the IFT logic
of the equality cell as in Equation 6, where TAB := At ∨Bt

represents which bits are neither tainted in A nor in B. The
term

∨
It , where It := {At ,Bt}, is one if and only if any of

the input bits is tainted.

Y t =C(A∧TAB;B∧TAB)∧
∨

It (6)



Table 3: 2-replica-based instrumentation of transportable (ad-
dition, subtraction, negation) or conditionally transportable
(equality, inequality) cells.

Cell Polarization Junction Transportability
Add C0...0⊕C1...1 ∨ At ∨Bt

Sub C0.0;1.1⊕C1.1;0.0 ∨ At ∨Bt

Neg C0...0⊕C1...1 ∨ It

Eq/Neq C(A∧TAB;B∧TAB) ∧
∨

It

5.2.5 Summary

We summarize the IFT logic of transportable and condition-
ally transportable cells in Table 3.

5.3 Translatable cells
Some cells do not present powerful properties such as mono-
tonicity or transportability for generating efficient and pre-
cise IFT logic. In this section, we take a different approach
to tackle the problem: instead of relying on the replication
mechanism immediately, we consider each output bit, and
examine which input condition results in tainting output bits.

5.3.1 Input decomposition
Examining each output bit of a cell and its relationship with
input taints and values results in complex formulas that are
not efficient to implement for wide-input cells that can be
present in real digital designs. It is often convenient to make
simplifying assumptions such as some operand being non-
tainted. For instance, for the left shift operator A� B, if we
assume that Bt = 0, then Y t = At � B. We show that the
combination of two properties, namely translatability and
taint combination surjectivity, allows us to construct new
architectures that support such simplifying assumptions.

Translatability. A two-input cell C is said to be right side
translatable (over addition) if it satisfies Equation 7 for all
inputs A and B.

C(A,B′+B′′) =C(C(A,B′),B′′) (7)

As an example, a left shift by an unsigned offset provides
this property: A� (B′+B′′) = (A� B′)� B′′.

Additionally, the following decomposition holds: B = B0 +
B∧Bt , where B0 := B∧Bt (i.e., B where all the tainted input
bits are zeros). This leads to Equation 8, which has two
instances of C on the right-hand side: one instance with a
non-tainted second operand B0, and one instance where all
non-tainted bits of the second operand are zero.

C(A,B0 +B∧Bt) =C(C(A,B0),B∧Bt) (8)

Taint decomposition surjectivity. Equation 7 relies on
cell composition. However, it is known that in the general
case, cell composition does not preserve precision of the IFT
logic [2,67]. We introduce the taint decomposition surjectivity
property: a cell’s IFT logic L is taint decomposition surjective
if and only if precision is unaffected when performing IFT

Table 4: 1-replica-based instrumentation of translatable cells.
The IFT logic is the sequence of two components. Shift cells
in this table have an unsigned interpretation of B.

Cell Comp. 1 Comp. 2 (bitwise)
� C(A,B0) ∨2NB−1

k=0

([
B t
= k
]
∧
[

A j
t
6= A j−k

])
� (logic) C(A,B0) ∨2NB−1

k=0

([
B t
= k
]
∧
[

A j
t
6= A j+k

])
� (arith) C(A,B0) ∨2NB−1

k=0

([
B t
= k
]
∧
[

A j
t
6= Amin( j+k,NA−1)

])

through this cell. Assuming k output bits are tainted, if L can
generate the 2k outputs by changing the data at tainted input
bits, then L is taint decomposition surjective. In Appendix D,
we formalize this property, and use it to prove the precision
of the IFT logic for unsigned-offset logical shift cells.

5.3.2 Logical unsigned-offset shift cells
We show that logical shifts by an unsigned offset C(A,B) :=
A� B, or C(A,B) := A� B can be decomposed in two suc-
cessive shifts, each instrumented separately, without losing
precision. We proceed according to Equation 8, which implies
decomposing C into two cells copies, instrumented separately:
the first cell in the decomposition is C(A,B0), where the offset
B0 is independent of the tainted value assignments. The IFT
logic for this replica is given by C(At ,B0), i.e. At � B0 and
At � B0 for logical left and right shifts respectively.

The second cell in the decomposition is C(A′,B ∧ Bt),
where A′ is the output of the first cell. In Appendix C, we
provide a precise bitwise IFT logic for this second cell. Be-
cause logic unsigned-offset shift cells are taint combination
surjective as shown in Appendix D, the sequence of the two
IFT logics is precise.

5.3.3 Arithmetical unsigned-offset shift cells
The arithmetical unsigned-offset shift cell benefits from the
same right-side translatability as the logical shifts. We de-
compose them in two cells before instrumentation, similarly
to their logical shift counterparts. The only difference is the
propagation of the most significant bit. The IFT logic of the
first cell is identical to the logical counterpart. Appendix C
provides a bitwise IFT logic of the second cell.

5.3.4 Summary
In this section, we used the translatability property to de-
compose some cells into two identical cells with simplifying
assumptions on operands as summarized in Table 4, while
preserving perfect precision.

6 Implementation

In this section, we provide additional details and describe the
implementation of CELLIFT.

6.1 CELLIFT flow implementation
We integrated CELLIFT into the Yosys synthesizer as a syn-
thesis pass over the design’s internal representation. Since



Yosys does not have a complete understanding of all the Sys-
temVerilog constructs, we first pre-process the designs using
the open-source sv2v tool that converts SystemVerilog (IEEE
1800-2017) to Verilog (IEEE 1364-2005) [61]. We refer to
the processing by Yosys as the instrumentation step.

For simulation, we use the open-source Verilator simula-
tor [73]. For emulation, we use Xilinx Vivado. We refer to
the processing by Verilator to produce a simulation binary, or
the processing by Vivado until the end of the FPGA imple-
mentation, as the synthesis step.

The CELLIFT Yosys pass is made of 4575 lines of C++
code. CELLIFT supports a total of 181 Yosys cell types, of
which many are variations of state-holding elements with re-
set, enable and clear signals. 8 unsupported cell types are
memories and their ports, because they are substituted in a
previous stage and do not reach the CELLIFT pass. The 33
remaining cell types are not supported because they have
never been encountered when experimenting on various het-
erogeneous designs. Next, we provide more information on
how we support memories in CELLIFT and describe simple
techniques for instrumenting the remaining cells other than
the ones described in Section 5.

6.2 Instrumenting other cells
Memory models. In digital designs, memories are typically
substituted with specific components depending on the de-
sign’s target: simulation model (simulation), block RAM
(FPGA), or SRAM (ASIC). CELLIFT implements memory
models with conservative IFT rules as follows: (a) Taints
are written and read along with the corresponding data. (b)
Memory read from a tainted address also returns a tainted
value. (c) Memories are marked fully tainted as soon as the
inputs and their taints authorize a write operation to a tainted
address. We also implemented memory models that only per-
form explicit tainting, i.e., when only rule (a) applies. This
allows us to learn which microarchitectural components are
dependent on the tainted address of a load instruction.

Lower-level cells. Exclusive ORs propagate taint as soon
as at least one input bit is tainted. Logic gates ((N)ANDs,
(N)ORs and inverters) are parametrizable in width to profit
from wider instructions on the simulating machine. Multi-
plexers with multiple selector bits are decomposed into a tree
of single-bit selector multiplexers without losing precision.
Then, for a multiplexer of formula Y = S?B : A, we design
the IFT logic expressed in Equation 9, where S, S and St are
replicated to have the same width as A and B.

Y t = (At ∧S)∨ (Bt ∧S)∨ ([A⊕B]∧St) (9)

6.3 Imprecise cell instrumentations
Imprecise shift cells. As opposed to their unsigned coun-
terpart, signed-offset shift cells are not right-side translatable.
Because a precise implementation of these shift cells is expen-
sive, CELLIFT implements a replication-based approximate

propagation policy: taint Y completely whenever B is tainted,
else shift the taints of A by B.

Additionally, on all the designs that we considered, we
noted that right shifts are never larger than 10 bits, whereas
left shifts are often larger in five reference open-source de-
signs. Therefore, for unsigned shift offsets, in CELLIFT we
instrument right shifts precisely and left shifts imprecisely.

Imprecise multiplier cell. As proposed in [2], we decom-
pose the multiplier into a sequence of adders before instru-
menting it. This results is an imprecise IFT logic, but this is
does not affect overall precision much since multipliers are
mostly present only on data paths. For emulation targets, to
decrease the critical paths we used a shadow logic made of a
single OR reduction, without practical decrease in precision.

6.4 Summary
CELLIFT instruments all the 22 combinational cell types that
we encountered in our diverse experiments. From these 22
cell types, 3 are similar to GLIFT when they have a single bit
per input. Appendix A summarizes the cell composition of
non-instrumented, and instrumented designs.

7 Evaluation

In this section, we evaluate CELLIFT in terms of performance,
precision and completeness by instrumenting heterogeneous
and complex designs. We use microbenchmarks to show how
CELLIFT compares in terms of precision and scalability with
previous work [2, 67] (Section 7.1). To show the scalability
of the instrumentation phase, we instrument five heteroge-
neous designs of various complexities (Section 7.2). To show
the performance and precision of CELLIFT-instrumented
designs, we simulate standard RISC-V benchmarks (Sec-
tion 7.3). Finally, we show FPGA portability of the CELLIFT-
instrumented designs (Section 7.4).

Evaluation setting. The performance results were obtained
on a machine equipped with an AMD EPYC 7H12 proces-
sor at 2.6 GHz equipped with 256 logical cores and 1 TB of
DRAM. We used Verilator 4.212 and g++11.2 with the -O0
compiler flag similar to what is used for certain OpenTitan de-
signs [44, 45]. Using compiler optimizations causes spurious
segmentation faults in the Verilator simulation binaries.

Baselines. To the best of our knowledge, no mature open-
source or transparent-enough commercial implementations
of gate-level or language-level hardware IFT is available.
Therefore, we implemented GLIFT as described in the orig-
inal paper [67] for comparison purposes. As the authors of
RTLIFT [2] were reluctant to share their implementation or
provide additional details, we re-implemented the few oper-
ators described in [2]. Our implementation reproduces their
operator-level performance and precision results.
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RAM usage of each mechanism on each design. Left: instru-
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7.1 Microbenchmarks

To evaluate the performance and precision of CELLIFT, we
instrument and simulate individual combinational cells with
various widths to evaluate scalability. We apply one million
random inputs to each cell and randomize the taint bits. We
measure precision by counting the tainted output bits.

Figure 6 shows the performance and precision results
of cell microbenchmarks: CELLIFT provides a massive
speedup in simulation over existing mechanisms. RTLIFT
and CELLIFT-instrumented adders and multipliers have the
same precision, whereas CELLIFT-instrumented cells are
faster. By design, left shifts suffer from poor precision in
this benchmark, which is based on randomly tainting all input
bits: we traded off some empirically superfluous precision in
this cell for speed. This design point is not fundamental as we
showed a perfectly precise shift implementation in Section 5.
All the other cells are instrumented at least as precisely as
GLIFT and RTLIFT. Comparison cells are more precise with
CELLIFT compared to GLIFT. Since these cells can have

large taint fanouts, this precision improves overall taint re-
sults significantly, which is crucial in practical scenarios as
we will show in Section 8. Superior scalability of CELLIFT is
made evident by its steadily low runtime for any cell width.

7.2 Instrumentation
Configurations. We built simple SoCs for Ibex [43] (in
its default Small configuration) and Ariane [76] (with 4-way
associative 8 kB instruction and data L1 caches) by adding
memory models and protocol adapters at the design top levels
(caches remain untouched), and inserted memory models in
PULPissimo (Hack@DAC’18 version) in place of the L2
SRAM. We used the Rocket chip generator to create a SoC to
interface with the Rocket core [3] and the BOOM core [12]
with reduced cache sizes. These configurations allow us to run
standard software on these designs. We additionally replaced
PULPissimo’s technology-dependent oscillator with a model.
Code and data are preloaded into the memory models prior to
any measurement.

Performance. We attempt to instrument and synthesize
each design with both CELLIFT and GLIFT, and report the
wall clock durations and the resident memory consumption in
Figure 7. Verilator failed to synthesize Ariane (out of mem-
ory) and BOOM (timeout after 96 hours) instrumented with
GLIFT due to the excessive complexity of the GLIFT instru-
mentation. While piecewise instrumentation of Ariane by
GLIFT at a greater engineering cost could lead to an eventu-
ally successful gate-level instrumentation, these results make
the limitations of gate-level instrumentation apparent.

7.3 Benchmarks
We run a standard series of RISC-V benchmarks [57] on each
design to assess the performance and precision of CELLIFT.
We run the single-threaded benchmarks, where we skip the
pmp benchmark, which is not supported by Ibex in its default
configuration. We taint some relevant part of each benchmark:
the first data element in median, mm, multiply, qsort, rsort
and spmv, the first instruction in dhrystone, and the number of
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V benchmarks of each design compared with the original
designs. Bottom: number of tainted stateful elements on Ibex.

discs in towers. Because running benchmarks on a simulated
RTL takes very long, we resized the benchmarks’ inputs so
that each experiment point finishes under 30 minutes. This
translated to simulating 4 M cycles for Ibex, 200 k cycles for
PULPissimo, and 40 k cycles for Ariane, Rocket and BOOM.
As we will show in Section 8 simulating this number of cycles
is enough to enable many interesting scenarios.

Figure 8 shows the performance results on all designs and
the number of tainted stateful elements (i.e., precision) on
Ibex. Since the performance variation between the bench-
marks is small, we only indicated the average and standard
deviation between the benchmarks. CELLIFT is significantly
faster than GLIFT in simulation. Regarding precision, some
benchmarks such as multiply taint the control flow in Ibex, re-
sulting in abundant tainting [67]. Manual investigation shows
that some ALU operations influence subsequent branch pre-
dictions, which CELLIFT legitimately revealed. CELLIFT’s
precision allows exploration of different scenarios in Section 8
without observing any false positive.

7.4 FPGA emulation
While we optimized CELLIFT’s shadow logic for simulation,
we show-case its flexibility by porting the five instrumented
designs to an FPGA. For the FPGA flow, we use Vivado-2019-
03 on a machine equipped with a Intel Xeon Gold 6146 CPU
with 48 logical cores at 3.20 GHz with 196 GB of DRAM, for
licensing reasons. We target a xcvu440-flga2892-3-e FPGA
at 100MHz. We set a time limit of 48 hours for the synthesis.
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Results. We successfully port the CELLIFT-instrumented
designs to the target FPGA. The synthesis of GLIFT-
instrumented BOOM requires 27.57 hours and Ariane times
out still at an early stage. With CELLIFT, it lasts respec-
tively 5.93 and 4.57 hours to synthesize BOOM and Ariane.
Figure 9 summarizes the achieved frequencies and resource
requirements for each design. CELLIFT usually shortens the
critical path compared to GLIFT, providing a frequency in-
crease of up to 39% over the state of the art. Only PULPissimo
shows a slight frequency decrease of less than 5%. We ob-
tain an FPGA acceleration over simulation of 256.2 k× and
94.1 k× for Ariane and BOOM respectively. Since CELLIFT
is the only dynamic IFT mechanism to instrument Ariane and
to port it to an FPGA, and improves frequency and utilization
compared to the state of the art, these results advocate for a
cell-level (or higher) instrumentation for FPGA emulation.

7.5 Summary
We showed that CELLIFT is at least as precise and signifi-
cantly faster than the state of the art. It can instrument designs
that were so far inaccessible to the existing solutions, with-
out aggressive and imprecise approximations [30]. In the
next section, we show some of the new opportunities offered
by CELLIFT thanks to its completeness, correctness, perfor-
mance, and precision.

8 Scenarios

We now show how CELLIFT could be used to enable new
applications. While there are many applications possible with
hardware dynamic IFT, here we focus on detecting different
classes of hardware vulnerabilities with CELLIFT.

8.1 Discovering microarchitectural leakage
Changes made to the microarchitectural state from secret-
dependent data or control paths can be exploited to leak se-
cret data [40, 52, 75]. Cache partitioning schemes attempt to
mitigate such attacks [26, 39, 78], but there are other compo-
nents that can leak information, such as Translation Looka-
side Buffers (TLBs) [25] or branch prediction schemes [18] to
name a few. CELLIFT can be used to detect microarchitectural
components that can leak information. This information is
valuable for both attackers looking to discover a new source
of leakage and for the defenders that want to protect the com-
ponents that might leak sensitive information. We execute a
memory load of some tainted data in memory. The taint prop-
agation in the design gives us a cycle-accurate knowledge of
when, and which bits of the design are tainted.

Figure 10 shows a chronological list of the components that
become tainted in designs that we have instrumented with
CELLIFT. We make several observations. First, taints make
it very easy to see when any buffer in the design contains
sensitive information. Second, taints provide a convenient
way of measuring latencies in a system. We detected that
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PULPissimo and Ibex load data in a single cycle, while the
other designs require respectively 4, 10 and 10 cycles. Third,
privilege level and page misses do not affect which compo-
nents are tainted in any of the considered designs. Finally,
CELLIFT is precise in this scenario since the control flow was
legitimately never tainted.

8.2 Detecting Meltdown-type vulnerabilities
Meltdown-type vulnerabilities have been haunting CPUs
since their introduction in 2018 [1, 8, 11, 38, 55, 56, 59, 69,
71, 72] At the core, this class of vulnerabilities allows an in-
valid load to transiently access data from a different (higher)
privilege level. CELLIFT can detect such loads by checking
that that they do not access data from a higher privilege.

Ariane. Ariane features an MMU and may suffer from
Meltdown, Foreshadow or MDS [8, 11, 38, 59, 71]. We craft
the following test cases to trigger these three potential issues:
1. An unprivileged load of a supervisor page (triggering Melt-
down [38]). 2. An unprivileged load of a supervisor page with
the present bit unset (triggering Foreshadow [8]). 3. A load
from an invalid address without the address bits in the page
table entry (triggering MDS [11, 59, 71]).

To see which of these cases trigger the relevant problem,
we taint a target (supervisor) memory page and configure the
page table entry according to one of the above scenarios. Prior
to measuring the malicious load, we access the tainted page to
ensure it is in the cache, and possibly in the microarchitectural
buffers that also have been used for it. The results from these
different cases show that in none of the cases signals get
tainted as a result of the malicious access, showing that Ariane
does not suffer from Meltdown-type vulnerabilities in any of
these specific cases. We contacted the authors who confirmed
our observations that Ariane indeed does not suffer from this
class of vulnerabilities.

BOOM. BOOM v2.2.3 was reported to be susceptible to
Meltdown-type vulnerabilities [24]. We instrument the exact
same version, and use CELLIFT for detecting Meltdown-type
leakages. Contrary to previous work [24], we do not use any

Figure 11: Tainted bits in a BOOM SoC. Top: Meltdown-
type leak: (1) Tainted privileged data is brought into the L1
cache. (2) The user loads the privileged data into a physical
register. (3) The user immediately attempts to load using the
tainted data as an address. This load is either allowed (orange,
realigned) or forbidden (blue). Bottom: Spectre-type leak (at
cycle 700) occurs if the speculation window is large enough.

knowledge of the design’s microarchitecture. We run a simple
Meltdown experiment by transiently loading privileged data in
unprivileged mode and using it as an address for a subsequent
load. We ensure that the privileged page table entry is present
in the TLB, and we taint the privileged word. Given that the
load address will be tainted, a load will spread taint to all
sets of the L1 cache among other elements. Conversely, if
we see no taint in the cache, we know that the load fails, and
any leakage from this load cannot be observed using a cache
covert channel in a later stage.

In our experiments, we observe that when the user tries to
load privileged data, (a) If the data is not in the L1 data cache,
then the data is fetched into the cache’s load buffer regardless
of any privilege mismatch, and (b) If the data resides in the L1
data cache already, then the data is loaded into the physical
register file. According to [24], these constitute a Meltdown-
type leaks of L and R classes, respectively.

To assess exploitability, we first establish a benign base-
line. We first do a legal load of a tainted address (orange
curve in Figure 11, top). As predicted, this taints a large
number of elements. Next, we repeat this experiment with a
secret-dependent load, using the privileged (tainted) data as
an address. Figure 11 summarizes the taint propagation dur-
ing the attack, aligned on the load event. We observe that the
taint propagation is blocked when the page table entry shows
a privileged page (blue curve), and the level of tainting is im-
mediately restored as it was before the malicious load. While
exploitability remained an open question in [24], this result
shows that in this specific case (R1 [24]), the leakage is not ex-
ploitable because it does not leave any observable change. We
repeated the exact same experiments on the newest version of
BOOM (v3.0), and draw the exact same conclusions.

8.3 Detecting Spectre-type vulnerabilities
To show how CELLIFT can detect Spectre in complex designs,
we consider a Spectre-BCB exploit on BOOM where we taint
the secret data. Our exploit consists of two steps, visible in



Figure 11 (bottom). First, the secret is brought to the L1 data
cache. Second, the data is speculatively loaded into the phys-
ical register file. We run two experiments. In the first case,
the mispredicted branch relies on a simple condition (solid
line in figure). In the second case, this branch condition is
made more complex by adding four dependent floating-point
divisions, as in a reference exploit [7], which enlarges the
period of speculative execution (dashed line). Intuitively, the
first experiment may not reveal Spectre-type leakage because
the speculation window may be too short. We observe that the
Spectre-type leakage only happens in the second experiment,
consistent with this intuition. As opposed to classical tech-
niques such as [7], CELLIFT does not require a cache attack
to assess whether data leaks to microarchitectural elements.

8.4 Detecting architectural vulnerabilities
We show how simple policies built on top of CELLIFT can
detect a large number of bugs in the PULPissimo-based faulty
design used in the Hack@DAC’18 contest, some of which are
not detectable by common verification flows. Detailed bug
descriptions are provided in the corresponding paper [17].

Address space violations. We build two policies that check
for correct behavior in the interfaces of the memory-mapped
components: (a) All components in the address map must
comply to the specified boundaries. (b) No aliasing must
occur; may it be in the specification or because of an imple-
mentation bug. To force these policy checks in the CELLIFT-
instrumented design, we perform store operations of tainted
data from the CPU to the addresses before and after each ad-
dress space boundary. These policies reveal bugs 1, 2, 6, 8 and
22 which could not be expressed by either SPV or FPV [17].

Reachability violations. Our reachability policy checks
that certain instructions do not affect certain components by
executing a tainted instruction. Then, after N cycles, all the
components that can be affected by the CPU are tainted. This
allows us to check the integrity and reachability of compo-
nents against a specification, revealing bugs 4 and 27. We did
not find bug 24 with this method, although we had expected
it. Manual code inspection and simulation showed that the
bug was not present in the open-source version of the faulty
design [27]. Similarly, we discovered that bug 7 was inserted
in a module which is never instantiated in the design.

Reset violations. The reset policy checks that the reset sig-
nal clears the state in the design. We check for the violations
of this policy by tainting state holding elements in the design,
and then applying a reset signal. This reveals which registers
and buffers are not cleared during reset, and which ones are
accidentally cleared. This reveals bug 5, but not bug 12 (the
corresponding register has been optimized out because it was
not used and not connected to a clock or reset signal) and bug
16, which lacks a clear specification.

Privilege violations. Our privilege policy checks that in-
structions execute at the right privilege level according to the
specification. We check for violations by executing a tainted
instruction. Because an unprivileged user requires to trap to
supervisor mode to access privileged locations, these loca-
tions will be tainted some cycles after unprivileged locations.
We did not see such an expected timing difference in tainting
of the CSRs (Control and Status Registers), which hinted to
the existence of bug 25.

Summary. We showed that the ability of CellIFT to instru-
ment a complete design efficiently and precisely enables the
implementation of novel techniques to detect bugs; some of
these bugs are known to be difficult or impossible to express
in SPV [9] and FPV [22, 23]. For completeness, we like to
mention that hardware dynamic IFT is not suitable for de-
tecting hardcoded design parameters (e.g., bugs 15 and 19)
or checking functionality (e.g., bugs 9 and 15). Some bugs
such as 11, 13, 14 and 20, 30 or 31 require more advanced
policies. We leave the design of systematic methods to detect
such bugs as future research.

9 Discussion

We discuss some observations we made while developing
CELLIFT and provide more information for its future users.

Maturity of the open source flow. During the course of
this work, we provided feedback to the developers of Verila-
tor [73] and sv2v [61]. None of these two tools was originally
mature enough for the dynamic IFT flow to complete for all
the designs under study. These tools have been improved ac-
cording to our feedback and have reached a sufficient maturity
to instrument the complex designs that we evaluated.

Applications. CELLIFT aims to provide scalable hardware
dynamic IFT. Alone, this mechanism does not aim at dis-
covering new microachitectural vulnerabilities: an important
additional element is the scenarios running on top of CELLIFT.
These scenarios go beyond the verification of handcrafted in-
formation flow policies. As an example, CELLIFT can be
leveraged to provide a new coverage metric, enabling the de-
velopment of new hardware fuzzers, which are still in their
infancy [68]. Another example is enabling system-wide con-
fidentiality and integrity policies for generic processors. We
leave the exploration of these directions to future work.

Instrumentation effort. CELLIFT can instrument any dig-
ital design without modification, after parsing by the Yosys
SystemVerilog parser [74] into intermediate cells. However,
it is common not to synthesize the memories, and to instead
replace them with a model. Typically, the option of ignoring
memories during synthesis is available, as this is common
practice when mapping a design to an FPGA or to an ASIC
flow, where memories are mapped to specific components.



10 Related work

We briefly discuss work related to CELLIFT in five areas.

Hardware dynamic IFT. GLIFT [67] is the first hardware-
level dynamic IFT mechanism and operates at gate level. Pre-
vious work discusses the scalability problems of GLIFT [33]
and our results indeed show that it does not scale to the state-
of-the-art RISC-V processors. Various techniques try to ad-
dress the scalability issues of GLIFT by using dedicated hard-
ware [35], static analysis [5], policy-specific IFT logic [41,42],
and trading precision with simpler IFT logic [30]. Orthog-
onally, CELLIFT solves the scalability problems of GLIFT
by generating the IFT logic at a higher level of abstraction.
It would be interesting to see how previous techniques that
scale GLIFT, can be used to scale CELLIFT even further.

RTLIFT [2] aims to address scalability and precision prob-
lems of GLIFT by instrumenting the HDL code directly. Un-
fortunately, existing HDLs are complex, and it is challenging
to achieve completeness by instrumenting in HDL directly.
In comparison, CELLIFT achieves completeness by choosing
a slightly lower-level yet generic cell abstraction, and outper-
forms RTLIFT as shown in Section 7.1. Because all cells
correspond to simple HDL constructs, CELLIFT provides a
strong basis for any future HDL-level instrumentation.

Non-synthesizable hardware fuzzing of simulation binaries
was recently proposed [68]. However, because the simulation
binary’s control flow depends on values in the design, soft-
ware dynamic IFT will lead to critical overtainting. Another
major drawback of this approach is its restriction to Verilator.

Support for software dynamic IFT. Previous work pro-
poses to provide hardware support for software dynamic
IFT [53, 54]. These solutions are more lightweight but are
only suited to find issues in software, not in hardware.

Static analysis of hardware. Static analysis in combina-
tion with model checking or verification of security properties
is a common technique for improving hardware design se-
curity [9, 19, 22, 23, 64]. These techniques, however, have
scalability issues due to the state explosion problem. To make
static analysis tractable in certain cases, previous work intro-
duces a new type system to an existing HDL [21] or a new
HDL [77] for checking security properties. These techniques
are not backward compatible to existing designs. In compar-
ison, CELLIFT provides a scalable alternative for checking
security properties in unmodified RTL designs.

Model-based Meltdown detection. IntroSpectre [24] also
detected Meltdown-type leakages on BOOM. It uses a Gad-
get Fuzzer to generate fuzzing rounds, uses known values
instead of taints, and augments BOOM with a Leakage Ana-
lyzer, an ad-hoc IFT mechanism. Whereas this mechanism
may have a faster simulation runtime, CELLIFT proposes a
trade-off with several advantages. First, CELLIFT is not built
into a simulator. It is therefore compatible with any tool flow.
Second, CELLIFT is design-agnostic: it does not require the

engineering effort and precise knowledge about the design to
be deployed; CELLIFT even reveals the relevant microarchi-
tectural elements traversed by tainted signals. Third, CELLIFT
supports processed secrets (for instance, the result of an addi-
tion with a secret) and taints in the control paths, whereas the
Leakage Analyzer in IntroSpectre only monitors unchanged
secret data in the data path. This last feature is essential in an-
alyzing exploitability: because no taint reached back caches
or control path, we concluded that R1 [24] is not exploitable,
whereas it remained an open question with IntroSpectre.
Hardware testing. Test cases are an effective tool used
by practitioners to combat hardware bugs. To increase the
coverage of test cases, random testing or more guided methods
can be used to increase the coverage [34,49,51,68]. CELLIFT
can complement these approaches by providing a mechanism
to detect when vulnerabilities are triggered.

SPECS [28] dynamically checks security-critical state us-
ing policies derived from the ISA to combat post-silicon vul-
nerabilities. These policies could be leveraged by CELLIFT to
check the entire state during pre-silicon testing. Post-silicon,
CELLIFT can be used as a low-overhead alternative to exist-
ing hardware dynamic IFT techniques for enforcing security
properties in the entire system [63].

11 Conclusion

We presented CELLIFT, the first hardware dynamic IFT mech-
anism that can scale to complex state-of-the-art open-source
RISC-V processors. CELLIFT instruments the RTL using the
cell abstraction, which is high-level enough for high perfor-
mance and precision, yet generic enough to handle generic
and heterogeneous digital designs without modification. To
achieve this, CELLIFT leverages the logical properties of cells
such as monotonicity, transportability, and translatability.
Our evaluation using five real RISC-V designs with various
complexities shows the superior scalability, precision and
performance of CELLIFT. We further used CELLIFT in dif-
ferent scenarios to show-case its effectiveness in detecting
various classes of flaws and vulnerabilities. CELLIFT is the
first open-source dynamic IFT solution, enabling hardware
security research for the wider community.
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Figure 12: Cell composition for each design. The r_ prefix denotes reduction cells (logic cells with multiple input bits but a
single output bit. Note that the Y axis is logarithmic.)

Full adderFull adderFull adder

Figure 13: Notations for the ripple carry adder.

A Cell Statistics
Figure 12 provides details on the cell composition of the evalu-
ated designs before instrumentation, and after instrumentation
by each mechanism. For readability, the size of the cells is
not indicated.

B Transportability Architecture Proof
We prove the correctness and precision of the adder IFT logic
illustrated in Figure 4 and equivalently given by Equation 5.

We conduct a proof by induction on a ripple carry adder.
Because any adder implementation fulfills the same mathemat-
ical function, the proof holds for any adder implementation.

Notations. We denote by W := Ni
2 the width of each in-

put A and B. As illustrated in Figure 13 we adopt the fol-
lowing notations: for the jth full adder inputs: A j, B j and
c j−1, and outputs Yj and c j, with the carry bit sequence
c := {cW , ...,c0,c−1} where c−1 := 0. We define Ĩ0 := I∧ It

(tainted inputs deasserted) and Ĩ1 := I∨ It (tainted inputs as-
serted). The generic notation X represents Y or c.

Proof by induction. We consider the following induction
property HX j , for 0≤ j <W , for a fixed input I with taints It :

«[∃ Ĩ such that (I⊕ Ĩ)∧ It (match_on_nontaint property)
and X j(I) 6= X j(Ĩ) (toggledX j

)] ⇐⇒ [X j(Ĩ0) 6= X j(Ĩ1)

(polarizationX j
) or At

j ∨Bt
j (transport j)] »: HX j .

Intuitively, we want to prove, for each output bit Yj and
each carry bit c j (including the intermediate carry bits), that if
I and some other input Ĩ match on non-tainted bits and this bit
Yj or c j is toggled between inputs I and Ĩ, then polarization
and transportability taint the information flow (correctness),
and conversely (precision).

Proof. Let us first prove Hc0 and HY0 . Because Y0 = A0⊕B0
and c0 = A0∧B0, then for Y0 or c0 to be tainted, at least one

of A0 and B0 must be tainted, and conversely. Therefore HY0

and Hc0 hold by (transport0).
Let us now prove Hc j and HY j for a given 1 ≤ j <W , as-

suming that Hc j−1 holds. We start by showing the implica-
tion: ∃Ĩ such that (match_on_nontaint) and (toggledX j

) =⇒
(polarizationX j

) or (transport j), corresponding to correctness.
If At

j or Bt
j, then Hc j and HY j hold by (transport j). Let us

suppose from now that At
j = Bt

j = 0 and suppose the exis-
tence of Ĩ that satisfies the conditions (match_on_nontaint)
and (toggledc j

). Because A j and B j are not tainted and there-
fore identical in I and Ĩ by (match_on_nontaint), and because
c j = [A j +B j + c j−1 ≥ 2], it results that c j−1 is toggled when
applying Ĩ instead of I. By Hc j−1 , (a) Either c j−1 is tog-
gled between Ĩ0 and Ĩ1 (polarizationc j−1

), (b) Or At
j−1∨Bt

j−1
(transport j−1). Hence, in both cases (a) and (b), c j is also
toggled between Ĩ0 and Ĩ1, i.e., (polarizationc j

) holds.
Let us now prove: ∃Ĩ such that (match_on_nontaint) and

(toggledX j
) ⇐= (polarizationX j

) or (transport j), correspond-
ing to precision. If (polarizationX j

), then Ĩ = Ĩ0 or Ĩ = Ĩ1. If
(transport j), then because c j = [A j +B j + c j−1 ≥ 2] and Yj

is [A j +B j + c j−1] mod 2, Ĩ : I⊕ (1� j) is a candidate.
Therefore, HY j and Hc j hold. We have proved correctness

and precision of the IFT logic described by Equation 5.

C Pivoting for Precise Shift Cells
In this appendix, we compute an IFT logic for the right shift
cell by an unsigned offset by introducing a pivoting technique.
This appendix relies on the assumption that the shift offset B
and its taint vector Bt verify B∧Bt = 0 (i.e., B is zero at all
non-tainted indices). This property is provided in the second
shift cell obtained from the translatability property.
Logical shifts. We introduce the notation t

=, which denotes
that two vectors match on non-tainted bits, as defined in Equa-

tion 10, and its counterpart
t
6= in Equation 11. The decomposi-

tion by translability guarantees that all the non-tainted bits in
the shift offset B∧Bt of this cell are zero, which substantially
simplifies the IFT logic computation. We prove that an IFT
logic for this second cell can be expressed by Equation 12 for
right shifts and by Equation 13 for left shifts.

U t
=V :⇐⇒ U t ∨V t ∨ [U⊕V ] (10)

U
t
6=V :⇐⇒ U t ∨V t ∨ [U⊕V ] (11)



Y t
j =

2NB−1∨
k=0

([
B t
= k
]
∧
[

A j
t
6= A j+k

])
(12)

Y t
j =

2NB−1∨
k=0

([
B t
= k
]
∧
[

A j
t
6= A j−k

])
(13)

Focusing on a logical right shift, the jth output bit Yj is
tainted if either (explicit tainting) the taint results from shift-
ing some tainted bit Ak to the right to the index j, or (implicit
tainting) some offset B̃ that matches with B on non-tainted
bits gives a different value for Yj, than the offset B.

Because we know that the full-zero vector satisfies the
matching condition of B̃, there is always some pivot B̃0 = 0
that maps A j to Yj. We iterate with some integer k through all
the 2NB values of B̃, assuming the worst case where the taint
vector Bt is full of ones. We complete A with zeroes beyond
the most significant bit to simplify the equations without loss
of generality. If there is any integer k in this range such that
(implicit tainting) there is a B̃ that can bring A j+k to Yj, then
Yj is tainted if A j 6= A j+k (because there are two B̃ instances
that result in different values for Yj), or (explicit tainting) if
A j or A j+k is tainted, because then there is some B̃ that shifts
a tainted value to the output bit Yj, leading to Equation 12.

Arithmetical right shift. The IFT logic of the second cell
in the translatability decomposition of an arithmetical right
shift can be expressed by Equation 14.

Y t
j =

2NB−1∨
k=0

([
B t
= k
]
∧
[

A j
t
6= Amin( j+k,NA−1)

])
(14)

The only difference with logical right shift tainting relies in
the implicit tainting part. Instead of completing A with zeroes,
A must be completed with values equal to its most significant
bit ANA−1. From there, a calculation similar to the logical
counterpart leads to the IFT logic described in Equation 14.

We now sketch a proof of the precision of the composition
of the two IFT logic instances resulting from the decomposi-
tion of the arithmetical right shift.

The NA−B0 most significant bits of C(A,B0)’s output bene-
fit from the taint combination surjectivity of the first cell’s IFT
logic, because these bits are shifted by a non-tainted offset.
Therefore, the second cell’s output taints corresponding to
these inputs in step 2 are precise (see Appendix D). The only
tainted signals that cannot be surjectively enumerated are the
NA−B0 most significant bits, which take A’s most significant
bit’s value. However, although a comparison between these
could lead to an erroneous intermediate result, they will be
eventually tainted by the t

= operator.
Therefore, the composition of the two instances is precise.

D Taint combination surjectivity

We discuss taint combination surjectivity as a tool for under-
standing and proving precision of cell compositions.

                    

AND

AND
  OR

Figure 14: Multiplexer as the succession of a cell C′ and an
OR gate. A = B = 1, At = Bt = 0 and St = 1, therefore the
value of S does not matter for the IFT logic.

Let C be a cell with IFT logic L := Ct . L is said to be
taint combination surjective if for all inputs I and all taint
vectors It , it satisfies Equation 15. Informally, such an IFT
logic does not create any new interdependencies between taint
signals, because all potential outputs Ỹ that match with Y on
non-tainted output bits Y t are obtainable from inputs Ĩ that
match with I on non-tainted input bits It .

∀Ỹ∃Ĩ |Ct((I∧ It)∨ (Ĩ∧ It)) = (Y ∧Y t)∨ (Ỹ ∧Y t) (15)

A composition of cells C′(C(I)), each with precise IFT
logic L and L′, can be precisely instrumented with L′ ◦L if
L is taint combination surjective. A composition of taint
combination surjective IFT logics is also taint combination
surjective: the first IFT logic allows to generate all the inter-
mediate combinations for the second by surjectivity.

Intuition. We introduce a counterexample, where Ct is not
taint combination surjective. The multiplexer is known to be
imprecise [67] if it is instrumented as the composition of one
OR gate after two AND gates. Figure 14 shows a multiplexer
made of two cells: C′ and an OR gate. The outputs U and
V of C′ are tainted, given the precise taint propagation rule.
C′t is not taint combination surjective, because for A = B = 1,
At = Bt = 0 and St = 1, there is no input Ĩ = {Ã, B̃, S̃} which
matches with I on non-tainted bits (i.e., on A and B), that
produces the output Ỹ := {U = 0,V = 0}.

Logical shifts. All logical shift cells with untainted offset
are taint combination surjective. We provide a proof for the
left shift. The proof for the right shift is similar.

Proof. Let B be the untainted offset (i.e., Bt = 0). Let A
be the shifted input, with taints At . Then, Y = A� B and
Y t = At � B. Let Ỹ be a vector of same width as Y , with
Y ∧Y t = Ỹ ∧Y t . Then, Ã := Ỹ � B is a preimage of Ỹ .

E Artifact

E.1 Abstract
In our Artifact, we provide the source code of CELLIFT, a
native RISC-V toolchain, and other dependencies. We also
provide the framework for performing all the experiments
described in this paper and analyzing the obtained results. Ev-
erything is packaged as a Docker image to allow for optimal
reproducibility. To reproduce the experiments, we expect a
machine with 256 GB memory and 500 GB of free storage.



E.2 Artifact checklist
• Algorithm: CELLIFT is a newly developed algorithm to effi-

ciently generate IFT shadow logic as part of a Yosys pass.

• Program: We use a set of five external RISC-V CPU designs
(Ariane, BOOM, Ibex, Rocket, PULPissimo) as evaluation
targets, as well as benchmarks from the RISC-V Architectural
testing framework. All of this code is included in our artifact.

• Compilation: We include the required compilers and inter-
preters.

• Transformations: We include the required Verilog transfor-
mations (CELLIFT and GLIFT), implemented as Yosys passes.

• Binary: We include prebuilt Verilator binaries of the five CPU
designs in all instrumentation modes (i.e., vanilla, CELLIFT,
and GLIFT) where possible. Note that GLIFT instrumentation
or synthesis sometimes fails, as explained in Section 7.2.

• Run-time environment: The bulk of our artifact is a Docker
image that runs on Linux. We tested our image on an Ubuntu
22.04 system with 5.15.0-37-generic kernel.

• Hardware: We do not require any special hardware, but do
need a relatively large amount of DRAM (256 GB) to run all
the experiments.

• Metrics: The experiments record runtime performance and
IFT precision for microbenchmarks for CELLIFT as well as
GLIFT. Further experiments record execution time and mem-
ory footprint of the instrumentation and synthesis process for
all instrumentation modes. We also measure the simulation
performance on for all instrumentation modes. Lastly, we show
resource usage and clockable frequency after FPGA synthesis
for all the five CPU designs under all instrumentation modes.

• Output: For all experiments used in the Evaluation section of
this paper (Section 7), we include code to regenerate the charts.
Also, we include code to reproduce all results in the Scenarios
section of this paper (Section 8).

• Experiments: With the exception of the FPGA results, all
experiments are executed automatically when building the
Docker image. This means the way to reproduce all experi-
ments is encoded in the Dockerfile, and a Docker container
based on this Dockerfile would contain the generated results,
and can be used to re-run individual experiments if desired.

• How much disk space required: The docker image with
all the layers is 330 GB, and Xilinx Vivado requires around
150 GB for downloading and installation. In total, we estimate
a total of 500 GB of free storage is required.

• How much time is needed to prepare workflow: To prepare
the workflow, conscious effort is only needed to retrieve the
Git repository and the Docker image, which should take only a
few minutes.

• How much time is needed to complete experiments: Re-
producing the experiments takes approximately 3 days.

• Publicly available: Stable URL: https://github.com/c
omsec-group/cellift-artifacts/commit/eaa9a26ae
85fd6a7ae8cd248416315414ae4c135. The README
points to a stable (sha256-verified) Dockerhub Docker image
that contains the rest of the code and data, namely docker.i

o/ethcomsec/cellift-artifact-evaluation@sha256:
9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f
4fa4132de7b399ce.

• Code licenses: CELLIFT is licensed under GPL3.

• Workflow frameworks used: Docker, Make, Luigi.

E.3 Description
E.3.1 How to access

The project is located at https://comsec.ethz.ch/cellift.
Our artifact is a single Git repository designed primarily to build a
Docker image that has run all the experiments automatically. This
Git repository is hosted at the ‘Publicly available’ checklist entry.
The README.md in that repository contains further instructions to
obtain the prebuilt Docker image from Dockerhub.

E.3.2 Hardware dependencies

The artifact will run all experiments on a machine with 256 GB of
memory.

E.3.3 Software dependencies

We tested the Docker image on Ubuntu 22.04 LTS kernel 5.15.0-
37-generic, but we expect it to work on a wide range of Linux
distributions.

To reproduce the FPGA experiments in the paper, we furthermore
depend on the Xilinx Vivado FPGA synthesis tool (version 2019.3).

E.4 Installation
The installation of our artifact requires the following two steps:

1. Cloning the git repository specified in the checklist and using
its README.md to pull the Docker image artifact hosted on
Dockerhub.

2. Reproducing the FPGA experiments, requires the installation
of the full edition of Vivado 2019.3 from the Xilinx website
and a license.

E.5 Experiment workflow
Follow the instructions in the git repository README.md that spec-
ifies in detail how to start a Docker container with the image, and
how to reproduce each experiment, and examine the results.

In principle, cloning the git artifact repository and rebuilding
the Docker image using the Dockerfile in the git repository will
rebuild all CELLIFT code and designs from scratch and perform
the experiments (except the FPGA experiments). For maximum
reliability, we also provide the prebuilt Docker image with all code,
binaries and results that we have found to work, which can be used
to reproduce all the experiments (and use CELLIFT in general if
desired).

To run the FPGA experiments, first source the settings64.sh file
from the Vivado installation dir, and follow the instructions in the
Artifact README.md.

https://github.com/comsec-group/cellift-artifacts/commit/eaa9a26ae85fd6a7ae8cd248416315414ae4c135
https://github.com/comsec-group/cellift-artifacts/commit/eaa9a26ae85fd6a7ae8cd248416315414ae4c135
https://github.com/comsec-group/cellift-artifacts/commit/eaa9a26ae85fd6a7ae8cd248416315414ae4c135
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
https://comsec.ethz.ch/cellift


E.6 Evaluation and expected results
The key results from our experiments are as follows. For each result,
we point to scripts (Python or bash) that drive the experiments and
show the analysis.

1. Instrumented designs that we can synthesize to C++ (i.e.
be compiled) for all five RISC-V CPU designs, con-
trary to GLIFT, and with less CPU time and mem-
ory (follows from plot_instrumentation_performance.py and
plot_rss.py), and with higher tainting precision (follows from
plot_num_tainted_states_ibex.py).

2. For the designs that can be compiled in all instru-
mentation modes, we show that CELLIFT has lower
performance overhead than GLIFT (follows from
plot_benchmark_performance.py).

3. The Meltdown and Spectre simulations reproduce Figure
11, showing they can both be detected (follows from
plot_tainted_elements.py).

4. We show several bug scenarios detected by CELLIFT
(run_scenarios.sh).

5. We show FPGA synthesis results, showing that CELLIFT in-
strumented designs can be synthesized, with fewer resources
than the GLIFT instrumented designs.

We refer to the README.md of the artifact git repository for the
detailed steps to reproduce each of the key results described above.

E.7 Experiment customization
There is ample customization opportunity in the Docker image,
because the code of the instrumentation tool as well as the target
designs are there and can be modified and rebuilt. This does require
a deeper knowledge that goes beyond this appendix.

E.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.
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